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Abstract 
 
The space 𝑁𝑁!! !

of all series summable by the absolute weighted mean method has recently been introduced and studied 

in several publications. In the present paper, we define a new notion of generalized absolute summability, which 
includes several well-known summability methods, and construct a series space 𝑁𝑁!! 𝜇𝜇  corresponding to it. Further, 
we obtain several properties of the new space and characterize certain matrix transformations on that space. We also 
deduce some important results as special cases. 
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1.   Introduction 
 
Let 𝑋𝑋, 𝑌𝑌 be any two subsets of 𝜔𝜔, the set of all sequences 
of complex numbers, and 𝐴𝐴 = (𝑎𝑎!") be an infinite matrix 
of complex numbers for 𝑛𝑛, 𝜈𝜈 ≥ 0. By 𝐴𝐴(𝑥𝑥)  =  (𝐴𝐴!(𝑥𝑥)), 
we denote the 𝐴𝐴-transform of a sequence 𝑥𝑥 = (𝑥𝑥!), i.e., 

                                𝐴𝐴! 𝑥𝑥 = 𝑎𝑎!"𝑥𝑥!

!

!!!

                              1  

provided that the series are convergent for 𝑛𝑛 ≥ 0. If 
𝐴𝐴(𝑥𝑥)  ∈ 𝑌𝑌, whenever 𝑥𝑥 ∈  𝑋𝑋, then we say that 𝐴𝐴 defines a 
matrix mapping from 𝑋𝑋 into 𝑌𝑌 and denote it by  
𝐴𝐴 ∶  𝑋𝑋 →  𝑌𝑌. By (𝑋𝑋, 𝑌𝑌), we mean the class of all infinite 
matrices 𝐴𝐴 such that 𝐴𝐴 ∶  𝑋𝑋 →  𝑌𝑌, and also the matrix 
domain 𝑋𝑋! of an infinite matrix 𝐴𝐴 in a sequence space 𝑋𝑋 
is defined by 
                𝑋𝑋!  =  𝑥𝑥 =  𝑥𝑥! ∈ 𝜔𝜔: 𝐴𝐴(𝑥𝑥) ∈ 𝑋𝑋 .                 (2) 
    A subspace 𝑋𝑋 is called an 𝐹𝐹𝐹𝐹 space if it is a Frechet 
space, that is, a complete locally convex linear metric 
space, with continuous coordinates 𝑅𝑅! ∶  𝑋𝑋 → ℂ 
(𝑛𝑛 =  0,1, 2, … ), where 𝑅𝑅! 𝑥𝑥 = 𝑥𝑥! for all 𝑥𝑥 ∈  𝑋𝑋; an 
𝐹𝐹𝐹𝐹 space whose metric is given by a norm is said to be a 
𝐵𝐵𝐵𝐵 space. An 𝐹𝐹𝐹𝐹 space 𝑋𝑋 ⊃ 𝜙𝜙, the set of all finite 
sequences, is said to have the 𝐴𝐴𝐴𝐴 property if 

lim
!→!

𝑥𝑥[!] = lim
!→!

𝑥𝑥!𝑒𝑒(!)
!

!!!

= 𝑥𝑥, 

for every sequence 𝑥𝑥 ∈  𝑋𝑋, where 𝑒𝑒(!) is a sequence 
whose only non-zero term is one in 𝑛𝑛-th place for 𝑛𝑛 ≥ 0.  
For example, it is well known that Maddox's space 

𝑙𝑙 𝜇𝜇 =  𝑥𝑥 =  𝑥𝑥! ∶ 𝑥𝑥! !!

!

!!!

< ∞  

is an 𝐹𝐹𝐹𝐹 space with 𝐴𝐴𝐴𝐴 with respect to its natural 
paranorm 

𝑔𝑔 𝑥𝑥 =  𝑥𝑥! !!

!

!!!

!\!

 

where 𝑀𝑀 =  max {1;  sup! 𝜇𝜇!}; it is even a 𝐵𝐵𝐵𝐵 space if 
𝜇𝜇! ≥ 1 for all 𝑛𝑛 ∈  ℕ with respect to the norm  

𝑥𝑥 = inf 𝛿𝛿 > 0: 𝑥𝑥! 𝛿𝛿 !! ≤ 1
!

!!!

, 

(Maddox 1969; 1968; 1967; Nakano 1951). 
     Research on absolute summability factors and the 
comparison of summability methods plays an important 
role in Fourier Analysis and Approximation Theory and 
has been pursued by many authors (see, for example, 
Altay & Basar 2006; Bor et al. 2015; Bor 1985; Borwein 
& Cass 1968; Bosanquet & Chow 1957; Bosanquet 1950; 
Bosanquet 1945; Hazar & Sarıgöl 2018; Das 1970; Flett 
1957; Kalaivani & Youvaraj 2013; Mazhar 1971; 
McFadden 1942; Mehdi 1960; Orhan & Sarıgöl 1993; 
Sarıgöl 2016a; Sarıgöl 2016b; Sarıgöl 2015; Sarıgöl 2011; 
Sarıgöl 2010; Sarıgöl 1993; Sarıgöl 1991a; Sarıgöl 1991b; 
Sulaiman 1992; Tanaka 1978).  
     Here, we note that these problems correspond to the 
special matrix transformations such as identity matrix and 
diagonal matrix. Concerning these topics, some sequence 
spaces have been generated and examined by several 
authors (see Altay & Basar 2006; Choudhary & Mishra 
1993; Grosse-Erdmann 1993; Maddox 1968; Maddox 
1969; Malkowsky & Rakocevic 2007; Mohapatra & 
Sarıgöl 2018; Mursaleen & Noman 2011; Mursaleen & 
Noman 2010; Nakano 1951).  
     The space 𝑁𝑁!! !

 has recently been derived by Sarıgöl 
(2011) using Sulaiman’s (1992) summability method 
𝑁𝑁, 𝑝𝑝!, 𝜃𝜃! !, and studied by Mohapatra & Sarıgöl (2018), 

Sarıgöl (2016b) and Ozarslan & Ozgen (2015). The 
purpose of the present paper is to generalize this space to 
a new space 𝑁𝑁!! 𝜇𝜇 , show that it is a 𝐵𝐵𝐵𝐵-space with 𝐴𝐴𝐴𝐴 
and characterize certain matrix transformations on that 
space. In doing so, we also deduce some important results 
of Bosanquet (1950), Mohapatra & Sarıgöl (2018), 
Sarıgöl (2011), Orhan & Sarıgöl (1993) and Sunouchi 
(1949) as special cases. 
     First, to define the space  𝑁𝑁!! 𝜇𝜇 , we need a new 
notion of the generalized absolute summability method 
that also includes some well-known summability 
methods. Let 𝑎𝑎! be a given infinite series with 𝑠𝑠! as its 
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𝑛𝑛-th partial sum, 𝐴𝐴 is an infinite matrix of complex 
numbers and 𝜃𝜃!  is any positive sequence. Let 𝜇𝜇!  be 
any bounded sequence of positive real numbers. Then we 
say that the series 𝑎𝑎! is summable 𝐴𝐴, 𝜃𝜃 𝜇𝜇 , if 
 

               𝜃𝜃!
!!!! 𝐴𝐴! 𝑠𝑠 − 𝐴𝐴!!! 𝑠𝑠 !! <

!

!!!

