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Abstract

In this paper, we consider a Frenet curve lying on a parametric hypersurface in a 4-dimensional Euclidean
space and obtain the expressions of its curvatures with respect to the hypersurface.
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1. Introduction

A surface curve in Euclidean 3-space not only has
ordinary curvatures k, T with respect to the space, but
also curvatures kn, kg, Tg with respect to the surface
itself. These curvatures play important roles in
understanding the geometrical properties of the
curve. The ordinary curvatures of a curve measure
the twisting and turning of the Frenet frame, and they
define the Darboux vector field d =7t +«xb o f the
Frenet frame {t, n, b} (Spivak, 1999; Struik, 1950).
The curvatures of a curve with respect to the surface
define the Darboux vector field d =7¢t — kv +rgu
of the Darboux frame {t, v, u}.

The computation of ordinary curvatures for
parametric curves in 3-space is well-known. Also, if
we have a curve lying on an implicit or
parametric surface in 3-space, we know how we can
compute the Darboux frame curvatures (do Carmo,
1976; O’Neill, 2006; Patrikalakis & Maekawa, 2002;
Spivak, 1999; Struik, 1950).

In addition, the generalization of the Frenet frame
into higher dimensional spaces and the computations
of its curvatures are well-known in (Gluck, 1966).
However, the generalization of the Darboux frame
even into 4-space is new.(Dildil et al., 2017) define
the extended Darboux frame field along a Frenet
curve lying on a hypersurface in Euclidean 4-space
and give the geometrical meanings of the new curva-
tures of the curve with respect to the hypersurface.

Also, they compute the expressions of these
curvatures by considering the curve lying on an
implicit hypersurface.

In this paper, we give the formulas of the
extended Darboux frame field curvatures of a Frenet
curve which lies on a parametric hypersurface in
Euclidean 4-space.

2. Preliminaries
2.1 Vector product in E4 and its properties
Definition 1. Let {e1, €2, e3, e4} be the standard

basis of R4. The vector

€ € €3 €4
ay Gz a3 a4
by by b3 by

C1 Co2 C3 (4

a®b®c=

is called the ternary product (vector product)

4 4
of the vectors a = Z@ieu b = Z be;, and
i=1 i=1

4
c = > ce; (Williams & Stein, 1964).
i=1
The ternary product has the following

properties (Williams & Stein, 1964):
| a b c
drex(a®@b®c)=| (a,e) (b,e)
(a,d) (b,d)



(a,d) (a,e) (a,f)
<a®b®c, d®e®f> = | (b,d) (b,e) (b,f)
(c,d) (c,e) (c,f)

(D

2.2 Curves on a hypersurface in E4

Let M C E* be a regular hypersurface parametrized
by R = R(ul,u2,u3) and

B:1C R — M be an arbitrary curve with arc-length
parametrization. Since M is regular, the partial

derivatives R1, R2, R3 are linearly independent at
every point of M, i.e. R1 ® R2 ® R3 # 0, where

R; = (?WR . Thus, the
unit normal vector of M is given by

R ® Ry ® R3

N = .
|IR1 ® Ry ® Rl

The first and second fundamental form coefficients
of M are given by, respectively,

g9i; = (Ri,Ry),  hyj = (Ry,N),
where R;; = 8261';{]8% , 1<, < 3.

Besides, since the curve ((s) lies on M, we

may also write 3(s) = R(ul(s), us(s), u;»,(s)).

Then we have

3
=> Ruj,

i—1

Z R + Z Rjuju) ()

1,j=1

/// Z Rzu”’ +3 Z le u;/u;

3,j=1

3
E [
+ R,-jkuiujuk,
1,5,k=1

PR

where R, = Bup o, s

Definition 2. A unit speed curve 3 : I — E* of class
C4is called a Frenet curve if the vectors 3'(s),3"(s),

["(s) are linearly independent at each point along
the curve.

