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1. Introduction

A surface curve in Euclidean 3-space not only has 
ordinary curvatures κ, τ with respect to the space, but 
also curvatures κn, κg, τg with respect to the surface 
itself. These curvatures play important roles in 
understanding the geo-metrical properties of the 
curve. The ordinary curvatures of a curve measure 
the twisting and turning of the Frenet frame, and they 
define the Darboux vector field d = τ  t + κb o f the 
Frenet frame {t, n, b} (Spivak, 1999; Struik, 1950). 
The curvatures of a curve with respect to the surface 
define the Darboux vector field d = τgt − κnv + κgu 
of the Darboux frame {t, v, u}.

The computation of ordinary curvatures for 
parametric curves in 3-space is well-known. Also, if 
we have a curve lying on an implicit or 
parametric surface in 3-space, we know how we can 
compute the Darboux frame curvatures (do Carmo, 
1976; O’Neill, 2006; Patrikalakis & Maekawa, 2002; 
Spivak, 1999; Struik, 1950).

 In addition, the generalization of the Frenet frame 
into higher dimensional spaces and the computations 
of its curvatures are well-known in (Gluck, 1966). 
However, the generalization of the Darboux frame 
even into 4-space is new.(Düldül et al., 2017) define 
the extended Dar-boux frame field along a Frenet 
curve lying on a hypersurface in Euclidean 4-space 
and give the geometrical meanings of the new curva-
tures of the curve with respect to the hyper-surface. 
Also, they compute the expressions of these 
curvatures by considering the curve lying on an 
implicit hypersurface.

In this paper, we give the formulas of the 
extended Darboux frame field curvatures of a Frenet 
curve which lies on a parametric hy-persurface in 
Euclidean 4-space.

2. Preliminaries

2.1 Vector product in E4 and its properties 

Definition 1. Let {e1, e2, e3, e4} be the standard 

basis of R4. The vector

a⊗ b⊗ c =

∣∣∣∣∣∣∣∣

e1 e2 e3 e4
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

∣∣∣∣∣∣∣∣

is called the ternary product (vector product)

of the vectors a =
4∑

i=1

aiei, b =
4∑

i=1
biei, and

c =
4∑

i=1
ciei (Williams & Stein, 1964).

d⊗e⊗(a⊗ b⊗ c) =

The ternary product has the following 
properties (Williams ∣& Stein, 1964):

∣∣∣∣∣
a b c

〈a, e〉 〈b, e〉 〈c, e〉
〈a,d〉 〈b,d〉 〈c,d〉

∣∣∣∣∣∣
,

〈
a⊗b⊗c,d⊗e⊗f

〉
=

∣∣∣∣∣∣
〈a,d〉 〈a, e〉 〈a, f〉
〈b,d〉 〈b, e〉 〈b, f〉
〈c,d〉 〈c, e〉 〈c, f〉

∣∣∣∣∣∣
.

(1)

∂ui

2.2 Curves on a hypersurface in E4

Let M ⊂ E4 be a regular hypersurface parametrized
by R = R(u1, u2, u3) and

β : I ⊂ R → M be an arbitrary curve with arc-length 
parametrization. Since M is regular, the partial 
derivatives R1, R2, R3 are linearly independent at 
every point of M , i.e. R1 ⊗R2 ⊗R3 �= 0, where 
Ri = ∂R . Thus, the
unit normal vector of M is given by

N =
R1 ⊗R2 ⊗R3

||R1 ⊗R2 ⊗R3||
.

The first and second fundamental form coefficients 
of M are given by, respectively,

gij =
〈
Ri,Rj

〉
, hij =

〈
Rij,N

〉
,

where Rij = ∂2R
∂uj ∂ui

, 1 ≤ i, j ≤ 3.

Besides, since the curv(e β(s) lies on M , w)e 
may also write β(s) = R u1(s), u2(s), u3(s) . 
Then we have

β′(s) =
3∑

i=1

Riu
′
i,

β′′(s) =
3∑

i=1

Riu
′′
i +

3∑
i,j=1

Riju
′
iu

′
j, (2)

β′′′(s) =
3∑

i=1

Riu
′′′
i + 3

3∑
i,j=1

Riju
′′
i u

′
j

+
3∑

i,j,k=1

Rijku
′
iu

′
ju

′
k,

where Rijk =
∂3R

∂uk∂uj∂ui
.

Definition 2. A unit speed curve β : I → E4 of class 
C4 is called a Frenet curve if the vectors β′(s),β′′(s), 
β′′′(s) are linearly independent at each point along 
the curve.

2.3 The extended Darboux frame field in E4

Let M be an orientable hypersurface oriented
by the unit normal vector field N in E4, and β be a 
Frenet curve of class C4 with arc-length parameter
s lying on M. Let

T(s) = β′(s), N(s) = N(β(s)).

The extended Darboux frame field along β is 
constructed in (Düldül et al., 2017) as follows:

Case 1. If the set {N, T, β′′} is linearly in-dependent, 
then, using the Gram-Schmidt or-thonormalization 
method gives the orthonor-mal set {N, T, E}, 
where

E =
β′′ − 〈β′′,N〉N

||β′′ − 〈β′′,N〉N||
.

Case 2. If the set {N, T, β′′} is linearly dependent, 
i.e. if β′′ is in the direction of the normal vector N,
applying the Gram-Schmidt orthonormalization
method to {N, T, β′′′} yields

2
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1. Introduction

A surface curve in Euclidean 3-space not only
has ordinary curvatures κ, τ with respect to the
space, but also curvatures κn, κg, τg with respect
to the surface itself. These curvatures play im-
portant roles in understanding the geometrical
properties of the curve. The ordinary curvatures
of a curve measure the twisting and turning of the
Frenet frame, and they define the Darboux vec-
tor field d = τt+κb of the Frenet frame {t,n,b}
(Spivak, 1999; Struik, 1950). The curvatures of
a curve with respect to the surface define the
Darboux vector field d = τgt− κnv+ κgu of the
Darboux frame {t,v,u}.

The computation of ordinary curvatures for
parametric curves in 3-space is well-known. Also,
if we have a curve lying on an implicit or
parametric surface in 3-space, we know how
we can compute the Darboux frame curvatures
(do Carmo, 1976; O’Neill, 2006; Patrikalakis &
Maekawa, 2002; Spivak, 1999; Struik, 1950).

In addition, the generalization of the Frenet
frame into higher dimensional spaces and the
computations of its curvatures are well-known
in (Gluck, 1966). However, the generalization
of the Darboux frame even into 4-space is new.
(Düldül et al., 2017) define the extended Dar-
boux frame field along a Frenet curve lying on a
hypersurface in Euclidean 4-space and give the

geometrical meanings of the new curvatures of
the curve with respect to the hypersurface. Also,
they compute the expressions of these curvatures
by considering the curve lying on an implicit hy-
persurface.

In this paper, we give the formulas of the
extended Darboux frame field curvatures of a
Frenet curve which lies on a parametric hyper-
surface in Euclidean 4-space.

2. Preliminaries

2.1 Vector product in E4 and its properties

Definition 1. Let {e1, e2, e3, e4} be the standard
basis of R4. The vector

a⊗ b⊗ c =

∣∣∣∣∣∣∣∣

e1 e2 e3 e4
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

∣∣∣∣∣∣∣∣

is called the ternary product (vector product) of

the vectors a =
4∑

i=1
aiei, b =

4∑
i=1

biei, and c =

4∑
i=1

ciei (Williams & Stein, 1964).

The ternary product has the following prop-
erties (Williams & Stein, 1964):
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1. Introduction

A surface curve in Euclidean 3-space not only has 
ordinary curvatures κ, τ with respect to the space, but 
also curvatures κn, κg, τg with respect to the surface 
itself. These curvatures play important roles in 
understanding the geo-metrical properties of the 
curve. The ordinary curvatures of a curve measure 
the twisting and turning of the Frenet frame, and they 
define the Darboux vector field d = τ  t + κb o f the 
Frenet frame {t, n, b} (Spivak, 1999; Struik, 1950). 
The curvatures of a curve with respect to the surface 
define the Darboux vector field d = τgt − κnv + κgu 
of the Darboux frame {t, v, u}.