∞.               (3) 

 
Then it should be noted that the summability 𝐴𝐴, 𝜃𝜃 𝜇𝜇  
includes the following well-known summability methods 
for special cases of 𝜇𝜇, 𝜃𝜃 and 𝑘𝑘 ≥ 1: 
 
(a) If 𝜇𝜇! = 𝑘𝑘 for all 𝑛𝑛, then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the 

summability 𝐴𝐴, 𝜃𝜃 ! (Sarıgöl, 2010). 
(b) If  𝜇𝜇! = 𝑘𝑘 and  𝜃𝜃! = 𝑛𝑛 or  𝜃𝜃! = 1 𝑎𝑎!!  for all 𝑛𝑛, 

then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the summability 𝐴𝐴 ! 
(Sarıgöl, 1991b). 

(c) If 𝜇𝜇! = 𝑘𝑘,  𝜃𝜃! = 𝑛𝑛 for all 𝑛𝑛 and 𝐴𝐴 = 𝐶𝐶, 𝛼𝛼 , Cesaro 
means of order 𝛼𝛼 > −1, then 𝐴𝐴, 𝜃𝜃 𝜇𝜇   is reduced to 
the summability 𝐶𝐶, 𝛼𝛼 ! (Flett, 1957). 

(d) If 𝜇𝜇! = 𝑘𝑘,  𝜃𝜃! = 𝛼𝛼!
! (!!!) for all 𝑛𝑛 and A = (C, 𝛼𝛼), 

then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the summability 
𝐶𝐶, 𝛼𝛼, 𝛼𝛼! ! (Bor et al., 2015). 

(e) If 𝜇𝜇! = 𝑘𝑘,   𝜃𝜃! = 𝑛𝑛 for all 𝑛𝑛, and 𝐴𝐴 = (𝐶𝐶, 𝛼𝛼, 𝛽𝛽), 
Cesaro means of order 𝛼𝛼, 𝛽𝛽 , 𝛼𝛼 + 𝛽𝛽 ≠ −1,−2, …, 
then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the summability 
𝐶𝐶, 𝛼𝛼, 𝛽𝛽 ! (Das, 1970). 

(f) If 𝜇𝜇! = 𝑘𝑘,  𝜃𝜃! = 𝑛𝑛 for all 𝑛𝑛, and 𝐴𝐴 = (𝑅𝑅, 𝑝𝑝!), Riesz 
means, then 𝐴𝐴, 𝜃𝜃 𝜇𝜇   is reduced to the summability 
𝑅𝑅, 𝑝𝑝! ! (Sarıgöl, 1993). 

(g) If 𝜇𝜇! = 𝑘𝑘 for all 𝑛𝑛, and 𝐴𝐴 = 𝑁𝑁, 𝑝𝑝! , the weighted 
means, then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the summability 
𝑁𝑁, 𝑝𝑝!, 𝜃𝜃! ! (Sulaiman, 1992). 

(h) If 𝜇𝜇! = 𝑘𝑘,  𝜃𝜃! = 𝑃𝑃! 𝑝𝑝!  for all 𝑛𝑛, and 𝐴𝐴 = 𝑁𝑁, 𝑝𝑝! , 
the weighted means, then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the 
summability 𝑁𝑁, 𝑝𝑝! ! (Bor, 1985). 

(i) If 𝜇𝜇! = 𝑘𝑘,  𝜃𝜃! = 𝑛𝑛 for all 𝑛𝑛 and 𝐴𝐴 = 𝑁𝑁, 𝑝𝑝! ,   
Nörlund means, then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the 
summability  𝑁𝑁, 𝑝𝑝! ! (Borwein & Cass, 1968). 

(j) If 𝜇𝜇! = 𝑘𝑘 for all 𝑛𝑛 and 𝐴𝐴 is the generalized Nörlund 
means, then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the summability 
𝑁𝑁, 𝑝𝑝!, 𝑞𝑞! !. In particular, for 𝑘𝑘 =  1, it is reduced 

the summability 𝑁𝑁, 𝑝𝑝!, 𝑞𝑞!  (Tanaka, 1978 ). 

(k) If	𝜇𝜇! = 𝑘𝑘	 for	 all	𝑛𝑛	 and	  𝜃𝜃! = 𝛾𝛾 𝑛𝑛 𝑛𝑛1 𝑘𝑘∗ , where  
𝛾𝛾: [1,∞)  →  [1,∞) is a nondecreasing function,   
then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the   summability 𝐴𝐴, 𝛾𝛾 ! 
(Kalaivani &   Youvaraj, 2013).  

Definition. Let (𝑝𝑝!) be a positive sequence with 𝑃𝑃! = 𝑝𝑝! +
𝑝𝑝! + ⋯+ 𝑝𝑝! → ∞ as 𝑛𝑛 → ∞, (𝑃𝑃!! = 𝑝𝑝!!  =  0). We 
define a space 𝑁𝑁!! 𝜇𝜇  as the set of all series summable 
by the absolute summability 𝐴𝐴, 𝜃𝜃 𝜇𝜇 , where 𝐴𝐴 is the 
weighted mean matrix: 
 

𝑎𝑎!" =
𝑝𝑝! 𝑃𝑃!, 0 ≤ 𝜈𝜈 ≤ 𝑛𝑛
0, 𝜈𝜈 > 𝑛𝑛.  

Then, it can be written from (1) that 
 

𝐴𝐴! 𝑠𝑠 − 𝐴𝐴!!! 𝑠𝑠 =
𝑝𝑝!

𝑃𝑃!𝑃𝑃!!!
𝑃𝑃!!!𝑎𝑎! .

!

!!!

 

 
 

 
which implies 𝐴𝐴! 𝑠𝑠 = 𝑎𝑎! , and for 𝑛𝑛 ≥ 1, 

𝐴𝐴! 𝑠𝑠 − 𝐴𝐴!!! 𝑠𝑠 =
𝑝𝑝!

𝑃𝑃!𝑃𝑃!!!
𝑃𝑃!!!𝑎𝑎! .

!

!!!

 

To understand the space  𝑁𝑁!! 𝜇𝜇  better, it is useful to 
state it in terms of the series 𝑎𝑎!. In fact, it is clear by (3) 
that the space  𝑁𝑁!! 𝜇𝜇  can be written as  
 

 𝑁𝑁!! 𝜇𝜇 = 𝑎𝑎 ∶ 𝜃𝜃!
!!!!

!

!!!

𝜒𝜒!(𝑎𝑎) !! < ∞  

where 

𝜒𝜒! 𝑎𝑎 =
𝑝𝑝!

𝑃𝑃!𝑃𝑃!!!
𝑃𝑃!!!𝑎𝑎! .

!

!!!

 

It is also trivial that, in the special case 𝜇𝜇! = 𝑘𝑘 for all 
𝑛𝑛 ≥ 0, the series space  𝑁𝑁!! 𝜇𝜇  is reduced to the space 
𝑁𝑁!! !

(Sarıgöl, 2011) and the space 𝑅𝑅! !
  with  𝜃𝜃! = 𝑛𝑛 

(Orhan & Sarıgöl, 1993). Further, with the notation (2), it 
can be redefined by  𝑁𝑁!! 𝜇𝜇 = 𝑙𝑙 𝜇𝜇

! !,!,!
, where the 

matrix 𝑇𝑇 𝜃𝜃, 𝜇𝜇, 𝑝𝑝  is given by 
 

𝑡𝑡!" 𝜃𝜃, 𝜇𝜇, 𝑝𝑝 =
1, 𝑛𝑛 = 0, 𝜈𝜈 = 0          

𝜃𝜃!
! !!∗ !!!!!!