2.3 The extended Darboux frame field in E4

Let M be an orientable hypersurface oriented
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by the unit no 21 vector field N in E4, and 3 be a Frenet
purve of class C” with arc-length parameter s lying on M.

T(s) =B(s), N(s) = N(B(s)).

The extended Darboux frame field along B is constructed in
(Dildil et al., 2017) as follows:

Case 1. If the set /! } is linearly independent,
then, using the ram— chmidt orthonormalization

method gives the orthonormal set {N, T, E}, where

/8// _ <6”7 N>N
18”7 = (8", N)N||

E:

Case 2. If the set {N, T, p’/} is linearly dependent,

i.e. if B’ is in the direction of the normal vector N,
applying the Gram-Schmidt orthonormalization

method to {N, T, B’’’} yields the orthonormal set

{N, T,E}, where
8" — (8" N)N — (3", T)T
HB/// _ <B///7 N>N _ <B///7T>TH

In each case, defining D =N ® T ® E yields a new
orthonormal frame field {T, E, D, N} along the curve
B instead of its Frenet frame field. These new frame
fields are called, “extended Darboux frame field of
first kind” or in short, “ED-frame field of first kind”
in case 1, and “extended Darboux frame field of
second kind” or in short, “ED-frame field of second
kind” in case 2, respectively.
The differential equations of ED-frame fields are

given by (Dildil et. al., 2017)

E—

Case 1:
T 0 Ky 0 &y T
E -kl 0 k2 7! E
_ g g g
D’ 0 - /{3 0 ng D |’
N’ — K, —Tgl —792 0 N
Case 2:
T 0 0 0 &y T
E | 0 0 /@'3 Tgl E
D | 0o - Iig 0 O D |’
N’ —fn —7, 0 0 N

where xpn, denotes the normal curvature; and T
are called the geodesic curvature and geod%swtorsg fon

of order i of the curve S (i = 1, 2), respectively.
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3. The ED-frame field curvatures of Frenet curves on

parametric 3-surfaces in Case 1

Proposition 1. Let M be an oriented hypersurface
given by its parametric equation R = R(u1, u2, u3)

and [3 be a Frenet curve of class C"™ (n > 4) with arc-
length parameter s lying on M. Then the normal

curvature of the curve £ is given by

3

ij=1
Proof. Let N denote the unit normal vector field of M

along f8. Since ry, = (T/, N), the assertion is clear
from (2).
Proposition 2. Let B be a Frenet curve of class

C™ (n > 4) with arc-length parameter s lying on an
oriented hypersurface M which is given by the
parametric equation R = R(u1, u2, u3). Then the

geodesic curvature of order 1 of f is given by

{Zg’ﬂuﬁ T2 Z (Roj, Ry ujujuy

1,j=1 %,j,k=1

3
2 : [
+ (R,'j,RkAuiujukué
i,7,k, =1

. 2y b
- (Z hwé%) . )
ij=1

Proof. We have £, = (T, E) and

T — (T',N)N
[T = (T, N)NJ|

(Dildil et al., 2017), i.e.

E:

— {(T/,T,> . <-|-/’ N>2}%

If we substitute (2) into the last equation, we get
(4).

By using the above Propositions, since
(k1)2 = (/i;)z + (/ﬁn)Z in Case 1, we may give
the following corollary:

Corollary 1. Let  be a Frenet curve lying on the
parametric hypersurface R = R(u, us, ug). Then
the first curvature k; of 3 can be obtained by

Zg”u// //+2 Z Rzg;Rk> / /uZ

4,j=1 i,5,k=1

3
!/ ! !
+ g (Ryj, ng>uiujukue.