The computation of ordinary curvatures for 
parametric curves in 3-space is well-known. Also, if 
we have a curve lying on an implicit or 
parametric surface in 3-space, we know how we can 
compute the Darboux frame curvatures (do Carmo, 
1976; O’Neill, 2006; Patrikalakis & Maekawa, 2002; 
Spivak, 1999; Struik, 1950).

 In addition, the generalization of the Frenet frame 
into higher dimensional spaces and the computations 
of its curvatures are well-known in (Gluck, 1966). 
However, the generalization of the Darboux frame 
even into 4-space is new.(Düldül et al., 2017) define 
the extended Dar-boux frame field along a Frenet 
curve lying on a hypersurface in Euclidean 4-space 
and give the geometrical meanings of the new curva-
tures of the curve with respect to the hyper-surface. 
Also, they compute the expressions of these 
curvatures by considering the curve lying on an 
implicit hypersurface.

In this paper, we give the formulas of the 
extended Darboux frame field curvatures of a Frenet 
curve which lies on a parametric hy-persurface in 
Euclidean 4-space.

2. Preliminaries

2.1 Vector product in E4 and its properties 

Definition 1. Let {e1, e2, e3, e4} be the standard 

basis of R4. The vector

a⊗ b⊗ c =

∣∣∣∣∣∣∣∣

e1 e2 e3 e4
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

∣∣∣∣∣∣∣∣

is called the ternary product (vector product)

of the vectors a =
4∑

i=1

aiei, b =
4∑

i=1
biei, and

c =
4∑

i=1
ciei (Williams & Stein, 1964).

d⊗e⊗(a⊗ b⊗ c) =

The ternary product has the following 
properties (Williams ∣& Stein, 1964):

∣∣∣∣∣
a b c

〈a, e〉 〈b, e〉 〈c, e〉
〈a,d〉 〈b,d〉 〈c,d〉

∣∣∣∣∣∣
,

〈
a⊗b⊗c,d⊗e⊗f

〉
=

∣∣∣∣∣∣
〈a,d〉 〈a, e〉 〈a, f〉
〈b,d〉 〈b, e〉 〈b, f〉
〈c,d〉 〈c, e〉 〈c, f〉

∣∣∣∣∣∣
.

(1)

∂ui

2.2 Curves on a hypersurface in E4

Let M ⊂ E4 be a regular hypersurface parametrized
by R = R(u1, u2, u3) and

β : I ⊂ R → M be an arbitrary curve with arc-length 
parametrization. Since M is regular, the partial 
derivatives R1, R2, R3 are linearly independent at 
every point of M , i.e. R1 ⊗R2 ⊗R3 �= 0, where 
Ri = ∂R . Thus, the
unit normal vector of M is given by

N =
R1 ⊗R2 ⊗R3

||R1 ⊗R2 ⊗R3||
.

The first and second fundamental form coefficients 
of M are given by, respectively,

gij =
〈
Ri,Rj

〉
, hij =

〈
Rij,N

〉
,

where Rij = ∂2R
∂uj ∂ui

, 1 ≤ i, j ≤ 3.

Besides, since the curv(e β(s) lies on M , w)e 
may also write β(s) = R u1(s), u2(s), u3(s) . 
Then we have

β′(s) =
3∑

i=1

Riu
′
i,

β′′(s) =
3∑

i=1

Riu
′′
i +

3∑
i,j=1

Riju
′
iu

′
j, (2)

β′′′(s) =
3∑

i=1

Riu
′′′
i + 3

3∑
i,j=1

Riju
′′
i u

′
j

+
3∑

i,j,k=1

Rijku
′
iu

′
ju

′
k,

where Rijk =
∂3R

∂uk∂uj∂ui
.

Definition 2. A unit speed curve β : I → E4 of class 
C4 is called a Frenet curve if the vectors β′(s),β′′(s), 
β′′′(s) are linearly independent at each point along 
the curve.

2.3 The extended Darboux frame field in E4

Let M be an orientable hypersurface oriented
by the unit normal vector field N in E4, and β be a 
Frenet curve of class C4 with arc-length parameter
s lying on M. Let

T(s) = β′(s), N(s) = N(β(s)).

The extended Darboux frame field along β is 
constructed in (Düldül et al., 2017) as follows:

Case 1. If the set {N, T, β′′} is linearly in-dependent, 
then, using the Gram-Schmidt or-thonormalization 
method gives the orthonor-mal set {N, T, E}, 
where

E =
β′′ − 〈β′′,N〉N

||β′′ − 〈β′′,N〉N||
.

Case 2. If the set {N, T, β′′} is linearly dependent, 
i.e. if β′′ is in the direction of the normal vector N,
applying the Gram-Schmidt orthonormalization
method to {N, T, β′′′} yields
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1. Introduction

A surface curve in Euclidean 3-space not only
has ordinary curvatures κ, τ with respect to the
space, but also curvatures κn, κg, τg with respect
to the surface itself. These curvatures play im-
portant roles in understanding the geometrical
properties of the curve. The ordinary curvatures
of a curve measure the twisting and turning of the
Frenet frame, and they define the Darboux vec-
tor field d = τt+κb of the Frenet frame {t,n,b}
(Spivak, 1999; Struik, 1950). The curvatures of
a curve with respect to the surface define the
Darboux vector field d = τgt− κnv+ κgu of the
Darboux frame {t,v,u}.

The computation of ordinary curvatures for
parametric curves in 3-space is well-known. Also,
if we have a curve lying on an implicit or
parametric surface in 3-space, we know how
we can compute the Darboux frame curvatures
(do Carmo, 1976; O’Neill, 2006; Patrikalakis &
Maekawa, 2002; Spivak, 1999; Struik, 1950).

In addition, the generalization of the Frenet
frame into higher dimensional spaces and the
computations of its curvatures are well-known
in (Gluck, 1966). However, the generalization
of the Darboux frame even into 4-space is new.
(Düldül et al., 2017) define the extended Dar-
boux frame field along a Frenet curve lying on a
hypersurface in Euclidean 4-space and give the

geometrical meanings of the new curvatures of
the curve with respect to the hypersurface. Also,
they compute the expressions of these curvatures
by considering the curve lying on an implicit hy-
persurface.

In this paper, we give the formulas of the
extended Darboux frame field curvatures of a
Frenet curve which lies on a parametric hyper-
surface in Euclidean 4-space.

2. Preliminaries

2.1 Vector product in E4 and its properties

Definition 1. Let {e1, e2, e3, e4} be the standard
basis of R4. The vector

a⊗ b⊗ c =

∣∣∣∣∣∣∣∣

e1 e2 e3 e4
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

∣∣∣∣∣∣∣∣

is called the ternary product (vector product) of

the vectors a =
4∑

i=1
aiei, b =

4∑
i=1

biei, and c =

4∑
i=1

ciei (Williams & Stein, 1964).

The ternary product has the following prop-
erties (Williams & Stein, 1964):
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2.2 Curves on a hypersurface in E4

Let M ⊂ E4 be a regular hypersurface parametrized
by R = R(u1, u2, u3) and

β : I ⊂ R → M be an arbitrary curve with arc-length 
parametrization. Since M is regular, the partial 
derivatives R1, R2, R3 are linearly independent at 
every point of M , i.e. R1 ⊗R2 ⊗R3 �= 0, where 
Ri = ∂R . Thus, the
unit normal vector of M is given by

N =
R1 ⊗R2 ⊗R3

||R1 ⊗R2 ⊗R3||
.

The first and second fundamental form coefficients 
of M are given by, respectively,

gij =
〈
Ri,Rj

〉
, hij =

〈
Rij,N

〉
,

where Rij = ∂2R
∂uj ∂ui

, 1 ≤ i, j ≤ 3.

Besides, since the curv(e β(s) lies on M , w)e 
may also write β(s) = R u1(s), u2(s), u3(s) . 
Then we have

β′(s) =
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Definition 2. A unit speed curve β : I → E4 of class 
C4 is called a Frenet curve if the vectors β′(s),β′′(s), 
β′′′(s) are linearly independent at each point along 
the curve.

