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Abstract

The space |1Vp9 |kof all series summable by the absolute weighted mean method has recently been introduced and studied
in several publications. In the present paper, we define a new notion of generalized absolute summability, which
includes severa well-known summability methods, and construct a series space |IV,§’ |(w) corresponding to it. Further,

we obtain several properties of the new space and characterize certain matrix transformations on that space. We also
deduce some important results as special cases.

Keywords: Absolute weighted summability; BK — AK spaces; bounded linear operators; matrix transformations,

sequence spaces.

M athematics Subject Classification: 40C05, 40D25, 40F05, 46A45, 46B03, 46B28.

1. Introduction

Let X,Y be any two subsets of w, the set of all sequences
of complex numbers, and A = (a,,,) be an infinite matrix
of complex numbers for n,v = 0. By A(x) = (4,,(x)),
we denote the A-transform of a sequence x = (x,,), i.e,

A, (x) = Z Ay Xy (D

v=0

provided that the series are convergent for n > 0. If
A(x) €Y,whenever x € X, thenwe say that A definesa
matrix mapping from X into Y and denote it by
A: X - Y.By (X,Y), we mean the class of al infinite
matrices A such that A: X — Y, and aso the matrix
domain X, of an infinite matrix A in a sequence space X
is defined by
X, = {x = (x) € w:A(x) € X}. (2)
A subspace X is called an FK space if it is a Frechet
space, that is, a complete locally convex linear metric
space, with continuous coordinates R, : X - C
(n =0,1,2,..), where R,(x) = x, for al x € X; an
FK space whose metric is given by anorm is said to be a
BK space. An FK space X D ¢, the set of al finite
sequences, is said to have the AK property if
m

[m

I = lim xne(”) =x,

m—oo

lim x
m—oo
n=0
for every sequence x € X, where e™ is a sequence
whose only non-zero term is one in n-th place for n > 0.

For example, it iswell known that Maddox's space

I(w) = {x = (o) ¢ ) Irltn < oo}
n=1

is an FK space with AK with respect to its natural

paranorm
© 1\M
900 = (me)
n=0

where M = max {1; sup,, i, }; it is even a BK space if
Un, = 1foraln € N with respect to the norm

llx]l = inf{5 > 0:Z|xn/5|#n < 1}’

n=0
(Maddox 1969; 1968; 1967; Nakano 1951).

Research on absolute summability factors and the
comparison of summability methods plays an important
role in Fourier Analysis and Approximation Theory and
has been pursued by many authors (see, for example,
Altay & Basar 2006; Bor et al. 2015; Bor 1985; Borwein
& Cass 1968; Bosanquet & Chow 1957; Bosanquet 1950;
Bosanquet 1945; Hazar & Sarigol 2018; Das 1970; Flett
1957, Kalaivani & Youvarg 2013; Mazhar 1971,
McFadden 1942; Mehdi 1960; Orhan & Sarigol 1993;
Sarig6l 2016a; Sarigdl 2016b; Sarigdl 2015; Sarigol 2011;
Sarig6l 2010; Sarigdl 1993; Sarigol 1991a; Sarigdl 1991b;
Sulaiman 1992; Tanaka 1978).

Here, we note that these problems correspond to the
special matrix transformations such as identity matrix and
diagonal matrix. Concerning these topics, some sequence
spaces have been generated and examined by severa
authors (see Altay & Basar 2006; Choudhary & Mishra
1993; Grosse-Erdmann 1993; Maddox 1968; Maddox
1969; Makowsky & Rakocevic 2007; Mohapatra &
Sarigol 2018; Mursaleen & Noman 2011; Mursaleen &
Noman 2010; Nakano 1951).

The space |N! |k has recently been derived by Sarigsl
(2011) using Sulaiman’s (1992) summability method
IN, Py, 011, and studied by Mohapatra & Sarigdl (2018),
Sarigél (2016b) and Ozarsan & Ozgen (2015). The
purpose of the present paper is to generalize this space to
anew space | N | (1), show that it is a BK-space with AK
and characterize certain matrix transformations on that
space. In doing so, we a so deduce some important results
of Bosanquet (1950), Mohapatra & Sarigél (2018),
Sarigol (2011), Orhan & Sarigél (1993) and Sunouchi
(1949) as special cases.