4,5,k =1

Proposition 3. Let M be an oriented hypersurface
given by its parametric equation R = R(uq, us, ug)
and /3 be a Frenet curve of class C™ (n > 4) with
arc-length parameter s lying on M. Then the
geodesic torsion of order 1 of B is given by

(Z hwu" ’ th] ul ]

J=1 3,j=1

3
+ Z (Rijr, NYuju uk> , (5)

i,j,k=1
where /i; is given by (4).
Proof. We have

_<T/7N/>
[T — (T, N)N|

—_

7, = (E,N) =

(Ildil et al., 2017), i.e.

-1 / /
71=F<T,N>~ (6)
g

We may write

3

<T/7 N,> - Z(Rﬂ N,>u;/

4,7=1

Since
and

<Rz]7 N) hijv
we obtain

3
<RU7 N > - h;j - Z<Rijk7 N>u;€
k=1

Substituting the above equations into (6) yields

(5).
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Proposition 4. Let /3 be a Frenet curve of class C" (n
> 4) with arc-length parameter s lying on an
oriented hypersurface M which is given by the
parametric equation R = R(uq, us, u3). Then the
geodesic curvature of order 2 of B is given by

Ky = { > gijoiu
g

2,0=1

3 3
i,7=1 i,j=1

where w = ||R; ® Ry ® R3],

3
(Z gjeuy +3 Z (Rj, Rop)ujul,

lm=1

3
s <Rj,mmn>u;u:nu;)

Lmn=1
(ng[UZ + Z (Ri, Rem) ueu )
lm=1
(Z g]éu
lm=1
(Z gkgu"' +3 Z Rk, Rgm>u2'u;n

l,m=1

3

<Rj7 R€m>u2u;n>

+ Z <Rk,Remn>uzu;u;), (8)

lm,n=1

and

3 3
pi = <Z gjeuy + Z (R;, Rgm>u2uﬁn>
=1

lm=1
3
X Z gkéu/e
<Z greuy + Z (R, Ry yupu, )
Lm=1
3
X Z gjéulev
=1

i, 7,k = 1,2, 3(cyclic).
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Proof. We have (Diildiil et al. , 2017)

1
9 L ! iz
g = (ﬁ§)2{<T’T @t ®N>
(raeneter)) o
We may write
1
ToT'oN=-T'oT"® (R @R, ® Ry)

1 R, R Rs
=— | R.T) (R, T") (Rs, T")

w (R, T (R, T') (R3, T)

1 3

where

g; — <R]‘, T”> <Rk, T/> —

3 3
— (Z gjeuy + 3 Z (Rj, Rom)ujul,
=1

lm=1

(R, T') Ry, T")

3

+ <Rj> Rfmn>u2u;nu;z>

( gngg + Z Rk,Rgm>u£u )

lm=1

(Zg]gue + Z (Rj, Rom)upul, )

lm=1

(Z gng,g + 3 Z Rk,Rgm ue'u;n

l,m=1

+ Z RkaRémn>u2u;nu;z>7

{mmn=1

1,7,k = 1,2, 3(cyclic).

Then we obtain

3
<T,T’ 3T ® N> - i S gijoud;. (10)

Similarly,

TOT®N = ITeT o (R @R, ®Rs)

€=

3
om
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= (R, T)(Ry, T) — (Ry,, T)(R;, T)

3 3
= (Z gy + Y <Rj7R£m>u/Eu;n>
=1 Lm=1
3
x Z Grey
(ZQMW + Z (R, Ron yupu, )

£,m=1
3
X Zgﬂulz»
/=1
1,7,k = 1,2,3(cyclic).

Let Z=R;® Ry® Rs. Then

1 1 1

N=—2Z, N=-Z-—(2,2)Z (1)
w w

Thus, we have

<N’,T®T’®N> _

3
1
=2 <(R1 ® Ry ® R3)’, E pz’Ri>
i=1

138
N (RN
- pi (R}, N)

i=1

= — Di <Z Rwuj, N>
=1

—1
3,7=1
By substituting (10) and (12) into (9), we obtain

the expression of the geodesic curvature of order 2
as given in (7).