2.3 The extended Darboux frame field in E4

Let M be an orientable hypersurface oriented
by the unit normal vector field N in E4, and β be a 
Frenet curve of class C4 with arc-length parameter
s lying on M. Let

T(s) = β′(s), N(s) = N(β(s)).

The extended Darboux frame field along β is 
constructed in (Düldül et al., 2017) as follows:

Case 1. If the set {N, T, β′′} is linearly in-dependent, 
then, using the Gram-Schmidt or-thonormalization 
method gives the orthonor-mal set {N, T, E}, 
where

E =
β′′ − 〈β′′,N〉N

||β′′ − 〈β′′,N〉N||
.

Case 2. If the set {N, T, β′′} is linearly dependent, 
i.e. if β′′ is in the direction of the normal vector N,
applying the Gram-Schmidt orthonormalization
method to {N, T, β′′′} yields
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Let M ⊂ E4 be a regular hypersurface parametrized
by R = R(u1, u2, u3) and
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parametrization. Since M is regular, the partial 
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Definition 2. A unit speed curve β : I → E4 of class 
C4 is called a Frenet curve if the vectors β′(s),β′′(s), 
β′′′(s) are linearly independent at each point along 
the curve.

2.3 The extended Darboux frame field in E4

Let M be an orientable hypersurface oriented
by the unit normal vector field N in E4, and β be a 
Frenet curve of class C4 with arc-length parameter
s lying on M. Let

T(s) = β′(s), N(s) = N(β(s)).

The extended Darboux frame field along β is 
constructed in (Düldül et al., 2017) as follows:

Case 1. If the set {N, T, β′′} is linearly in-dependent, 
then, using the Gram-Schmidt or-thonormalization 
method gives the orthonor-mal set {N, T, E}, 
where

E =
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.

Case 2. If the set {N, T, β′′} is linearly dependent, 
i.e. if β′′ is in the direction of the normal vector N,
applying the Gram-Schmidt orthonormalization
method to {N, T, β′′′} yields
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the orthonormal set {N, T, E}, where

E =
β′′′ − 〈β′′′,N〉N− 〈β′′′,T〉T

||β′′′ − 〈β′′′,N〉N− 〈β′′′,T〉T||
.

In each case, defining D = N ⊗ T ⊗ E yields a new 
orthonormal frame field {T, E, D, N} along the curve 
β instead of its Frenet frame field. These new frame 
fields are called, “extended Darboux frame field of 
first kind” or in short, “ED-frame field of first kind” 
in case 1, and “extended Darboux frame field of 
second kind” or in short, “ED-frame field of second 
kind” in case 2, respectively.

The differential equations of ED-frame fields are 
given by (Düldül et al., 2017). 

Case 1:




T′

E′

D′

N′


 =




0 κ1
g 0 κn

−κ1
g 0 κ2

g τ 1g
0 −κ2

g 0 τ 2g
−κn −τ 1g −τ 2g 0







T
E
D
N


 ,

Case 2:




T′

E′

D′

N′


 =




0 0 0 κn

0 0 κ2
g τ 1g

0 −κ2
g 0 0

−κn −τ 1g 0 0







T
E
D
N


 ,

where κn denotes the normal curvature; κig and τgi 
are called the geodesic curvature and geodesictorsion 
of order i of the curve β (i = 1, 2), respectively.

3. The ED-frame field curvatures of Frenet curves on 
parametric 3-surfaces in Case 1

Proposition 1. Let M be an oriented hypersurface 
given by its parametric equation R = R(u1, u2, u3) 

and β be a Frenet curve of class Cn (n ≥ 4) with arc-
length parameter s lying on M. Then the normal 
curvature of the curve β is given by

κn =
3∑

i,j=1

hiju
′
iu

′
j. (3)

Proof. Let N denote the unit normal vector field of M 

along β. Since κn = 〈T′, N〉, the assertion is clear 
from (2).

Proposition 2. Let β be a Frenet curve of class 

Cn (n ≥ 4) with arc-length parameter s lying on an 
oriented hypersurface M which is given by the 
parametric equation R = R(u1, u2, u3). Then the 
geodesic curvature of order 1 of β is given by

κ1
g =

{
3∑

i,j=1

giju
′′
i u

′′
j + 2

3∑
i,j,k=1

〈Rij,Rk〉u′
iu

′
ju

′′
k

+
3∑

i,j,k,�=1

〈Rij,Rk�〉u′
iu

′
ju

′
ku

′
�

−

(
3∑

i,j=1

hiju
′
iu

′
j

)2



1
2

. (4)

Proof. We have κg
1 = 〈T′, E〉 and

E =
T′ − 〈T′,N〉N
||T′ − 〈T′, N〉N||

 (Düldül et al., 2017), i.e.

κ1
g =

{
〈T′,T′〉 − 〈T′,N〉2

} 1
2 .

If we substitute (2) into the last equation, we get 
(4).

By using the above Propositions, since(
k1
)2

=
(
κ1
g

)2
+
(
κn

)2
in Case 1, we may give

the following corollary:

Corollary 1. Let β be a Frenet curve ly-ing on the 
parametric hypersurface R = R(u1, u2, u3). Then 
the first curvature k1 of β can be obtained by

(
k1
)2

=
3∑

i,j=1

giju
′′
i u

′′
j+2

3∑
i,j,k=1

〈Rij,Rk〉u′
iu

′
ju

′′
k

+
3∑

i,j,k,�=1

〈Rij,Rk�〉u′
iu

′
ju

′
ku

′
�.
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the following corollary:
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2. Preliminaries

2.1 Vector product in E4 and its properties 

Definition 1. Let {e1, e2, e3, e4} be the standard 

basis of R4. The vector

a⊗ b⊗ c =

∣∣∣∣∣∣∣∣

e1 e2 e3 e4
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

∣∣∣∣∣∣∣∣

is called the ternary product (vector product)

of the vectors a =
4∑

i=1

aiei, b =
4∑

i=1
biei, and

c =
4∑

i=1
ciei (Williams & Stein, 1964).

d⊗e⊗(a⊗ b⊗ c) =

The ternary product has the following 
properties (Williams ∣& Stein, 1964):

∣∣∣∣∣
a b c

〈a, e〉 〈b, e〉 〈c, e〉
〈a,d〉 〈b,d〉 〈c,d〉

∣∣∣∣∣∣
,

〈
a⊗b⊗c,d⊗e⊗f

〉
=

∣∣∣∣∣∣
〈a,d〉 〈a, e〉 〈a, f〉
〈b,d〉 〈b, e〉 〈b, f〉
〈c,d〉 〈c, e〉 〈c, f〉

∣∣∣∣∣∣
.

(1)

∂ui

2.2 Curves on a hypersurface in E4

Let M ⊂ E4 be a regular hypersurface parametrized
by R = R(u1, u2, u3) and

β : I ⊂ R → M be an arbitrary curve with arc-length 
parametrization. Since M is regular, the partial 
derivatives R1, R2, R3 are linearly independent at 
every point of M , i.e. R1 ⊗R2 ⊗R3 �= 0, where 
Ri = ∂R . Thus, the
unit normal vector of M is given by

N =
R1 ⊗R2 ⊗R3

||R1 ⊗R2 ⊗R3||
.

The first and second fundamental form coefficients 
of M are given by, respectively,

gij =
〈
Ri,Rj

〉
, hij =

〈
Rij,N

〉
,

where Rij = ∂2R
∂uj ∂ui

, 1 ≤ i, j ≤ 3.

Besides, since the curv(e β(s) lies on M , w)e 
may also write β(s) = R u1(s), u2(s), u3(s) . 
Then we have

β′(s) =
3∑

i=1

Riu
′
i,

β′′(s) =
3∑

i=1

Riu
′′
i +

3∑
i,j=1

Riju
′
iu

′
j, (2)

β′′′(s) =
3∑

i=1

Riu
′′′
i + 3

3∑
i,j=1

Riju
′′
i u

′
j

+
3∑

i,j,k=1

Rijku
′
iu

′
ju

′
k,

where Rijk =
∂3R

∂uk∂uj∂ui
.