!!!!!!
, 1 ≤ 𝜈𝜈 ≤ 𝑛𝑛 

0, 𝜈𝜈 > 𝑛𝑛,                  
 

 
to which the inverse is 𝑆𝑆 𝜃𝜃, 𝜇𝜇, 𝑝𝑝   
 

𝑠𝑠!! 𝜃𝜃, 𝜇𝜇, 𝑝𝑝 = 1, 
 

𝑠𝑠!" 𝜃𝜃, 𝜇𝜇, 𝑝𝑝 =

                
−𝜃𝜃!!!

!! !!!!
∗ !!!!

!!!!
, 𝜈𝜈 = 𝑛𝑛 − 1    

𝜃𝜃!
!! !!∗ !!

!!
, 𝜈𝜈 = 𝑛𝑛  

0,         𝜈𝜈 ≠ 𝑛𝑛 − 1, 𝑛𝑛    
       

 

 
where 𝜇𝜇!∗  is the conjugate of 𝜇𝜇!, i.e. 1 𝜇𝜇! + 1 𝜇𝜇!∗ = 1, 
𝜇𝜇! > 1, and 1 𝜇𝜇!∗ = 0 for 𝜇𝜇! = 1. 
     In addition, for simplicity of presentation we take for 
all 𝑛𝑛, 𝜈𝜈 ≥ 0, 
 

𝑎𝑎!" =
𝑃𝑃!

𝜃𝜃!
! !!∗ 𝑝𝑝!

𝑎𝑎!" −
𝑃𝑃!!!
𝑃𝑃!

𝑎𝑎!,!!! . 

 
With these notations, we establish the following 
theorems.  
Theorem 1.1. Let (𝜃𝜃!) be a sequence of positive numbers 
and (𝜇𝜇!) be a bounded sequence of positive numbers. 
Then the set  𝑁𝑁!! 𝜇𝜇  becomes a linear space with the 
coordinate-wise addition and scalar multiplication. It is 
also an 𝐹𝐹𝐹𝐹-space with  𝐴𝐴𝐴𝐴 in respect to the paranorm 
ℎ(𝑥𝑥)  =  𝑔𝑔(𝑇𝑇(𝑥𝑥)) with 

𝑔𝑔(𝑇𝑇(𝑥𝑥))  =  𝜃𝜃!
!!!! 𝑇𝑇!(𝑥𝑥) !!

!

!!!

! !

 

where 𝜃𝜃! = 1 and 𝑀𝑀 =  max {1, sup! 𝜇𝜇!}. 
Theorem 1.2. Let 𝐴𝐴 = (𝑎𝑎!") be an infinite matrix of 
complex numbers and (𝜃𝜃!)  be a sequence of positive 
numbers. If (𝜇𝜇!) is an arbitrary bounded sequence of 
positive numbers such that 𝜇𝜇! > 1 for all 𝑛𝑛, then 

(4)	

(5)	

𝑛𝑛-th partial sum, 𝐴𝐴 is an infinite matrix of complex 
numbers and 𝜃𝜃!  is any positive sequence. Let 𝜇𝜇!  be 
any bounded sequence of positive real numbers. Then we 
say that the series 𝑎𝑎! is summable 𝐴𝐴, 𝜃𝜃 𝜇𝜇 , if 
 

               𝜃𝜃!
!!!! 𝐴𝐴! 𝑠𝑠 − 𝐴𝐴!!! 𝑠𝑠 !! <

!

!!!

∞.               (3) 

 
Then it should be noted that the summability 𝐴𝐴, 𝜃𝜃 𝜇𝜇  
includes the following well-known summability methods 
for special cases of 𝜇𝜇, 𝜃𝜃 and 𝑘𝑘 ≥ 1: 
 
(a) If 𝜇𝜇! = 𝑘𝑘 for all 𝑛𝑛, then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the 

summability 𝐴𝐴, 𝜃𝜃 ! (Sarıgöl, 2010). 
(b) If  𝜇𝜇! = 𝑘𝑘 and  𝜃𝜃! = 𝑛𝑛 or  𝜃𝜃! = 1 𝑎𝑎!!  for all 𝑛𝑛, 

then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the summability 𝐴𝐴 ! 
(Sarıgöl, 1991b). 

(c) If 𝜇𝜇! = 𝑘𝑘,  𝜃𝜃! = 𝑛𝑛 for all 𝑛𝑛 and 𝐴𝐴 = 𝐶𝐶, 𝛼𝛼 , Cesaro 
means of order 𝛼𝛼 > −1, then 𝐴𝐴, 𝜃𝜃 𝜇𝜇   is reduced to 
the summability 𝐶𝐶, 𝛼𝛼 ! (Flett, 1957). 

(d) If 𝜇𝜇! = 𝑘𝑘,  𝜃𝜃! = 𝛼𝛼!
! (!!!) for all 𝑛𝑛 and A = (C, 𝛼𝛼), 

then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the summability 
𝐶𝐶, 𝛼𝛼, 𝛼𝛼! ! (Bor et al., 2015). 

(e) If 𝜇𝜇! = 𝑘𝑘,   𝜃𝜃! = 𝑛𝑛 for all 𝑛𝑛, and 𝐴𝐴 = (𝐶𝐶, 𝛼𝛼, 𝛽𝛽), 
Cesaro means of order 𝛼𝛼, 𝛽𝛽 , 𝛼𝛼 + 𝛽𝛽 ≠ −1,−2, …, 
then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the summability 
𝐶𝐶, 𝛼𝛼, 𝛽𝛽 ! (Das, 1970). 

(f) If 𝜇𝜇! = 𝑘𝑘,  𝜃𝜃! = 𝑛𝑛 for all 𝑛𝑛, and 𝐴𝐴 = (𝑅𝑅, 𝑝𝑝!), Riesz 
means, then 𝐴𝐴, 𝜃𝜃 𝜇𝜇   is reduced to the summability 
𝑅𝑅, 𝑝𝑝! ! (Sarıgöl, 1993). 

(g) If 𝜇𝜇! = 𝑘𝑘 for all 𝑛𝑛, and 𝐴𝐴 = 𝑁𝑁, 𝑝𝑝! , the weighted 
means, then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the summability 
𝑁𝑁, 𝑝𝑝!, 𝜃𝜃! ! (Sulaiman, 1992). 

(h) If 𝜇𝜇! = 𝑘𝑘,  𝜃𝜃! = 𝑃𝑃! 𝑝𝑝!  for all 𝑛𝑛, and 𝐴𝐴 = 𝑁𝑁, 𝑝𝑝! , 
the weighted means, then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the 
summability 𝑁𝑁, 𝑝𝑝! ! (Bor, 1985). 

(i) If 𝜇𝜇! = 𝑘𝑘,  𝜃𝜃! = 𝑛𝑛 for all 𝑛𝑛 and 𝐴𝐴 = 𝑁𝑁, 𝑝𝑝! ,   
Nörlund means, then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the 
summability  𝑁𝑁, 𝑝𝑝! ! (Borwein & Cass, 1968). 