First, to define the space| N¢|(u), we need a new
notion of the generalized absolute summability method
that aso includes some well-known summability
methods. Let }; a, be agiven infinite serieswith s, asits



n-th partial sum, A is an infinite matrix of complex
numbers and (6,,) is any positive sequence. Let (u,) be
any bounded sequence of positive real numbers. Then we
say that the series }; a,, issummable |4, 8|(w), if

[oe]

DO A, () = Ay D) <o (3)

n=1

Then it should be noted that the summability |A, 6|(w)
includes the following well-known summability methods
for special casesof y,0 and k > 1:

(@ |If u, =k for al n, then|A4,0|(w) is reduced to the
summability |4, 8|, (Sarigdl, 2010).

(o) If u,=kand 6, =nor 6, =1/|a,,| for dl n,
then |4,0|(w) is reduced to the summability |A|
(Sar1g6l, 1991b).

(© Ifu,=k 6,=nforadlnand A4 = (C,a), Cesaro
means of order @ > —1, then |4, 0|(1) isreduced to
the summability |C, a|, (Flett, 1957).

@) If g, =k, 6,=a%"fordlnadA = (C, a),
then |A4,0|(u) is reduced to the summability
|C,a, a,l; (Boretal., 2015).

e Ifu,=%k, 6,=nfor dl n, and A = (C,a,pB),
Cesaro means of order (a,B), a+ 8 +—-1,-2,..,
then |A4,6|(u)is reduced to the summability
IC,a, B, (Das, 1970).

® Wfu,=k 6,=nforaln,and 4 = (R,p,), Riesz
means, then |4, 6|(u) isreduced to the summability
[R, pr i (Sarigol, 1993).

(@) If u, =k for al n, and A = (N, p,), the weighted
means, then |4, 8|(u) is reduced to the summability
IN, Dy, 6|1 (Sulaiman, 1992).

(h If u, =k, 6, =B,/p, foradln,and A= (N,p,),
the weighted means, then |4, 8|(u) is reduced to the
summability [N, p,,|, (Bor, 1985).

) If up,=k 6,=n for dl n and A= (N,p,),
Norlund means, then |4, 8|(u) is reduced to the
summability |N,p,|, (Borwein & Cass, 1968).

() If u, =k foral nand A4 is the generalized Norlund
means, then |4, 8|(u) is reduced to the summability
[N, D, Gnl- In particular, for k = 1, it is reduced
the summability [N, p,,, | (Tanaka, 1978).

(K) If u, =k for all n and 6,, = y(n)n'/¥", where
y:[1,0) = [1,00) is a nondecreasing function,
then |4, 8| (u) isreduced to the summability |4, y|;
(Kalaivani & Youvargj, 2013).

Definition. Let (p,,) be a positive sequence with P, = p, +

p1t+tpy>0 & n->ow (P, =p, = 0) We

define a space |Nf| (1) as the set of all series summable
by the absolute summability |4, 0|(1), where A is the
weighted mean matrix:

a ={pv/Pn,0SvSn
Lad 0, v>n.
Then, it can be written from (1) that

n

p
PnP: Z Py-s8y -

1350

A, (s)—A -1 (s) =
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whichimplies 4, (s) = a; ,andforn =1,
n
p
Ay () — Ay () = = Z Py,_a,.
PnPn—l by

To understand the space | N |(1) better, it is useful to
state it in terms of the series); a,, . In fact, it isclear by (3)
that the space | N¢| (1) can be written as

| NEIGo) = {a ) 6 (@)l < oo}
n=1

where
n

p
PnP: Z sty

13
It is also trivia that, in the special case pu, = k for al

n >0, the series space | NY|(w) is reduced to the space
|N7| (Sarigsl, 2011) and the space |R,| with 6, =n
(Orhan & Sarigol, 1993). Further, with the notation (2), it

Xn(a) =

can be redefined by | N¢|(w) = (l(u))m#p), where the
matrix T (6, u, p) isgiven by
1, n=0,v=0
by (0,1,p) = {02/ H B2 1 <y <
nn-1 (4)
0, v>n,
to which theinverseis S(0, 1, p)
500(01 .u; p) = 1;
—9,:_1{“;‘1 ;Z: v=n—1
Sy (6, 1, p) = “1up P _ (5)
0, o v=n

0, v#En—1,n

where y;; is the conjugate of p,, i.e. 1/u, + 1/u;, =1,
Un > 1,and 1/u; = 0 for u, = 1.