Definition 2. A unit speed curve β : I → E4 of class C4 is 
called a Frenet curve if the vectors β′(s),β′′(s), 
β′′′(s) are linearly independent at each point along 
the curve.

2.3 The extended Darboux frame field in E4

Let M be an orientable hypersurface oriented
by the unit normal vector field N in E4, and β be a Frenet 
curve of class C4 with arc-length parameter s lying on M. 
Let

T(s) = β′(s), N(s) = N(β(s)).

The extended Darboux frame field along β is constructed in 
(Düldül et al., 2017) as follows:

Case 1. If the set {N, T, β′′} is linearly  independent,
then, using the Gram-Schmidt orthonormalization 
method gives the orthonor-mal set {N, T, E}, where

E =
β′′ − 〈β′′,N〉N

||β′′ − 〈β′′,N〉N||
.

Case 2. If the set {N, T, β′′} is linearly dependent, 
i.e. if β′′ is in the direction of the normal vector N,
applying the Gram-Schmidt orthonormalization
method to {N, T, β′′′} yields

2
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(Düldül et al., 2017) as follows:

Case 1. If the set {N, T, β′′} is linearly independent,
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given by (Düldül et. al., 2017)

the orthonormal set {N, T, E}, where

E =
β′′′ − 〈β′′′,N〉N− 〈β′′′,T〉T

||β′′′ − 〈β′′′,N〉N− 〈β′′′,T〉T||
.

In each case, defining D = N ⊗ T ⊗ E yields a new 
orthonormal frame field {T, E, D, N} along the curve 
β instead of its Frenet frame field. These new frame 
fields are called, “extended Darboux frame field of 
first kind” or in short, “ED-frame field of first kind” 
in case 1, and “extended Darboux frame field of 
second kind” or in short, “ED-frame field of second 
kind” in case 2, respectively.

The differential equations of ED-frame fields are 
given by (Düldül et al., 2017). 

Case 1:




T′

E′

D′

N′


 =




0 κ1
g 0 κn

−κ1
g 0 κ2

g τ 1g
0 −κ2

g 0 τ 2g
−κn −τ 1g −τ 2g 0







T
E
D
N


 ,

Case 2:




T′

E′

D′

N′


 =




0 0 0 κn

0 0 κ2
g τ 1g

0 −κ2
g 0 0

−κn −τ 1g 0 0







T
E
D
N


 ,

where κn denotes the normal curvature; κig and τgi 
are called the geodesic curvature and geodesictorsion 
of order i of the curve β (i = 1, 2), respectively.

3. The ED-frame field curvatures of Frenet curves on 
parametric 3-surfaces in Case 1

Proposition 1. Let M be an oriented hypersurface 
given by its parametric equation R = R(u1, u2, u3) 

and β be a Frenet curve of class Cn (n ≥ 4) with arc-
length parameter s lying on M. Then the normal 
curvature of the curve β is given by

κn =
3∑

i,j=1

hiju
′
iu

′
j. (3)

Proof. Let N denote the unit normal vector field of M 

along β. Since κn = 〈T′, N〉, the assertion is clear 
from (2).

Proposition 2. Let β be a Frenet curve of class 

Cn (n ≥ 4) with arc-length parameter s lying on an 
oriented hypersurface M which is given by the 
parametric equation R = R(u1, u2, u3). Then the 
geodesic curvature of order 1 of β is given by

κ1
g =

{
3∑

i,j=1

giju
′′
i u

′′
j + 2

3∑
i,j,k=1

〈Rij,Rk〉u′
iu

′
ju

′′
k

+
3∑

i,j,k,�=1

〈Rij,Rk�〉u′
iu

′
ju

′
ku

′
�

−

(
3∑

i,j=1

hiju
′
iu

′
j

)2



1
2

. (4)

Proof. We have κg
1 = 〈T′, E〉 and

E =
T′ − 〈T′,N〉N
||T′ − 〈T′, N〉N||

 (Düldül et al., 2017), i.e.

κ1
g =

{
〈T′,T′〉 − 〈T′,N〉2

} 1
2 .

If we substitute (2) into the last equation, we get 
(4).

By using the above Propositions, since(
k1
)2

=
(
κ1
g

)2
+
(
κn

)2
in Case 1, we may give

the following corollary:

Corollary 1. Let β be a Frenet curve ly-ing on the 
parametric hypersurface R = R(u1, u2, u3). Then 
the first curvature k1 of β can be obtained by

(
k1
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i,j=1

giju
′′
i u

′′
j+2
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i,j,k=1

〈Rij,Rk〉u′
iu

′
ju
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+
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i,j,k,�=1

〈Rij,Rk�〉u′
iu

′
ju

′
ku

′
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 (Düldül et al., 2017), i.e.

κ1
g =

{
〈T′,T′〉 − 〈T′,N〉2

} 1
2 .

If we substitute (2) into the last equation, we get 
(4).

By using the above Propositions, since(
k1
)2

=
(
κ1
g

)2
+
(
κn

)2
in Case 1, we may give

the following corollary:

Corollary 1. Let β be a Frenet curve ly-ing on the 
parametric hypersurface R = R(u1, u2, u3). Then 
the first curvature k1 of β can be obtained by

(
k1
)2

=
3∑

i,j=1

giju
′′
i u

′′
j+2

3∑
i,j,k=1

〈Rij,Rk〉u′
iu

′
ju

′′
k

+
3∑

i,j,k,�=1

〈Rij,Rk�〉u′
iu

′
ju

′
ku

′
�.

3

the orthonormal set {N, T, E}, where

E =
β′′′ − 〈β′′′,N〉N− 〈β′′′,T〉T

||β′′′ − 〈β′′′,N〉N− 〈β′′′,T〉T||
.

In each case, defining D = N ⊗ T ⊗ E yields a new 
orthonormal frame field {T, E, D, N} along the curve 
β instead of its Frenet frame field. These new frame 
fields are called, “extended Darboux frame field of 
first kind” or in short, “ED-frame field of first kind” 
in case 1, and “extended Darboux frame field of 
second kind” or in short, “ED-frame field of second 
kind” in case 2, respectively.

The differential equations of ED-frame fields are 
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Proposition 3. Let M be an oriented hy-persurface 
given by its parametric equation R = R(u1, u2, u3) 
and β be a Frenet curve of class Cn (n ≥ 4) with 
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Proposition 5. Let β be a Frenet curve of class Cn (n 
≥ 4) with arc-length parameter s lying on an 
oriented hypersurface R = R(u1, u2, u3). Then the 
geodesic torsion of order 2 of β is obtained by

τ 2g =
1

ωκ1
g

3∑
i,j=1

hijρiu
′
j. (13)

Proof. Since we have τ 2g = 〈D′,N〉 =
− 1

κ1
g
〈N′,T⊗ T′ ⊗ N〉 (Düldül et al., 2017), the

assertion is clear from (12).

Corollary 2. The relation between the in-variants of 
ED-frame field of first kind is given by

(
κ1
g

)2
κ2
g − κnκ

1
gτ

2
g =

1

ω

3∑
i,j=1

gijσiu
′
j,

where σi is given by (8).

4. The ED-frame field curvatures of Frenet curves 
on parametric 3-surfaces in Case 2

The normal curvature κn = 〈T′, N〉 is obtained by 
(3).
Proposition 6.          Let β be a Frenet curve of class 
Cn (n ≥ 4) with arc-length parameter s lying on an 
oriented hypersurface R = R(u1, u2, u3). Then the 
geodesic torsion of order 1 of β is obtained by
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i, j, k = 1, 2, 3(cyclic).

Proof. We have (Düldül et al., 2017)
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′
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′′
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,
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)
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′
m,

i, j, k = 1, 2, 3(cyclic).