(j) If 𝜇𝜇! = 𝑘𝑘 for all 𝑛𝑛 and 𝐴𝐴 is the generalized Nörlund 
means, then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the summability 
𝑁𝑁, 𝑝𝑝!, 𝑞𝑞! !. In particular, for 𝑘𝑘 =  1, it is reduced 

the summability 𝑁𝑁, 𝑝𝑝!, 𝑞𝑞!  (Tanaka, 1978 ). 

(k) If	𝜇𝜇! = 𝑘𝑘	 for	 all	𝑛𝑛	 and	  𝜃𝜃! = 𝛾𝛾 𝑛𝑛 𝑛𝑛1 𝑘𝑘∗ , where  
𝛾𝛾: [1,∞)  →  [1,∞) is a nondecreasing function,   
then 𝐴𝐴, 𝜃𝜃 𝜇𝜇  is reduced to the   summability 𝐴𝐴, 𝛾𝛾 ! 
(Kalaivani &   Youvaraj, 2013).  

Definition. Let (𝑝𝑝!) be a positive sequence with 𝑃𝑃! = 𝑝𝑝! +
𝑝𝑝! + ⋯+ 𝑝𝑝! → ∞ as 𝑛𝑛 → ∞, (𝑃𝑃!! = 𝑝𝑝!!  =  0). We 
define a space 𝑁𝑁!! 𝜇𝜇  as the set of all series summable 
by the absolute summability 𝐴𝐴, 𝜃𝜃 𝜇𝜇 , where 𝐴𝐴 is the 
weighted mean matrix: 
 

𝑎𝑎!" =
𝑝𝑝! 𝑃𝑃!, 0 ≤ 𝜈𝜈 ≤ 𝑛𝑛
0, 𝜈𝜈 > 𝑛𝑛.  

Then, it can be written from (1) that 
 

𝐴𝐴! 𝑠𝑠 − 𝐴𝐴!!! 𝑠𝑠 =
𝑝𝑝!

𝑃𝑃!𝑃𝑃!!!
𝑃𝑃!!!𝑎𝑎! .

!

!!!

 

 
 

 
which implies 𝐴𝐴! 𝑠𝑠 = 𝑎𝑎! , and for 𝑛𝑛 ≥ 1, 

𝐴𝐴! 𝑠𝑠 − 𝐴𝐴!!! 𝑠𝑠 =
𝑝𝑝!

𝑃𝑃!𝑃𝑃!!!
𝑃𝑃!!!𝑎𝑎! .

!

!!!

 

To understand the space  𝑁𝑁!! 𝜇𝜇  better, it is useful to 
state it in terms of the series 𝑎𝑎!. In fact, it is clear by (3) 
that the space  𝑁𝑁!! 𝜇𝜇  can be written as  
 

 𝑁𝑁!! 𝜇𝜇 = 𝑎𝑎 ∶ 𝜃𝜃!
!!!!

!

!!!

𝜒𝜒!(𝑎𝑎) !! < ∞  

where 

𝜒𝜒! 𝑎𝑎 =
𝑝𝑝!

𝑃𝑃!𝑃𝑃!!!
𝑃𝑃!!!𝑎𝑎! .

!

!!!

 

It is also trivial that, in the special case 𝜇𝜇! = 𝑘𝑘 for all 
𝑛𝑛 ≥ 0, the series space  𝑁𝑁!! 𝜇𝜇  is reduced to the space 
𝑁𝑁!! !

(Sarıgöl, 2011) and the space 𝑅𝑅! !
  with  𝜃𝜃! = 𝑛𝑛 

(Orhan & Sarıgöl, 1993). Further, with the notation (2), it 
can be redefined by  𝑁𝑁!! 𝜇𝜇 = 𝑙𝑙 𝜇𝜇

! !,!,!
, where the 

matrix 𝑇𝑇 𝜃𝜃, 𝜇𝜇, 𝑝𝑝  is given by 
 

𝑡𝑡!" 𝜃𝜃, 𝜇𝜇, 𝑝𝑝 =
1, 𝑛𝑛 = 0, 𝜈𝜈 = 0          

𝜃𝜃!
! !!∗ !!!!!!

!!!!!!
, 1 ≤ 𝜈𝜈 ≤ 𝑛𝑛 

0, 𝜈𝜈 > 𝑛𝑛,                  
 

 
to which the inverse is 𝑆𝑆 𝜃𝜃, 𝜇𝜇, 𝑝𝑝   
 

𝑠𝑠!! 𝜃𝜃, 𝜇𝜇, 𝑝𝑝 = 1, 
 

𝑠𝑠!" 𝜃𝜃, 𝜇𝜇, 𝑝𝑝 =

                
−𝜃𝜃!!!

!! !!!!
∗ !!!!

!!!!
, 𝜈𝜈 = 𝑛𝑛 − 1    

𝜃𝜃!
!! !!∗ !!

!!
, 𝜈𝜈 = 𝑛𝑛  

0,         𝜈𝜈 ≠ 𝑛𝑛 − 1, 𝑛𝑛    
       

 

 
where 𝜇𝜇!∗  is the conjugate of 𝜇𝜇!, i.e. 1 𝜇𝜇! + 1 𝜇𝜇!∗ = 1, 
𝜇𝜇! > 1, and 1 𝜇𝜇!∗ = 0 for 𝜇𝜇! = 1. 
     In addition, for simplicity of presentation we take for 
all 𝑛𝑛, 𝜈𝜈 ≥ 0, 
 

𝑎𝑎!" =
𝑃𝑃!

𝜃𝜃!
! !!∗ 𝑝𝑝!

𝑎𝑎!" −
𝑃𝑃!!!
𝑃𝑃!

𝑎𝑎!,!!! . 

 
With these notations, we establish the following 
theorems.  
Theorem 1.1. Let (𝜃𝜃!) be a sequence of positive numbers 
and (𝜇𝜇!) be a bounded sequence of positive numbers. 
Then the set  𝑁𝑁!! 𝜇𝜇  becomes a linear space with the 
coordinate-wise addition and scalar multiplication. It is 
also an 𝐹𝐹𝐹𝐹-space with  𝐴𝐴𝐴𝐴 in respect to the paranorm 
ℎ(𝑥𝑥)  =  𝑔𝑔(𝑇𝑇(𝑥𝑥)) with 

𝑔𝑔(𝑇𝑇(𝑥𝑥))  =  𝜃𝜃!
!!!! 𝑇𝑇!(𝑥𝑥) !!

!

!!!

! !

 

where 𝜃𝜃! = 1 and 𝑀𝑀 =  max {1, sup! 𝜇𝜇!}. 
Theorem 1.2. Let 𝐴𝐴 = (𝑎𝑎!") be an infinite matrix of 
complex numbers and (𝜃𝜃!)  be a sequence of positive 
numbers. If (𝜇𝜇!) is an arbitrary bounded sequence of 
positive numbers such that 𝜇𝜇! > 1 for all 𝑛𝑛, then 

(4)	

(5)	
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𝐴𝐴 ∈  𝑁𝑁!! 𝜇𝜇 , 𝑁𝑁!  if and only if there exists an integer 
𝑀𝑀 >  1 such that, for 𝑛𝑛 =  0,1, …, 

sup
!

𝑀𝑀!!𝑃𝑃!𝑎𝑎!"
𝜃𝜃!
! !!∗ 𝑝𝑝!

!!∗

<∞,             (6) 

 

𝑀𝑀!!𝑎𝑎!" !!∗
!