Proposition 5. Let 3 be a Frenet curve of class C™ (n
> 4) with arc-length parameter s lying on an
oriented hypersurface R = R (u1, us, ug). Then the
geodesic torsion of order 2 of  is obtained by

=— Z hijpa (13)

gZ] 1

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Since we have 77 = (D',N) =

-4 (N’ T® T @ N) (Dildil et al., 2017), the
assertlon is clear from (12).

Corollary 2. The relation between the invariants of
ED-frame field of first kind is given by

3
1 /
o E GijOiU;,

7,5=1

(4) 83— munirs =

where o; is given by (8).

4. The ED-frame field curvatures of Frenet curves
on parametric 3-surfaces in Case 2

The normal curvature K, =

Q).

Proposition 6.

(T, N) is obtained by

Let 3 be a Frenet curve of class

C™ (n > 4) with arc-length parameter s lying on an
oriented hypersurface R = R (uy, ua, u3). Then the
geodesic torsion of order 1 of 3 is obtained by

2

L 1 3 <R1aR£> 9im YGin
7—9 = _J <R2’Rl> 92m YGon
=1 <R37 > 93m G3n

1 3| RLR) (R Ry) (R Ry)
t3 > | (R;,R) Gjm Gin
it=1| (Ry, R}) km 9kn

3 2) 2
() 1
ij=1

where 7, 5,k = 1,2,3 (cyclic), £,m,n =1,2,3

(cyclic), and

(RR) = 3 (R R

3
<R;, Rm> - z_; <Rir, Rm>u;

Proof. The geodesic torsion of order 1 of § is
obtained by (Diildiil et. al., 2017)

{(ww) - (v}

(SIS

= (E',N) =

Since (N',N’) =

1

= o2 <(R1 ® Ry ®R3>/, <R1 ® Ro ®R3>/>



oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

1 A\
- <R1®R2®R3, (R1®R2®RB)>

3
1
== > <R;®Rj®Rk,R;®Rm®Rn>

i0=1

3 2
_é (Z <R1 @ R, ®R3,R;®Rm®Rn>> :

(=1

if we use (1), we obtain the expression of the
geodesic torsion of order 1 as desired.

Proposition 7. Let B be a Frenet curve of class
C"™(n > 4) with arc-length parameter s lying on an
oriented hypersurface R = R(u1, ug, u3). Then the
geodesic curvature of order 2 of B is obtained by

3 3
x> N {2 >~ det{R;, Rir, Ryjg, Ry bujr,

r,q=1

3
+2 > det{R;, Ry,

r,g=1

! /
R;, qu}uv,uq

» (Z (Rig N Y

3
/ E 4
q + hi’!’u'r b))
r,q=1 r=1

(14)

where 3

N = Z <g]mhkf gkmh]é)uéum’

m:

1,7,k =1,2,3(cyclic).
Proof. We have (Diildiil et al. ,

=(E:0) = oy

g

2017)

<N’,N®T®N”>. (15)

If we substitute (11) and

N =17 22,707 - 7Pz
1 " 3 N2
_E<Z’Z >z+—5<z,z> z

into (15), we obtain
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- - / "
K2 = (T;)2w3<T®Z ®Z.7 >

On the other hand,

TeZoZ=TeZ o (R oR o R;)

(17)

3
= > AR,
=1

where

Ai = (R, ZHVRE, T) — (R;, T) (R, Z)

3
=w Z (gjmhke — gkmhjé) uyu,,,,

lm=1

1,7,k =1,2,3(cyclic). Since
Z'"=R/®R;®R3+R; ® R, ® R3
+R1®R2®Rg+2<RQ®R’2®R3

+R)® R, @ R + Ry @ Ry © Ry, (18)

if we use (17) and (18), we may write
3
(Tez©z,2") = > A(R..Z")
i=1
3
~> A (2(RiRi© R} @ Ry )
i=1

+2<Ri,Rg ® R, ®R;>

().