Proof. We have (Düldül et al., 2017)

κ2
g =
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〉
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τ 1g
)2
〈
N′,N⊗T⊗N′′

〉
. (15)
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Z′′ − 2
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〈Z,Z′〉Z′ − 1

ω3
||Z′||2Z

− 1 〈
Z,Z′′
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Z+

3

ω5
〈Z,Z′〉2 Z

ω3
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g =

1(
τ 1g
)2
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〈
T⊗ Z′ ⊗ Z,Z′′

〉
. (16)

On the other hand,

T⊗ Z′ ⊗ Z = T⊗ Z′ ⊗
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R1 ⊗R2 ⊗R3
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λiRi, (17)
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gjmhk� − gkmhj�
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u′
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′
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Z′′ = R′′
1 ⊗R2 ⊗R3 +R1 ⊗R′′

2 ⊗R3

+R1 ⊗R2 ⊗R′′
3 + 2

(
R′

1 ⊗R′
2 ⊗R3

+R′
1 ⊗R2 ⊗R′

3 +R1 ⊗R′
2 ⊗R′

3

)
, (18)
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〈
Ri,R

′
i ⊗R′

j ⊗Rk

〉

+2
〈
Ri,R

′
i ⊗Rj ⊗R′

k

〉

〈
R′′

i ,N
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. (19)−ω

Also, we get
〈
Ri,R

′
i ⊗R′

j ⊗Rk

〉
=
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3∑

r,q=1
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q, (20)
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i ⊗Rj ⊗R′

k

〉
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R′′
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〉
=
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〈
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〉
u′
ru

′
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r=1

hiru
′′
r . (22)

Thus, substituting (20)-(22) into (19), the 
geodesic curvature of order 2 is obtained from (16) 
as given in (14).

Remark 1. If the hypersurface is totally
geodesic in E4, then the expressions of the extended 
Darboux frame curvatures become simple due to the 
vanishing second fundamental form coefficients, i.e. 
κn = τg1 = τg2 = 0,

κ1
g =

(
3∑

i,j=1

giju
′′
i u

′′
j

) 1
2

,

κ2
g =

1

ω
(
κ1
g

)2
3∑

i,j=1

gijσiu
′
j.

Remark 2. If the hyper-surface is totally umbilical 
but not totally geodesic in E4, then the geodesic 
torsions of order i of the curve vanish.
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Proof. We have (Düldül et al., 2017)

κ2
g =

〈
E′,D

〉
=

−1(
τ 1g
)2
〈
N′,N⊗T⊗N′′

〉
. (15)

If we substitute (11) and

N′′ =
1

ω
Z′′ − 2

ω3
〈Z,Z′〉Z′ − 1

ω3
||Z′||2Z

− 1 〈
Z,Z′′

〉
Z+

3

ω5
〈Z,Z′〉2 Z

ω3

into (15), we obtain

κ2
g =

1(
τ 1g
)2

ω3

〈
T⊗ Z′ ⊗ Z,Z′′

〉
. (16)

On the other hand,

T⊗ Z′ ⊗ Z = T⊗ Z′ ⊗
(
R1 ⊗R2 ⊗R3

)

=
3∑

i=1

λiRi, (17)

where

λi = 〈Rj,Z
′〉〈Rk,T〉 − 〈Rj,T〉〈Rk,Z

′〉

= ω
3∑

�,m=1

(
gjmhk� − gkmhj�

)
u′
�u

′
m,

i, j, k = 1, 2, 3(cyclic). Since

Z′′ = R′′
1 ⊗R2 ⊗R3 +R1 ⊗R′′

2 ⊗R3

+R1 ⊗R2 ⊗R′′
3 + 2

(
R′

1 ⊗R′
2 ⊗R3

+R′
1 ⊗R2 ⊗R′

3 +R1 ⊗R′
2 ⊗R′

3

)
, (18)

if we use (17) and (18), we may write

〈
T⊗ Z′ ⊗ Z,Z′′

〉
=

3∑
i=1

λi

〈
Ri,Z

′′
〉

=
3∑

i=1

λi

(
2
〈
Ri,R

′
i ⊗R′

j ⊗Rk

〉

+2
〈
Ri,R

′
i ⊗Rj ⊗R′

k

〉

〈
R′′

i ,N
〉)

. (19)−ω

Also, we get
〈
Ri,R

′
i ⊗R′

j ⊗Rk

〉
=

=
3∑

r,q=1

det{Ri, Rir, Rjq, Rk}u′
ru

′
q, (20)

〈
Ri,R

′
i ⊗Rj ⊗R′

k

〉
=

=
3∑

r,q=1

det{Ri, Rir, Rj , Rkq}u′
ru

′
q, (21)

and

〈
R′′

i ,N
〉
=

3∑
r,q=1

〈
Rirq,N

〉
u′
ru

′
q

+
3∑

r=1

hiru
′′
r . (22)

Thus, substituting (20)-(22) into (19), the 
geodesic curvature of order 2 is obtained from (16) 
as given in (14).

Remark 1. If the hypersurface is totally
geodesic in E4, then the expressions of the extended 
Darboux frame curvatures become simple due to the 
vanishing second fundamental form coefficients, i.e. 
κn = τg1 = τg2 = 0,

κ1
g =

(
3∑

i,j=1

giju
′′
i u

′′
j

) 1
2

,

κ2
g =

1

ω
(
κ1
g

)2
3∑

i,j=1

gijσiu
′
j.

Remark 2. If the hyper-surface is totally umbilical 
but not totally geodesic in E4, then the geodesic 
torsions of order i of the curve vanish.

7

where

λi = ω

3∑
�,m=1

(
gjmhk� − gkmhj�

)
u′
�u

′
m,

i, j, k = 1, 2, 3(cyclic).
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vanishing second fundamental form coefficients, i.e. 
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Remark 2. If the hyper-surface is totally umbilical 
but not totally geodesic in E4, then the geodesic 
torsions of order i of the curve vanish.
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Proposition 5. Let β be a Frenet curve of class Cn (n 
≥ 4) with arc-length parameter s lying on an 
oriented hypersurface R = R(u1, u2, u3). Then the 
geodesic torsion of order 2 of β is obtained by

τ 2g =
1

ωκ1
g

3∑
i,j=1

hijρiu
′
j. (13)

Proof. Since we have τ 2g = 〈D′,N〉 =
− 1

κ1
g
〈N′,T⊗ T′ ⊗ N〉 (Düldül et al., 2017), the

assertion is clear from (12).

Corollary 2. The relation between the invariants of 
ED-frame field of first kind is given by

(
κ1
g

)2
κ2
g − κnκ

1
gτ

2
g =

1

ω

3∑
i,j=1

gijσiu
′
j,

where σi is given by (8).

4. The ED-frame field curvatures of Frenet curves
on parametric 3-surfaces in Case 2

The normal curvature κn = 〈T′, N〉 is obtained by 
(3).
Proposition 6.          Let β be a Frenet curve of class 
Cn (n ≥ 4) with arc-length parameter s lying on an 
oriented hypersurface R = R(u1, u2, u3). Then the 
geodesic torsion of order 1 of β is obtained by

τ 1g = −


− 1

ω4




3∑
�=1

∣∣∣∣∣∣
〈R1,R

′
�〉 g1m g1n

〈R2,R
′
�〉 g2m g2n

〈R3,R
′
�〉 g3m g3n

∣∣∣∣∣∣




2

+
1

ω2

3∑
i,�=1

∣∣∣∣∣∣
〈R′

i,R
′
�〉 〈R′

i,Rm〉 〈R′
i,Rn〉

〈Rj,R
′
�〉 gjm gjn

〈Rk,R
′
�〉 gkm gkn

∣∣∣∣∣∣

−

(
3∑

i,j=1

hiju
′
iu

′
j

)2



1
2

,

where i, j, k = 1, 2, 3 (cyclic), �, m, n = 1, 2, 3 
(cyclic), and

〈
R′

i,R
′
�

〉
=

3∑
r,q=1

〈
Rir,R�q

〉
u′
ru

′
q,

〈
R′

i,Rm

〉
=

3∑
r=1

〈
Rir,Rm

〉
u′
r.

Proof. The geodesic torsion of order 1 of β is 
obtained by (Düldül et al., 2017)

τ 1g = 〈E′,N〉 = −
{〈

N′,N′
〉
−
〈
N′,T

〉2} 1
2
.