!!!

<∞,                       (7) 

 

𝑀𝑀!!𝑞𝑞!
𝑄𝑄!𝑄𝑄!!!

𝑄𝑄!!!

!

!!!

𝑎𝑎!"

!

!!!

!!∗

<∞
!

!!!

 

    (8) 
where (𝑞𝑞!) is a positive sequence with 𝑄𝑄! = 𝑞𝑞! + 𝑞𝑞! +
⋯+ 𝑞𝑞! → ∞ as 𝑛𝑛 → ∞, (𝑄𝑄!! = 𝑞𝑞!!  =  0). 
Theorem 1.3. Let 𝐴𝐴 = (𝑎𝑎!")  be an infinite matrix of 
complex numbers, (𝜃𝜃!) and (𝜓𝜓!) be sequences of 
positive numbers. If (𝜇𝜇!) and (𝜆𝜆!) are arbitrary bounded 
sequences of positive numbers and 𝜇𝜇! ≤ 1 and 𝜆𝜆! ≥ 1 for 

all 𝑛𝑛, then, 𝐴𝐴 ∈  𝑁𝑁!! 𝜇𝜇 ,  𝑁𝑁!
! 𝜆𝜆  if and only if there 

exists an integer 𝑀𝑀 >  1 such that, for 𝑛𝑛 =  0, 1, …,  
                                   sup

!
𝑎𝑎!" !! <∞,                              (9) 

                               sup
!

𝑃𝑃!𝑎𝑎!"
𝜃𝜃!
! !!∗ 𝑝𝑝!

<∞,                           (10) 

and 

         sup
!

𝜓𝜓!
! !!∗ 𝑞𝑞!𝑀𝑀!! !!

𝑄𝑄!𝑄𝑄!!!
𝑄𝑄!!!

!

!!!

𝑎𝑎!"

!!!

!!!

<∞.  (11) 

<∞.  (11) 
 
2.   Needed Lemmas 
 
We require the following lemmas for the proof of our 
theorems. 
Lemma 2.1. (Stieglitz & Tietz, 1977) 𝐴𝐴 ∈ (𝑙𝑙, 𝑐𝑐) if and 
only if 
𝑖𝑖  lim

!
𝑎𝑎!" exists for each 𝜈𝜈,

𝑖𝑖𝑖𝑖   sup
!,!

𝑎𝑎!" <∞.                                    

Lemma 2.2. (Grosse-Erdmann, 1993) Let (𝜇𝜇!) and (𝜆𝜆!) 
be any two bounded sequences of  strictly positive 
numbers. 

 
(i) If 𝜇𝜇! ≤ 1, then, 𝐴𝐴 ∈  𝑙𝑙 𝜇𝜇 , 𝑐𝑐  if and only if 

  𝑖𝑖 !    lim
!
𝑎𝑎!" exists for each 𝜈𝜈,

  𝑖𝑖𝑖𝑖 !  sup
!
sup
!

𝑎𝑎!" !! <∞.                 (13) 

(ii) If 𝜇𝜇! > 1 for all 𝜈𝜈, then (𝑙𝑙(𝜇𝜇), 𝑐𝑐) iff 
  𝑖𝑖 !  (13)  𝑖𝑖 !  holds                              

𝑖𝑖𝑖𝑖 !  There  exists  an  integer  𝑀𝑀 > 1 such that 

sup
!

𝑎𝑎!"𝑀𝑀!! !!∗
∞

!!!

<∞.          

(𝑖𝑖𝑖𝑖𝑖𝑖) If 𝜇𝜇! > 1 for all 𝜈𝜈, then 𝐴𝐴 ∈ (𝑙𝑙(𝜇𝜇), 𝑙𝑙) if  and only if   
        there exists an integer    

         𝑀𝑀 >  1 such that 
 

sup 𝑎𝑎!"𝑀𝑀!!

!∈!

!!∗

: 𝑁𝑁 ⊂ ℕ finite
!

!!!

 <∞.       (14) 

<∞.       (14) 
(iv) If 𝜇𝜇! ≤ 1  and  𝜆𝜆! ≥ 1 for all 𝜈𝜈 ∈ ℕ  𝐴𝐴 ∈ 𝑙𝑙 𝜇𝜇 , 𝑙𝑙 𝜆𝜆  
if and only if there exists some 𝑀𝑀 such that 

sup
!

𝑎𝑎!"𝑀𝑀!! !! !!
∞

!!!

<∞.          

     It may be noticed that the condition (14) exposes a 
rather difficult condition in applications. Thus, the 
following lemma, which derives a condition to be 
equivalent to (14), is more useful in many cases and also 
provides great convenience in computations. 
 
Lemma 2.3. (Sarıgöl, 2013) Let 𝐴𝐴 = (𝑎𝑎!") be an infinite 
matrix with complex numbers, (𝜇𝜇!) be a bounded 
sequence of positive numbers, 
 

              𝑈𝑈! [𝐴𝐴]  = 𝑎𝑎!"
!!!

!!!

!!!

 

and 

          𝐿𝐿! 𝐴𝐴 = sup 𝑎𝑎!"
!∈!

!!

: 𝑁𝑁 ⊂ ℕ finite
!

!!!

. 

 
If 𝑈𝑈! 𝐴𝐴 < ∞  or 𝐿𝐿! 𝐴𝐴 < ∞, then 

 
                     (2𝐶𝐶)!!𝑈𝑈! 𝐴𝐴 ≤ 𝐿𝐿! 𝐴𝐴 ≤ 𝑈𝑈! 𝐴𝐴 , 

 
where 𝐶𝐶 = max 1, 2!!! , 𝐻𝐻 = sup! 𝜇𝜇!. 
Lemma 2.4. (Malkowsky & Rakocevic, 2007) Let 𝑋𝑋 be 
an 𝐹𝐹𝐹𝐹 space with 𝐴𝐴𝐴𝐴, 𝑇𝑇 be a triangle matrix, 𝑆𝑆 be its 
inverse and 𝑌𝑌 be an arbitrary subset of 𝜔𝜔. Then, we have 
𝐴𝐴 ∈ (𝑋𝑋!, 𝑌𝑌) if and only if 𝐴𝐴  ∈  (𝑋𝑋, 𝑌𝑌)  and 𝑉𝑉(!)  ∈
 (𝑋𝑋, 𝑐𝑐) for all 𝑛𝑛, where 
 

                𝑎𝑎!" = 𝑎𝑎!"𝑠𝑠!";   𝑛𝑛, 𝜈𝜈 = 0,1, …,                   (15)
!

!!!

 

and 

                𝑣𝑣!"
(!) = 𝑎𝑎!"𝑠𝑠!" ,    0 ≤ 𝜈𝜈 ≤ 𝑚𝑚 

!

!!!

                  (16)

0,       𝜈𝜈 > 𝑚𝑚.                                         

 

 
3.    Proofs of Theorems 
 
In this section, we only give the proofs of our theorems, 
making use of lemmas. 
 