In addition, for simplicity of presentation we take for
dln,v=0,

. _ b ( Py_q
nv

Apy = 91/”; - P,

v v

an,v+1)-

With these notations, we establish the following
theorems.

Theorem 1.1. Let (8,,) be a sequence of positive numbers
and (u,) be a bounded sequence of positive numbers.
Then the set | Nf|(1) becomes a linear space with the
coordinate-wise addition and scalar multiplication. It is
also an FK-space with AK in respect to the paranorm
h(x) = g(T(x)) with

e} 1/M
9(T() = (Z 6#"-1|Tn(x)|“n)
n=0

where6, = 1and M = max {1, sup, i, }

Theorem 1.2. Let A = (a,,) be an infinite matrix of
complex numbers and (6,,) be a sequence of positive
numbers. If (u,) is an arbitrary bounded sequence of
positive numbers such that u, >1 for al n, then
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A€ (| N2|(w),|N,|) if and only if there exists an integer
M > 1suchthat, forn = 0,1, ..,

M
M™'P.a
sup Tnm < oo, (6)
m " Dm
D M, 1 < e, ™)
v=0

*
. Hy

© n
M PRXRE
QnQn—l — oy

j=1

v=0 \n=1

< oo

®)
where (g,,) is a positive sequence with Q,, = q, + q, +
“tqpowasn oo, (@i =g, = 0).
Theorem 1.3. Let A = (a,,) be an infinite matrix of
complex numbers, (6,)and (i) be seguences of
positive numbers. If (i) and (4,) are arbitrary bounded
seguences of positive numbersand p,, < 1 and 4,, > 1 for

all n, then, 4 € (| N¢| (o), | N (1) if and only if there
existsaninteger M > 1 suchthat,forn = 0,1, ...,

sup|@,, |*v < <o, 9
v
P.a
sup 177# < o, (10)
m em l‘mpm
and
An

1/}{ q M 1/1"1/

w200,

ZQH a,| <. (D)
=1

2. Needed Lemmas

We require the following lemmas for the proof of our
theorems.

Lemma 2.1. (Stieglitz & Tietz, 1977) A € (I,¢) if and
only if

@) lirrln a,, exists for each v,

(ii) suplay,| < e (12)
n,v

Lemma 2.2. (Grosse-Erdmann, 1993) Let (1) and (4,,)
be any two bounded sequences of strictly positive
numbers.

(i) If u, < 1,then, A € (I(w),c) if and only if
(i)' lim a,, exists for each v,
n
(ii)" supsup|a,, |*v < oo (13)
n v
(i) If w, > 1 for al v, then (I(w), ¢) iff
()" (13) (i)' holds
(ii)" There exists an integer M > 1 such that

supZIam, “1Hy < oo,

(iii) If w, > 1 for aII Vv, thenA € (I(w), ) if andonly if
there exists an integer
M > 1 such that

(o)

sup Z

v=0

:N c N finite ; < oo,

z ap,M™1

nenN

(14)

(iv)Ifp, <1 and 4, > 1foralv €N 4 € (I(w),l1(A))
if and only if there exists some M such that

sup Z |anvM_1/uv|ln <
v

n=0
It may be noticed that the condition (14) exposes a
rather difficult condition in applications. Thus, the
following lemma, which derives a condition to be
equivalent to (14), is more useful in many cases and also
provides great convenience in computations.

Lemma 2.3. (Sarigol, 2013) Let A = (a,,,) be an infinite
matrix with complex numbers, (u,,) be a bounded
seguence of positive numbers,

Uy [4] = i (Zlann)M
u [A] = sup {i

and
If U, [A] < oo or L, [A] < oo, then

:NcN finite}.

eO™*u, (Al <L, [A]l < U, [A]

where € = max{1,2%1},H = sup, u,,.