Since 〈N′, N′〉 =

=
1

ω2

〈(
R1 ⊗R2 ⊗R3

)′
,
(
R1 ⊗R2 ⊗R3

)′
〉

− 1

ω4

〈
R1 ⊗R2 ⊗R3,

(
R1 ⊗R2 ⊗R3

)′
〉2

=
1

ω2

3∑
i,�=1

〈
R′

i⊗Rj ⊗Rk,R
′
�⊗Rm⊗Rn

〉

− 1

ω4

(
3∑

�=1

〈
R1 ⊗R2 ⊗R3,R

′
� ⊗Rm ⊗Rn

〉)2

,

if we use (1), we obtain the expression of the 
geodesic torsion of order 1 as desired.

Proposition 7. Let β be a Frenet curve of class     
Cn(n ≥ 4) with arc-length parameter s lying on an 
oriented hypersurface R = R(u1, u2, u3). Then the 
geodesic curvature of order 2 of β is obtained by

κ2
g =

1(
τ 1g
)2

ω3

×
3∑

i=1

λi

{
2

3∑
r,q=1

det{Ri,Rir,Rjq,Rk}u′
ru

′
q

+2
3∑

r,q=1

det{Ri,Rir,Rj,Rkq}u′
ru

′
q

−ω

(
3∑

r,q=1

〈
Rirq,N

〉
u′
ru

′
q +

3∑
r=1

hiru
′′
r

)}
,

(14)
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(
gjmhk� − gkmhj�
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u′
�u

′
m,

i, j, k = 1, 2, 3(cyclic).

Proof. We have (Düldül et al., 2017)

κ2
g =

〈
E′,D

〉
=

−1(
τ 1g
)2
〈
N′,N⊗T⊗N′′

〉
. (15)

If we substitute (11) and
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1

ω
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〈Z,Z′〉Z′ − 1

ω3
||Z′||2Z

− 1 〈
Z,Z′′

〉
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3

ω5
〈Z,Z′〉2 Z

ω3

into (15), we obtain

κ2
g =

1(
τ 1g
)2

ω3

〈
T⊗ Z′ ⊗ Z,Z′′

〉
. (16)

On the other hand,

T⊗ Z′ ⊗ Z = T⊗ Z′ ⊗
(
R1 ⊗R2 ⊗R3

)

=
3∑

i=1

λiRi, (17)

where

λi = 〈Rj,Z
′〉〈Rk,T〉 − 〈Rj,T〉〈Rk,Z

′〉

= ω
3∑

�,m=1

(
gjmhk� − gkmhj�

)
u′
�u

′
m,

i, j, k = 1, 2, 3(cyclic). Since

Z′′ = R′′
1 ⊗R2 ⊗R3 +R1 ⊗R′′

2 ⊗R3

+R1 ⊗R2 ⊗R′′
3 + 2

(
R′

1 ⊗R′
2 ⊗R3

+R′
1 ⊗R2 ⊗R′

3 +R1 ⊗R′
2 ⊗R′

3

)
, (18)

if we use (17) and (18), we may write

〈
T⊗ Z′ ⊗ Z,Z′′

〉
=

3∑
i=1

λi

〈
Ri,Z

′′
〉

=
3∑

i=1

λi

(
2
〈
Ri,R

′
i ⊗R′

j ⊗Rk

〉

+2
〈
Ri,R

′
i ⊗Rj ⊗R′

k

〉

〈
R′′

i ,N
〉)

. (19)−ω

Also, we get
〈
Ri,R

′
i ⊗R′

j ⊗Rk

〉
=

=
3∑

r,q=1

det{Ri, Rir, Rjq, Rk}u′
ru

′
q, (20)

〈
Ri,R

′
i ⊗Rj ⊗R′

k

〉
=

=
3∑

r,q=1

det{Ri, Rir, Rj , Rkq}u′
ru

′
q, (21)

and

〈
R′′

i ,N
〉
=

3∑
r,q=1

〈
Rirq,N

〉
u′
ru

′
q

+
3∑

r=1

hiru
′′
r . (22)

Thus, substituting (20)-(22) into (19), the 
geodesic curvature of order 2 is obtained from (16) 
as given in (14).

Remark 1. If the hypersurface is totally
geodesic in E4, then the expressions of the extended 
Darboux frame curvatures become simple due to the 
vanishing second fundamental form coefficients, i.e. 
κn = τg1 = τg2 = 0,

κ1
g =

(
3∑

i,j=1

giju
′′
i u

′′
j

) 1
2

,

κ2
g =

1

ω
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κ1
g

)2
3∑

i,j=1

gijσiu
′
j.

Remark 2. If the hyper-surface is totally umbilical 
but not totally geodesic in E4, then the geodesic 
torsions of order i of the curve vanish.

7

where

λi = ω

3∑
�,m=1

(
gjmhk� − gkmhj�

)
u′
�u

′
m,

i, j, k = 1, 2, 3(cyclic).
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N′′ =
1

ω
Z′′ − 2

ω3
〈Z,Z′〉Z′ − 1

ω3
||Z′||2Z

− 1 〈
Z,Z′′
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Z+

3

ω5
〈Z,Z′〉2 Z
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�,m=1

(
gjmhk� − gkmhj�

)
u′
�u

′
m,

i, j, k = 1, 2, 3(cyclic). Since
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3
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Thus, substituting (20)-(22) into (19), the 
geodesic curvature of order 2 is obtained from (16) 
as given in (14).

Remark 1. If the hypersurface is totally
geodesic in E4, then the expressions of the extended 
Darboux frame curvatures become simple due to the 
vanishing second fundamental form coefficients, i.e. 
κn = τg1 = τg2 = 0,

κ1
g =

(
3∑

i,j=1

giju
′′
i u

′′
j

) 1
2

,

κ2
g =

1

ω
(
κ1
g

)2
3∑

i,j=1

gijσiu
′
j.

Remark 2. If the hyper-surface is totally umbilical 
but not totally geodesic in E4, then the geodesic 
torsions of order i of the curve vanish.
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5. Examples

In this section, we use our results to obtain 
the extended Darboux frame curvatures of 
two Frenet curves lying on a parametric hy-
percylinder.

Example 1. Let us consider the paramet-
ric hypercylinder C given by R(u1, u2, u3) =
(cos u1 cos u2, sin( cos u2, sin u)2, u3) and the

. It is easy to
see that β is a unit speed Frenet curve on C. Also, 
it is easy to verify that case 1 is valid along β. 
Thus, applying the method defined in (Düldül et 
al., 2017), we obtain the ED-frame of first kind 
at the point β(0) = (1, 0, 0, 1) as

T(0) =
(
0,

1√
2
,
1√
2
, 0
)
,

E(0) =
(
0, 0, 0,−1

)
,

D(0) =
(
0,

1√
2
,− 1√

2
, 0
)
,

N(0) =
(
1, 0, 0, 0

)
.

We obtain the non-vanishing first and second 
fundamental form coefficients of the hyper-
cylinder at β(0) as g11 = g22 = g33 = 1 and h11 = 
h22 = −1, respectively. Thus, since
u′
1 = u′

2 =
1√
2
, u′

3 = 0, u′′
1 = u′′

2 = 0, u′′
3 = −1

2
,

2

if we use (3) and (4), we find the normal cur-
vature and the geodesic curvature of order 1 at 
β(0) as κn = −1 and κg

1 = 1 , respectively.
We also obtain h′

ij = 0, 1 ≤ i, j ≤ 3,

ω = 1, σ1 =
√
2
8
, σ2 = − 1√

2
, σ3 = 0, ρ1 =

√
2
4
,

ρ2 = −
√
2
4
, ρ3 = 0. Substituting these results

i
is easy to see that γ(s) = R

into (5), (7) and (13), we obtain the geodesic 
torsion of order 1, geodesic curvature of order 2 
and geodesic torsion of order 2 as τg1 = 0, κg

2 = 
−3

2 , τg
2 = 0, respectively.