Proof of Theorem 1.1. The first part is a routine 
verification, so it is omitted. Let us consider the matrix 𝑇𝑇 
defined by (4). Then 𝑇𝑇 defines a matrix map from 𝜔𝜔 into 
𝜔𝜔 since it is a triangle matrix. Furthermore, since 𝜔𝜔 and 
𝑙𝑙(𝜇𝜇) are FK spaces and 𝑁𝑁!! 𝜇𝜇 = 𝑙𝑙 𝜇𝜇

!
, then 𝑇𝑇 is a 

continuous linear map. Thus, 𝑁𝑁!! 𝜇𝜇  is an 𝐹𝐹𝐹𝐹-space by 
Corollary 7.3.7 and Theorem 7.3.14 of Boos & Cass 
(2000). Finally, to show that 𝑁𝑁!! 𝜇𝜇  is a space with 𝐴𝐴𝐴𝐴,  

let us consider the base 𝑒𝑒 !  of 𝑙𝑙 𝜇𝜇  where 𝑒𝑒 !  is a  

(12)	
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sequence whose only non-zero term is one in 𝑛𝑛-th place 
for 𝑛𝑛 ≥ 1. Let 𝑟𝑟! = 𝑇𝑇!! 𝑒𝑒 ! , 𝑥𝑥 ∈ 𝑁𝑁!! 𝜇𝜇  and 
𝑦𝑦 = 𝑇𝑇 𝑥𝑥 . Then, since 𝑦𝑦 ∈ 𝑙𝑙 𝜇𝜇 , there exists only a 
unique sequence of scalars 𝜆𝜆!  such that 𝑔𝑔 𝑦𝑦 −

𝜆𝜆!𝑒𝑒 !  !
!!! → 0. Thus, it is clear that 

ℎ 𝑥𝑥 − 𝜆𝜆!𝑟𝑟! 
!

!!!

= 𝑔𝑔 𝑦𝑦 − 𝜆𝜆!𝑒𝑒 !  
!

!!!

, 

 
which gives the desired conclusion. 
Proof of Theorem 1.2. Note that taking 𝜃𝜃! = 1 does not 
disrupt generality. Let 𝜇𝜇! > 1 for all 𝑛𝑛, 𝑇𝑇 = 𝑇𝑇 𝜃𝜃, 𝜇𝜇, 𝑝𝑝  
and 𝑇𝑇(!) = 𝑇𝑇 1,1, 𝑞𝑞  defined by (4). We can denote the 
inverse of the matrix 𝑇𝑇 by 𝑆𝑆 defined by (5). Then, it is 
clear that 𝑁𝑁!! 𝜇𝜇 = 𝑙𝑙 𝜇𝜇

!
 and 𝑁𝑁! = 𝑙𝑙 !(!). So, by 

Lemma 2.4, we have 𝐴𝐴 ∈  𝑁𝑁!! 𝜇𝜇 , 𝑁𝑁!  if and only if 
𝐴𝐴 ∈ 𝑙𝑙 𝜇𝜇 , 𝑁𝑁!  and 𝑉𝑉(!) ∈ 𝑙𝑙 𝜇𝜇 , 𝑐𝑐 , where 𝐴𝐴 and 𝑉𝑉(!) 
are given by (15) and (16), respectively. Besides, if 
𝐵𝐵 = 𝑇𝑇(!)𝐴𝐴 then, it is easily seen that 𝐴𝐴 ∈ 𝑙𝑙 𝜇𝜇 , 𝑁𝑁!  iff 
𝐵𝐵 ∈ 𝑙𝑙 𝜇𝜇 , 𝑙𝑙  because, if 𝐴𝐴 𝑥𝑥 ∈ 𝑁𝑁!  for all 𝑥𝑥 ∈ 𝑙𝑙 𝜇𝜇 , 

then 𝑇𝑇 ! 𝐴𝐴 𝑥𝑥 ∈ 𝑙𝑙,  i.e. 𝐵𝐵 𝑥𝑥 ∈ 𝑙𝑙. Further, a few 

calculations reveal that for all  𝑛𝑛, 𝜈𝜈 ≥ 0, 
 

𝑎𝑎!" =
𝑃𝑃!

𝜃𝜃!
! !!∗ 𝑝𝑝!

𝑎𝑎!" −
𝑃𝑃!!!
𝑃𝑃!

𝑎𝑎!,!!!     

and 

           𝑣𝑣!"
(!) =

𝑎𝑎!" , 0 ≤ 𝜈𝜈 ≤ 𝑚𝑚 − 1                   

 
𝑃𝑃!𝑎𝑎!"
𝜃𝜃!
! !!∗ 𝑝𝑝!

,    𝜈𝜈 = 𝑚𝑚,𝑚𝑚 ≥ 1                  (18)

0,           𝜈𝜈 > 𝑚𝑚.                      

 

 
Also, since the matrix 𝐵𝐵 is defined by 

𝑏𝑏!" = 𝑡𝑡!"
(!)𝑎𝑎!"

!

!!!

, 

we have for all 𝜈𝜈 ≥ 0, 
 

𝑏𝑏!" =

𝑎𝑎!!,        𝑛𝑛 = 0                        
𝑞𝑞!

𝑄𝑄!𝑄𝑄!!!
𝑄𝑄!!!

!

!!!

𝑎𝑎!" ,   𝑛𝑛 ≥ 1.      

Now, applying Lemma 2.2 (ii) with the matrix 𝑉𝑉(!),  since 
(13) 𝑖𝑖 ! holds, it follows that 𝑉𝑉(!) ∈ (𝑙𝑙(𝜇𝜇), 𝑐𝑐) iff there 
exists an integer 𝑀𝑀 >  1 such that 
 

sup
!

𝑣𝑣!"
(!)𝑀𝑀!! !!∗ + 𝑣𝑣!!

(!) 𝑀𝑀!! !!∗
!!!

!!!

< ∞, 

 
which is satisfied iff the conditions (6) and (7) hold. 
Again, if we apply Lemma 2.2 (iii) with the matrix 𝐵𝐵, 
then we have 𝐵𝐵 ∈  (𝑙𝑙(𝜇𝜇), 𝑙𝑙) iff there exists an integer 
𝑀𝑀 >  1 such that (14) holds, equivalently, by Lemma 2.3, 

𝑀𝑀!!𝑏𝑏!"

!

!!!

!!∗

< ∞.          (19)
!

!!!

 

 
On the other hand, it is easily seen that (19) is satisfied iff  
 
(8) and the condition, which is satisfied by (7), 

𝑀𝑀!! 𝑎𝑎!! !!∗ < ∞     
!

!!!

 

hold. Thus the proof is completed. 
Proof of Theorem 1.3. Let 𝜇𝜇! ≤ 1 and 𝜆𝜆! ≥ 1 for all 𝑣𝑣, 
𝑇𝑇 = 𝑇𝑇 𝜃𝜃, 𝜇𝜇, 𝑝𝑝  and 𝑇𝑇(!) = 𝑇𝑇 𝜓𝜓, 𝜆𝜆, 𝑞𝑞 . Then, 𝑁𝑁!! 𝜇𝜇 =
𝑙𝑙 𝜇𝜇

! !,!,!
 and  𝑁𝑁!

! 𝜆𝜆 = 𝑙𝑙 𝜆𝜆
! !,!,!

. So, as in the 

above Theorem, 𝐴𝐴 ∈  𝑁𝑁!! 𝜇𝜇 ,  𝑁𝑁!
! 𝜆𝜆  if and only if 

𝐵𝐵 = 𝑇𝑇(!)𝐴𝐴 ∈ 𝑙𝑙 𝜇𝜇 , 𝑙𝑙 𝜆𝜆  and 𝑉𝑉(!) ∈ 𝑙𝑙 𝜇𝜇 , 𝑐𝑐 ,  where the 
matrices 𝐴𝐴 and 𝑉𝑉(!) are defined by (17) and (18), 
respectively. Now considering that 

𝑏𝑏!" = 𝑡𝑡!"
(!)𝑎𝑎!"