Lemma 2.4. (Malkowsky & Rakocevic, 2007) Let X be
an FK space with AK, T be a triangle matrix, S be its
inverse and Y be an arbitrary subset of w. Then, we have

A € (Xp,Y) if and only if A € (X,Y) and V™ €
(X, c) for dl n, where
Uy = Z anjSiy; nv =01,.., (15)
j=v
and
m
V(n) Z AnjSjv, 0<v<m (16)

3. Proofsof Theorems

In this section, we only give the proofs of our theorems,
making use of lemmas.

Proof of Theorem 1.1. The first part is a routine
verification, so it is omitted. Let us consider the matrix T
defined by (4). Then T defines a matrix map from w into
w since it is a triangle matrix. Furthermore, since w and
I(w) are FK spaces and |Nf|(w) = (Iw),, then T is a
continuous linear map. Thus, |[N¢|(w) is an FK-space by
Corollary 7.3.7 and Theorem 7.3.14 of Boos & Cass
(2000). Finally, to show that |N,J| (1) is aspace with AK,
let us consider the base (e™) of 1(u) wheree™ isa



sequence whose only non-zero term is one in n-th place
foor n>1. Let n,=T"1(e™), xe|Nf|(w) and
vy =T(x). Then, since y € l(u), there exists only a
unique sequence of scalars (4;) such that g(y -
Yo e ) - 0.Thus, it isclear that

m m
h<x _Z’liri> = g()’_zlie(i) )
i=0 i=0

which gives the desired conclusion.

Proof of Theorem 1.2. Note that taking 8, = 1 does not
disrupt generality. Let u, > 1 for al n, T =T(6,u,p)
and T = T(1,1,q) defined by (4). We can denote the
inverse of the matrix T by S defined by (5). Then, it is
clear that |Nf|(w) = (l(“))r and |N,| = (). So, by
Lemma 2.4, we have A € (| N¢|(w),|N,]|) if and only if
A€ (1w, |N,])and V™ € (I(n), c), where 4 and V™
are given by (15) and (16), respectively. Besides, if
B =T®™WA then, it is easily seen that 4 € (1(w), |N,|) iff
B € (I(w), 1) because, if A(x) € |N,|for al xe€i(w),
then 7@ (A(x)) €l, i.e. B(x)€el. Further, a few
calculations reveal that for all n,v > 0,

. _ B Py_q a7
Apy = 1/ Apy — P Anv+1
0, "py v
and
A, 0<v<m-—1
Pna
ICOTNY [ Y (18)
mv 1/ U
gm pm
0, v>m.

Also, since the matrix B is defined by

we havefor al v = 0,

dOV’ n=

QQ Z
Qi_1d,, n=1.
n<¥n—1 jljv

Now, applying Lemma 2.2 (||) with the matrix V™, since
(13) (i)’ holds, it follows that V™ € (I(u),c) iff there
existsaninteger M > 1 such that

m—1 .
sup{2|vg;>M 1 4 oM |’"}<oo.
m v=0

which is satisfied iff the conditions (6) and (7) hold.
Again, if we apply Lemma 2.2 (iii) with the matrix B,
then we have B € (I(u),1) iff there exists an integer
M > 1 such that (14) holds, equivalently, by Lemma 2.3,

i (ilMﬂanlyv <. (19)

v=0 “n=0

On the other hand, it is easily seen that (19) is satisfied iff

(8) and the condition, which is satisfied by (7),
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D (Mg, P < o0

v=0
hold. Thus the proof is completed.
Proof of Theorem 1.3. Let p,, <1 and 1, = 1 for al v,
T=T06,ump) and T =T(p,4,). Then, |NJ|(w) =

_ll} _ R
(l(u))T(e'#‘p) and | N} |(D) = (l(/l))T(w’A’q). So, asin the
above Theorem, A € (| N2 |(w), ] IV;/’|(/1)) if and only if
B=TWMA € (1(w),1(2)) and V(™ € (I(n), c), where the

matrices A and V™ are defined by (17) and (18),
respectively. Now consi dering that