Example 2. Let us consider the parametric
hypercylinder C given in Example( 1 aga n. It

π
6
, s
2
,
√
3
2
s
)
is a

unit speed Frenet curve on C. Also, it is easy to 
verify that case 2 is valid along γ. Thus,

applying the method defined in (Düldül et al., 
2017), we obtain the ED-frame of second kind
at the point γ(0) =

(√
3
2
, 1
2
, 0, 0

)
as

T(0) =
(
0, 0,

1

2
,

√
3

2

)
,

E(0) =
(
0, 0,−

√
3

2
,
1

2

)
,

D(0) =
(1
2
,−

√
3

2
, 0, 0

)
,

N(0) =
(√3

2
,
1

2
, 0, 0

)
.

The non-vanishing first and second fundamental 
form coefficients of the hypercylinder at γ(0) are 
g11 = g22 = g33 = 1 and h11 = h22 =−1,
respectively. Furthermore, since

u′
1 = 0, u′

2 =
1

2
, u′

3 =

√
3

2
,

R12 = R21 = R13 = R31 = R23 = 0,

R32 = R33 = 0

at γ(0), we obtain 〈R′
i, Rm〉 = 0 for all i, m ∈ 

{1, 2, 3} and 〈R′
i, R′

�〉 = 0 except i = � = 2. We 
also have u1

′′ = u2
′′ = u3

′′ = 0,
ω = 1. Therefore, if we use equation (3),
Proposition 6 and Proposition 7, we obtain
the normal curvature, the geodesic torsion
of order 1, geodesic curvature of order 2 as
κn = −1

4
, τ 1g = −

√
3
4
, κ2

g = 0, respectively.
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al., 2017), we obtain the ED-frame of first kind 
at the point β(0) = (1, 0, 0, 1) as

T(0) =
(
0,

1√
2
,
1√
2
, 0
)
,

E(0) =
(
0, 0, 0,−1

)
,

D(0) =
(
0,

1√
2
,− 1√

2
, 0
)
,

N(0) =
(
1, 0, 0, 0

)
.

We obtain the non-vanishing first and second 
fundamental form coefficients of the hyper-
cylinder at β(0) as g11 = g22 = g33 = 1 and h11 = 
h22 = −1, respectively. Thus, since
u′
1 = u′

2 =
1√
2
, u′

3 = 0, u′′
1 = u′′

2 = 0, u′′
3 = −1

2
,

2

if we use (3) and (4), we find the normal cur-
vature and the geodesic curvature of order 1 at 
β(0) as κn = −1 and κg

1 = 1 , respectively.
We also obtain h′

ij = 0, 1 ≤ i, j ≤ 3,

ω = 1, σ1 =
√
2
8
, σ2 = − 1√

2
, σ3 = 0, ρ1 =

√
2
4
,

ρ2 = −
√
2
4
, ρ3 = 0. Substituting these results

i
is easy to see that γ(s) = R

into (5), (7) and (13), we obtain the geodesic 
torsion of order 1, geodesic curvature of order 2 
and geodesic torsion of order 2 as τg1 = 0, κg

2 = 
−3

2 , τg
2 = 0, respectively.

Example 2. Let us consider the parametric
hypercylinder C given in Example( 1 aga n. It

π
6
, s
2
,
√
3
2
s
)
is a

unit speed Frenet curve on C. Also, it is easy to 
verify that case 2 is valid along γ. Thus,

applying the method defined in (Düldül et al., 
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h22 = −1, respectively. Thus, since
u′
1 = u′

2 =
1√
2
, u′

3 = 0, u′′
1 = u′′

2 = 0, u′′
3 = −1

2
,

2

if we use (3) and (4), we find the normal cur-
vature and the geodesic curvature of order 1 at 
β(0) as κn = −1 and κg

1 = 1 , respectively.
We also obtain h′

ij = 0, 1 ≤ i, j ≤ 3,

ω = 1, σ1 =
√
2
8
, σ2 = − 1√

2
, σ3 = 0, ρ1 =

√
2
4
,

ρ2 = −
√
2
4
, ρ3 = 0. Substituting these results

i
is easy to see that γ(s) = R

into (5), (7) and (13), we obtain the geodesic 
torsion of order 1, geodesic curvature of order 2 
and geodesic torsion of order 2 as τg1 = 0, κg

2 = 
−3

2 , τg
2 = 0, respectively.

Example 2. Let us consider the parametric
hypercylinder C given in Example( 1 aga n. It

π
6
, s
2
,
√
3
2
s
)
is a

unit speed Frenet curve on C. Also, it is easy to 
verify that case 2 is valid along γ. Thus,

applying the method defined in (Düldül et al., 
2017), we obtain the ED-frame of second kind
at the point γ(0) =

(√
3
2
, 1
2
, 0, 0

)
as

T(0) =
(
0, 0,

1

2
,

√
3

2

)
,

E(0) =
(
0, 0,−

√
3

2
,
1

2

)
,

D(0) =
(1
2
,−

√
3

2
, 0, 0

)
,

N(0) =
(√3

2
,
1

2
, 0, 0

)
.

The non-vanishing first and second fundamental 
form coefficients of the hypercylinder at γ(0) are 
g11 = g22 = g33 = 1 and h11 = h22 =−1,
respectively. Furthermore, since

u′
1 = 0, u′

2 =
1

2
, u′

3 =

√
3

2
,

R12 = R21 = R13 = R31 = R23 = 0,

R32 = R33 = 0

at γ(0), we obtain 〈R′
i, Rm〉 = 0 for all i, m ∈ 

{1, 2, 3} and 〈R′
i, R′

�〉 = 0 except i = � = 2. We 
also have u1

′′ = u2
′′ = u3

′′ = 0,
ω = 1. Therefore, if we use equation (3),
Proposition 6 and Proposition 7, we obtain
the normal curvature, the geodesic torsion
of order 1, geodesic curvature of order 2 as
κn = −1

4
, τ 1g = −

√
3
4
, κ2

g = 0, respectively.
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Example 1. Let us consider the paramet-
ric hypercylinder C given by R(u1, u2, u3) =
(cos u1 cos u2, sin( cos u2, sin u)2, u3) and the

. It is easy to
see that β is a unit speed Frenet curve on C. Also, 
it is easy to verify that case 1 is valid along β. 
Thus, applying the method defined in (Düldül et 
al., 2017), we obtain the ED-frame of first kind 
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)
,

D(0) =
(
0,
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,− 1√

2
, 0
)
,

N(0) =
(
1, 0, 0, 0

)
.

We obtain the non-vanishing first and second 
fundamental form coefficients of the hyper-
cylinder at β(0) as g11 = g22 = g33 = 1 and h11 = 
h22 = −1, respectively. Thus, since
u′
1 = u′

2 =
1√
2
, u′

3 = 0, u′′
1 = u′′

2 = 0, u′′
3 = −1

2
,

2

if we use (3) and (4), we find the normal cur-
vature and the geodesic curvature of order 1 at 
β(0) as κn = −1 and κg

1 = 1 , respectively.
We also obtain h′

ij = 0, 1 ≤ i, j ≤ 3,

ω = 1, σ1 =
√
2
8
, σ2 = − 1√

2
, σ3 = 0, ρ1 =

√
2
4
,

ρ2 = −
√
2
4
, ρ3 = 0. Substituting these results

i
is easy to see that γ(s) = R

into (5), (7) and (13), we obtain the geodesic 
torsion of order 1, geodesic curvature of order 2 
and geodesic torsion of order 2 as τg1 = 0, κg

2 = 
−3

2 , τg
2 = 0, respectively.