!

!!!

, 

we get the matrix 𝐵𝐵 as for all 𝜈𝜈 ≥ 0, 
 

𝑏𝑏!" =

𝑎𝑎!!,        𝑛𝑛 = 0                        
𝜓𝜓!
! !!∗ 𝑞𝑞!
𝑄𝑄!𝑄𝑄!!!

𝑄𝑄!!!

!

!!!

𝑎𝑎!" ,   𝑛𝑛 ≥ 1.      

Now, applying Lemma 2.2 (i) and (iv) with the matrices 
𝑉𝑉(!) and 𝐵𝐵, it follows that 𝑉𝑉(!) ∈ 𝑙𝑙 𝜇𝜇 , 𝑐𝑐  iff, for 𝑛𝑛 =
 0, 1, …, the conditions (9) and (10) hold, and that 
𝐵𝐵 ∈ 𝑙𝑙 𝜇𝜇 , 𝑙𝑙 𝜆𝜆  iff there exists an integer 𝑀𝑀 such that 

                 sup
!

𝑏𝑏!"𝑀𝑀!! !! !!
∞

!!!

<∞,                         (20) 

which is satisfied if and only if the condition (11) and the 
following condition hold: 
                        sup
                                 !!!

𝑎𝑎!!𝑀𝑀!! !! <∞.                             (21) 

  
Note that condition (9) includes condition (21). In fact, if 
(9) holds, then there exists a number 𝐻𝐻 such that 
𝜉𝜉! ≤ 𝐻𝐻! !! for all 𝑣𝑣, which implies 

𝑀𝑀!! !!𝜉𝜉! ≤
𝐻𝐻
𝑀𝑀

! !!
, 

where 𝜉𝜉! = 𝑎𝑎!!. This completes the proof. 
 
4.    Applications 
 
Our theorems have several consequences depending on 
sequences 𝜆𝜆, 𝜇𝜇, 𝜃𝜃, 𝜓𝜓 and a matrix 𝐴𝐴 as parameters.  For 
example, if 𝐴𝐴 is chosen as a diagonal matrix 𝑊𝑊 such as 
𝑤𝑤!" = 𝜀𝜀! for 𝜈𝜈 =  𝑛𝑛, and zero otherwise, then 𝑊𝑊 ∈

 𝑁𝑁!! 𝜇𝜇 ,  𝑁𝑁!
! 𝜆𝜆  leads to the conclusion that 𝜀𝜀!𝑥𝑥! 

is summable 𝑁𝑁, 𝑞𝑞!,  𝜓𝜓! 𝜆𝜆  when 𝑥𝑥!  is summable 

𝑁𝑁, 𝑝𝑝!,  𝜃𝜃! 𝜇𝜇 . Hence, if 𝐼𝐼 ∈  𝑁𝑁!! 𝜇𝜇 ,  𝑁𝑁!
! 𝜆𝜆 , where 

𝐼𝐼 is the identity matrix, leads to the comparisons of these 
methods, i.e.,  𝑁𝑁!! 𝜇𝜇 ⊂  𝑁𝑁!

! 𝜆𝜆 . Now one can easily 
obtain the following results. 
Corollary 4.1. Let (𝜃𝜃!) be a sequence of positive 
numbers. If (𝜇𝜇!) is any bounded sequence of positive 
numbers such that 𝜇𝜇! > 1 for all 𝑛𝑛, then  𝑁𝑁!! 𝜇𝜇 ⊂ 𝑁𝑁!  
if and only if there exists an integer 𝑀𝑀 >  1 such that 
 

                    
𝑀𝑀!!!∗

𝜃𝜃!
𝑞𝑞!𝑃𝑃!
𝑄𝑄!𝑝𝑝!

+ 1 −
𝑞𝑞!𝑃𝑃!
𝑄𝑄!𝑝𝑝!

!!∗

< ∞.    (22)
!

!!!

 

(17)	
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Proof. Take 𝐴𝐴 =  𝐼𝐼 in Theorem 1.2. Then (6) and (7) are 
directly satisfied, and (8) is reduced to (22). In fact, since 
for 𝜈𝜈 ≥ 0, 

𝑄𝑄!!!𝑎𝑎!"

!

!!!

=
𝜃𝜃!

!!
!!∗ 𝑄𝑄!!!𝑃𝑃! 𝑝𝑝! ,       𝑛𝑛 = 𝜈𝜈       

𝜃𝜃!

!!
!!∗ 𝑄𝑄! −

𝑞𝑞!𝑃𝑃!
𝑝𝑝!

,   𝑛𝑛 >  𝜈𝜈      
 

and  

𝑞𝑞!
𝑄𝑄!𝑄𝑄!!!

!

!!!!!

=
1
𝑄𝑄!
, 

we get 

𝑞𝑞!
𝑄𝑄!𝑄𝑄!!!

𝑄𝑄!!!𝑎𝑎!"

!

!!!

!

!!!

                          

=
𝑞𝑞!

𝑄𝑄!𝑄𝑄!!!
𝑄𝑄!!!𝑎𝑎!!                      

+
𝑞𝑞!

𝑄𝑄!𝑄𝑄!!!
𝑄𝑄!!!𝑎𝑎!"

!

!!!

!

!!!!!

 

                      = 𝜃𝜃!
!! !!∗ 𝑞𝑞!𝑃𝑃!

𝑄𝑄!𝑝𝑝!
+ 𝑄𝑄! −

𝑃𝑃!𝑞𝑞!
𝑝𝑝!

1
𝑄𝑄!

  ,      

and so (8) is the same as  
 

 
𝑀𝑀!!!∗

𝜃𝜃!
𝑞𝑞!𝑃𝑃!
𝑄𝑄!𝑝𝑝!

+ 1 −
𝑞𝑞!𝑃𝑃!
𝑄𝑄!𝑝𝑝!

!!∗

< ∞.
!

!!!

 

 
This completes the proof. 
 
     Furthermore, taking 𝜃𝜃! = 𝑃𝑃! 𝑝𝑝! and 𝜇𝜇! = 𝑘𝑘 > 1 for 
all 𝜈𝜈 in Corollary 4.1, (22) is reduced to 
 

𝑝𝑝!
𝑃𝑃!

𝑞𝑞!𝑃𝑃!
𝑄𝑄!𝑝𝑝!

+ 1 −
𝑞𝑞!𝑃𝑃!
𝑄𝑄!𝑝𝑝!

!∗

< ∞.  
!

!!!

 

 
But this is impossible, since 
 

𝑝𝑝!
𝑃𝑃!

𝑞𝑞!𝑃𝑃!
𝑄𝑄!𝑝𝑝!

+ 1 −
𝑞𝑞!𝑃𝑃!
𝑄𝑄!𝑝𝑝!

!∗

≥
𝑝𝑝!
𝑃𝑃!

 

 
for all 𝑣𝑣 and 

!!
!!

  is divergent by Abel-Dini Theorem. So 

we have the following result. 
 