Also, we get

(19)

(R, Ri©R; @Ry ) =
- Z det{RzaRzraquka}ur q? (20)
r,q=1

<Ri, R, o R, ® R3€> -

_ Z det{R;, Ry, Ry, Ry b, (21)

r,q=1
and >
<R,, N> -y <qu7 N>u;u’q
r,q=1
3

(22)
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Thus, substituting (20)-(22) into (19), the
geodesic curvature of order 2 is obtained from (16)
as given in (14).

Remark 1.

geodesic in [E, then the expressions of the extended
Darboux frame curvatures become simple due to the

vanishing second fundamental form coefficients, i.e.
12
Rn =T, =Ts= 0,

1
2
1 _ § : // //
K’g - gl] 9

2,7=1

If the hypersurface is totally

50U
3,7=1

Remark 2. If the hyper-surface is totally umbilical

but not totally geodesic in [E*, then the geodesic
torsions of order i of the curve vanish.

5. Examples

In this section, we use our results to obtain
the extended Darboux frame curvatures of
two Frenet curves lying on a parametric hy-
percylinder.

Example 1. Let us consider the paramet-
ric hypercylinder C given by R(uq,us, u3) =
(cos uq cOS Uz, Sin Uy COS Uy, Sin Uz, uz) and the
curve 5(s) =R (\%, \%, cos \%) . It is easy to
see that 3 is a unit speed Frenet curve on C. Also,
it is easy to verify that case 1 is valid along p.
Thus, applying the method defined in (Duildil ez
al., 2017), we obtain the ED-frame of first kind
at the point #(0) = (1,0, 0, 1) as

T(0) = (o,%,%,o),

E(0) = (0,0,0, —1),

o0 - (0:F3-35):

N(0) = ( ,0,0,0)

We obtain the non-vanishing first and second
fundamental form coefficients of the hyper-
cylinder at 5(0) as g11 = gao = g3z = 1 and hy; =
hoo= —1, respectively Thus, since

o, _ n o __ //_ "o 1
Uy = Uy = uy =0, uf =uf =0, uf =—

\/57 29
if we use (3) and (4), we find the normal cur-

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

vature and the geodes1c curvature of order 1 at

5(0) as k, = —1and k)= 1, respectively.

We also obtain h’ = 0,1 < 4,5 < 3,
W:1701:%§702:_%§703:0701:%a
Py = —‘/TE, p3 = 0. Substituting these results

into (5), (7) and (13), we obtain the geodesic
torsion of order 1, geodesic curvature of order 2
and geodesic torsion of order 2 as 7, = 0, k) =
3, 7, = 0, respectively.

Example 2. Let us consider the parametric
hypercylinder C given in Example 1 a \/gam It
is easy to see that y(s) = R(%,3 2,73 is a
unit speed Frenet curve on C. Also, it is easy to
verify that case 2 is valid along ~y. Thus,

applying the method defined in (Diildiil ez. al., 2017)

2017), we obtain the ED-frame of second kind
at the point v(0) = ( 5 2,O 0)

T0) = (00.5.).

)

0-23)
o0 - (4 F.00),

V3 1
N©) = (%5 5:0,0).

The non-vanishing first and second fundamental

form coefficients of the hypercylinder at v(0) are

gin = g2 = g3 = 1 and hyy = hgyp =—1,

respectively. Furthermore, since

E0) = (

1 V3
o I A
u1_07u2 27 3 2a
R12 :R21 :R13 :R31 :RQB 207
R32:R33:0

atv(0), we obtain (R}, R,,,) =0 forall i, m €
{1, 2,3} and (R’ R’) —Oexcepti =(=2.We
also have uf =uj=u4=0, w = 1.

Therefore, if we use equation (3),

Proposition 6 and Proposition 7, we obtain

the normal curvature, the geodesic torsion

of order 1, geodesic curvature of order 2 as
1 v3 K2 = 0, respectively.

En:_177- = T 1>
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