Example 2. Let us consider the parametric
hypercylinder C given in Example( 1 aga n. It

π
6
, s
2
,
√
3
2
s
)
is a

unit speed Frenet curve on C. Also, it is easy to 
verify that case 2 is valid along γ. Thus,

applying the method defined in (Düldül et al., 
2017), we obtain the ED-frame of second kind
at the point γ(0) =

(√
3
2
, 1
2
, 0, 0

)
as

T(0) =
(
0, 0,

1

2
,

√
3

2

)
,

E(0) =
(
0, 0,−

√
3

2
,
1

2

)
,

D(0) =
(1
2
,−

√
3

2
, 0, 0

)
,

N(0) =
(√3
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1
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)
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The non-vanishing first and second fundamental 
form coefficients of the hypercylinder at γ(0) are 
g11 = g22 = g33 = 1 and h11 = h22 =−1,
respectively. Furthermore, since

u′
1 = 0, u′

2 =
1

2
, u′

3 =

√
3

2
,

R12 = R21 = R13 = R31 = R23 = 0,

R32 = R33 = 0

at γ(0), we obtain 〈R′
i, Rm〉 = 0 for all i, m ∈ 

{1, 2, 3} and 〈R′
i, R′

�〉 = 0 except i = � = 2. We 
also have u1

′′ = u2
′′ = u3

′′ = 0,
ω = 1. Therefore, if we use equation (3),
Proposition 6 and Proposition 7, we obtain
the normal curvature, the geodesic torsion
of order 1, geodesic curvature of order 2 as
κn = −1

4
, τ 1g = −

√
3
4
, κ2

g = 0, respectively.
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5. Examples

In this section, we use our results to obtain 
the extended Darboux frame curvatures of 
two Frenet curves lying on a parametric hy-
percylinder.

Example 1. Let us consider the paramet-
ric hypercylinder C given by R(u1, u2, u3) =
(cos u1 cos u2, sin( cos u2, sin u)2, u3) and the

. It is easy to
see that β is a unit speed Frenet curve on C. Also, 
it is easy to verify that case 1 is valid along β. 
Thus, applying the method defined in (Düldül et 
al., 2017), we obtain the ED-frame of first kind 
at the point β(0) = (1, 0, 0, 1) as

T(0) =
(
0,

1√
2
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2
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)
,
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(
0, 0, 0,−1

)
,

D(0) =
(
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2
,− 1√

2
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)
,
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(
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)
.

We obtain the non-vanishing first and second 
fundamental form coefficients of the hyper-
cylinder at β(0) as g11 = g22 = g33 = 1 and h11 = 
h22 = −1, respectively. Thus, since
u′
1 = u′

2 =
1√
2
, u′

3 = 0, u′′
1 = u′′

2 = 0, u′′
3 = −1

2
,

2

if we use (3) and (4), we find the normal cur-
vature and the geodesic curvature of order 1 at 
β(0) as κn = −1 and κg

1 = 1 , respectively.
We also obtain h′

ij = 0, 1 ≤ i, j ≤ 3,

ω = 1, σ1 =
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4
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torsion of order 1, geodesic curvature of order 2 
and geodesic torsion of order 2 as τg1 = 0, κg
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−3

2 , τg
2 = 0, respectively.

Example 2. Let us consider the parametric
hypercylinder C given in Example( 1 aga n. It

π
6
, s
2
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√
3
2
s
)
is a

unit speed Frenet curve on C. Also, it is easy to 
verify that case 2 is valid along γ. Thus,

applying the method defined in (Düldül et al., 
2017), we obtain the ED-frame of second kind
at the point γ(0) =
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3
2
, 1
2
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as
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1
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.
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form coefficients of the hypercylinder at γ(0) are 
g11 = g22 = g33 = 1 and h11 = h22 =−1,
respectively. Furthermore, since

u′
1 = 0, u′

2 =
1

2
, u′

3 =

√
3

2
,

R12 = R21 = R13 = R31 = R23 = 0,

R32 = R33 = 0

u u u

at γ(0), we obtain 〈R′
i, Rm〉 = 0 for all i, m ∈ 

{1, 2, 3} and 〈R′
i, R′

�〉 = 0 except i = � = 2. We 
also have 1

′′ = 2
′′ = 3

′′ = 0, 
ω = 1. Therefore, if we use equation (3),
Proposition 6 and Proposition 7, we obtain
the normal curvature, the geodesic torsion
of order 1, geodesic curvature of order 2 as
κn = −1

4
, τ 1g = −

√
3
4
, κ2

g = 0, respectively.
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κ2g =
1

ω
(
κ1g

)2
3∑

i,j=1

gijσiu
′
j .

Remark 2. If the hypersurface is totally umbilical
but not totally geodesic in E4, then the geodesic
torsions of order i of the curve vanish.

5. Examples

In this section, we use our results to obtain
the extended Darboux frame curvatures of two
Frenet curves lying on a parametric hypercylin-
der.

Example 1. Let us consider the paramet-
ric hypercylinder C given by R(u1, u2, u3) =
(cosu1 cosu2, sinu1 cosu2, sinu2, u3) and the
curve β(s) = R

(
s√
2
, s√

2
, cos s√

2

)
. It is easy to

see that β is a unit speed Frenet curve on C.
Also, it is easy to verify that case 1 is valid along
β. Thus, applying the method defined in (Düldül
et al., 2017), we obtain the ED-frame of first kind
at the point β(0) = (1, 0, 0, 1) as

T(0) =
(
0,

1√
2
,
1√
2
, 0
)
,

E(0) =
(
0, 0, 0,−1

)
,

D(0) =
(
0,

1√
2
,− 1√

2
, 0
)
,

N(0) =
(
1, 0, 0, 0

)
.

We obtain the non-vanishing first and second fun-
damental form coefficients of the hypercylinder at
β(0) as g11 = g22 = g33 = 1 and h11 = h22 = −1,
respectively. Thus, since u′1 = u′2 = 1√

2
, u′3 = 0,

u′′1 = u′′2 = 0, u′′3 = −1
2 , if we use (3) and (4), we

find the normal curvature and the geodesic cur-
vature of order 1 at β(0) as κn = −1 and κ1g = 1

2 ,
respectively.

We also obtain h′ij = 0, 1 ≤ i, j ≤ 3, ω = 1,

σ1 =
√
2
8 , σ2 = − 1√

2
, σ3 = 0, ρ1 =

√
2
4 , ρ2 = −

√
2
4 ,

ρ3 = 0. Substituting these results into (5), (7)
and (13), we obtain the geodesic torsion of or-
der 1, geodesic curvature of order 2 and geodesic
torsion of order 2 as τ1g = 0, κ2g = −3

2 , τ
2
g = 0,

respectively.

Example 2. Let us consider the parametric hy-
percylinder C given in Example 1 again. It is

easy to see that γ(s) = R
(
π
6 ,

s
2 ,

√
3
2 s

)
is a unit

speed Frenet curve on C. Also, it is easy to ver-
ify that case 2 is valid along γ. Thus, applying

the method defined in (Düldül et al., 2017), we
obtain the ED-frame of second kind at the point

γ(0) =
(√

3
2 , 12 , 0, 0

)
as

T(0) =
(
0, 0,

1

2
,

√
3

2

)
,

E(0) =
(
0, 0,−

√
3

2
,
1

2

)
,

D(0) =
(1
2
,−

√
3

2
, 0, 0

)
,

N(0) =
(√3

2
,
1

2
, 0, 0

)
.

The non-vanishing first and second fundamental
form coefficients of the hypercylinder at γ(0) are
g11 = g22 = g33 = 1 and h11 = h22 = −1, respec-
tively. Furthermore, since

u′1 = 0, u′2 =
1

2
, u′3 =

√
3

2
,

R12 = R21 = R13 = R31 = R23 = 0,

R32 = R33 = 0

at γ(0), we obtain 〈R′
i,Rm〉 = 0 for all i,m ∈

{1, 2, 3} and 〈R′
i,R

′
�〉 = 0 except i = � = 2. We

also have u′′1 = u′′2 = u′′3 = 0, ω = 1. There-
fore, if we use equation (3), Proposition 6 and
Proposition 7, we obtain the normal curvature,
the geodesic torsion of order 1, geodesic curva-

ture of order 2 as κn = −1
4 , τ

1
g = −

√
3
4 , κ2g = 0,

respectively.
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تقوسات هيكل Darboux الممتدة من منحنيات Frenet التي تقع على أسطح معلمية ثلاثية الأبعاد
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الملخص

في هذا البحث، قمنا بدراسة منحنى Frenet الواقع على سطح فوقي معلمي في فضاء إقليدي (Euclidean) رباعي الأبعاد، وحصلنا على 
صيغ تقوساته بالنسبة للسطح الفوقي.