Corollary 4.2. If 𝜃𝜃! = 𝑃𝑃! 𝑝𝑝!  for all 𝜈𝜈 ≥ 0 then 
 𝑁𝑁!! 𝜇𝜇 ⊈ 𝑁𝑁!  for all sequences 𝑝𝑝!  and 𝑞𝑞! , i.e. 

there is a series 𝑎𝑎! summable by 𝑁𝑁, 𝑝𝑝!,  𝜃𝜃! ! but not 
summable by 𝑁𝑁, 𝑞𝑞! . 
     Also, choosing 𝜇𝜇! = 𝑘𝑘 > 1  for all 𝜈𝜈 ≥ 0  and 𝐴𝐴 is a 
triangle matrix, then Theorem 1.2 is reduced to the 
following main result given by Sarıgöl (2011). 
     Corollary 4.3. Let 𝐴𝐴 = (𝑎𝑎!") be an infinite triangle 
matrix of complex numbers and  𝜃𝜃!  be a sequence of 

positive numbers. Then 𝐴𝐴 ∈  𝑁𝑁!! !
, 𝑁𝑁!  if and only if 

𝑞𝑞!
𝑄𝑄!𝑄𝑄!!!

𝑄𝑄!!!𝑎𝑎!"

!

!!!

!

!!!

!!∗

<∞.
!

!!!

 

 
 

Corollary 4.4. Let (𝜃𝜃!)  and (𝜓𝜓!) be sequences of 
positive numbers. If (𝜇𝜇!) and (𝜆𝜆!) are arbitrary bounded 
sequences of positive numbers such that inf 𝜇𝜇! > 0,  
𝜇𝜇! ≤ 1 and 𝜆𝜆! ≥ 1  for all 𝑛𝑛, then  𝑁𝑁!! 𝜇𝜇 ⊂   𝑁𝑁!

! 𝜆𝜆  
if and only if there exists an integer 𝑀𝑀 >  1 such that 
 

sup
!

𝑀𝑀!! !!𝜓𝜓!
! !!∗ 𝑞𝑞!𝑃𝑃!

𝜃𝜃!
! !!∗𝑄𝑄!𝑝𝑝!

!!

<∞ 

and 

sup
!

𝑀𝑀
!!
!!𝜓𝜓!

!
!!∗ 𝑞𝑞!

𝑄𝑄!𝑄𝑄!!!𝜃𝜃!

!
!!∗

𝑄𝑄! −
𝑞𝑞!𝑃𝑃!
𝑝𝑝!

!!
!

!!!!!

<∞. 

 
To obtain this result, it is sufficient to take 𝐴𝐴 =  𝐼𝐼 in 
Theorem 1.3. 
     We remark that for the case 𝜇𝜇! = 𝜆𝜆! = 1 and 𝐴𝐴 =  𝐼𝐼, 
Corollary 4.4 gives the well known result of Bosanquet 
(1950) and Sunouchi (1949), as follows. 
 
Corollary 4.5. 𝑁𝑁! ⊂ 𝑁𝑁!  if and only if the following 
condition is satisfied: 
 

sup
!

𝑞𝑞!𝑃𝑃!
𝑄𝑄!𝑝𝑝!

< ∞. 

 
Corollary 4.6. Let 𝐴𝐴 be a triangle matrix and (𝜃𝜃!)  be a 

sequence of positive numbers. Then, 𝐴𝐴 ∈ 𝑁𝑁! ,  𝑁𝑁!! !
 if 

and only if the following conditions are satisfied: 
 

sup
!

𝜃𝜃!
! !∗𝑞𝑞! 𝑃𝑃!
𝑄𝑄!𝑝𝑝!

𝑎𝑎!! <∞,                     (23) 

sup
!

𝑃𝑃!
𝑝𝑝!

!

𝜎𝜎!! − 𝜎𝜎!,!!!
!

!

!!!!!

<∞             (24) 

              sup
                 !

𝜎𝜎!,!!!
!

!

!!!!!

<∞                                     25   

 
where    

𝜎𝜎!! =
𝜃𝜃!
! !∗𝑞𝑞!
𝑄𝑄!𝑄𝑄!!!

𝑄𝑄!!!𝑎𝑎!".

!

!!!

 

 
Proof. If we take  𝜇𝜇! = 1, 𝜆𝜆! = 𝑘𝑘 ≥ 1 for all 𝑛𝑛 ≥ 0, 
𝜓𝜓 = 𝜃𝜃 and 𝐴𝐴 is a triangle matrix in Theorem 1.3, then the 
conditions (9) and (10) directly hold, and (11) is also 
reduced to 
 

          sup
!

!!
!!

!
𝜎𝜎!! −

!!!!
!!

𝜎𝜎!,!!!
!
<∞!

!!!  

 
Note that the condition (26) is equivalent to the conditions 
(23), (24) and (25). In fact, we can write (26) as 

sup
!

𝜃𝜃!
! !∗𝑞𝑞!𝑃𝑃!
𝑄𝑄!𝑝𝑝!

𝑎𝑎!!

!

+ Γ! <∞,         (27) 

 
 
 

(26)	
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where 

Γ! =
𝑃𝑃!
𝑝𝑝!

!

𝜎𝜎!! −
𝑃𝑃!!!
𝑃𝑃!

𝜎𝜎!,!!!
!!

!!!!!

. 

So it is easily seen from (27) that (23), (24) and (25) 
imply (26). 
     Conversely, if (26) is satisfied, then 𝐴𝐴: 𝑁𝑁! !

→ 𝑁𝑁!  is 

continuous linear mapping, so there exists a number 𝑀𝑀 
such that 
 
𝐴𝐴(𝑥𝑥) ≤ 𝑀𝑀 𝑥𝑥  for all  𝑥𝑥 ∈ 𝑁𝑁! !

.                             (28) 

Taking any 𝜈𝜈 ≥ 0, we apply (28) with 𝑥𝑥!!! = 1,  
𝑥𝑥! = 0,𝑚𝑚 ≠ 𝜈𝜈 + 1. Hence, it can be obtained that for 
𝜈𝜈 = 0,1, …, 
   

                         𝜎𝜎!,!!!
!

!

!!!!!

≤ 𝑀𝑀!.                                (29) 

 
Therefore, it follows from (29) that (26) implies (23), (24) 
and (25). This result was given by Sarıgöl (2011). 
    Furthermore, by taking 𝜃𝜃! = 𝜓𝜓! = 𝑛𝑛, 𝜇𝜇! = 1,  
𝜆𝜆! = 𝑘𝑘 > 1 and 𝐴𝐴 =  𝐼𝐼 in Theorem 1.3, we can deduce 
the following result according to Orhan & Sarıgöl (1993). 
Corollary 4.7. Let 𝑘𝑘 ≥ 1. Then, 𝑅𝑅! ⊂ 𝑅𝑅! !

 if and only 

if the following conditions are satisfied: 
   

 𝑖𝑖  sup! 𝑣𝑣
!
!∗ !!!!

!!!!
<∞, 

𝑖𝑖𝑖𝑖   sup
!

Ρ!𝑞𝑞!
𝑝𝑝!

𝑊𝑊! <∞, 

𝑖𝑖𝑖𝑖𝑖𝑖   sup
!
𝑄𝑄! 𝑊𝑊! <∞, 

where 

𝑊𝑊! = 𝑛𝑛!!!
𝑞𝑞!

Q!Q!!!

!∞

!!!!!

 

!
!

. 
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