~ 1
b,, = z t( )a]v,

j=0
we get the matrix B asforalv > 0,
dOV' n= 0
-~ 1/25

Q,_,d,, n=1.
QninZ Sy

Now, applying Lemma 2. 2 (|) and (iv) with the matrices
V™ and B, it follows that V™ € (I(u), c) iff, forn =
0,1,.., the conditions (9) and (10) hold, and that
B € (1(w), (1)) iff there exists an integer M such that

supZ|Em,M‘1/”V|A" < oo,
v

n=0
which is satisfied if and only if the condition (11) and the
following condition hold:
sup|ag, M~ | < oo,
v=1

(20)

21)

Note that condition (9) includes condition (21). In fact, if
(9) holds, then there exists a number H such that

|&,| < HY# for all v, which implies
1/ pty

H
e < (5)

where &, = d,,,. This completes the proof.
4. Applications

Our theorems have several conseguences depending on
sequences 4, u, 0,y and a matrix A as parameters. For
example, if A is chosen as a diagonal matrix W such as
wy, =&, for v = n, and zero otherwise, then W €
(I N¢]Go), | NY1(2)) leads to the conclusion that 3. &,x,
is summable |N,q,, ¥,|(1) when Y x, is summable
IN, P 01(u0). Hence, if 1 € (| N¢|(w), | N |(2)), where
I is the identity matrix, leads to the comparisons of these
methods, i.e, | N¢|(w) < | N)'|(2). Now one can easily
obtain the following results.
Corollary 4.1. Let (6,) be a sequence of positive
numbers. If (u,,) is any bounded sequence of positive
numbers such that ,, > 1 for al n, then | N |(w) < |N,|
if and only if there existsan integer M > 1 such that
2

v=0

_ @b
Qvpy

wy
) < 0. (22)

(vav |
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Proof. Take A = I in Theorem 1.2. Then (6) and (7) are
directly satisfied, and (8) is reduced to (22). In fact, since

forv = 0,
-1

iQ R vaQv—lpv/pv' n=v
j-1%y =3\ L P
j=v va(Qv—qv v), n>v
v
and
nev+1 QnQn 1 Qv
we get
Q;_,4;
D e Z -
=V =V
= Qva R |Qv 1avv|
+ a;,
Z QninZQ}l]‘
n=v+1
_ Qv—l/#v(qVPV +lo, _quv i) ’
vav QV
and so (8) isthe same as
o M (q, B, 0P |\
> oot gl <=
0, \Qypy Qvpy

This completes the proof.

Furthermore, taking 6, = P,/p, and u, = k > 1 for
al v in Corollary 4.1, (22) isreduced to

Zp_v(quv +|1_ 0P, )" .
— P, \Qypy Qvpy
v=0
But thisisimpossible, since
_(qv | _ @b )"* Py
PV QVpV vav - PV

for al v and Z’;—" is divergent by Abel-Dini Theorem. So
we have the following result.

Corollary 4.2. If 6,=P,/p, for dl v =0 then
| N¢|(w) ¢ |N,| for al sequences (p,) and (q,), i.e.
there is a series Y, a,, summable by |N,p,, 6,], but not
summable by [N, q,,].

Also, choosing i, =k >1 foral v>=0 and Aisa
triangle matrix, then Theorem 1.2 is reduced to the
following main result given by Sarigdl (2011).

Corollary 4.3. Let A = (a,,) be an infinite triangle
matrix of complex numbers and ( 6,,) be a sequence of

positive numbers. Then A € (| NZ|,. |IVq|) if and only if
wy

[ee) [ee) n
an ~
§ Qj-10;
Z ZQnQn—l Ly I
n=v j=v

< ©o,

Corollary 4.4. Let (6,) and (¥,) be sequences of
positive numbers. If (u,,) and (1,,) are arbitrary bounded
sequences of positive numbers such that infu, > 0,

fn < land A, = 1 for al n, then | NZ|(w) < | NY|(D)
if and only if there existsan integer M > 1 such that

Ay

M_l/ﬂvl/);/k;qvpv

1/,
6, Q,p,

sup
v

< oo
|

and
1 An

_1 _*
Mt P

sup z Yo dn (Qv_q; v) < oo
v

v
+1 H
n=v QnQn 19 v

To obtain this result, it is sufficient to take A = I in
Theorem 1.3.

We remark that for thecase u, =1, =1and 4 = I,
Corollary 4.4 gives the well known result of Bosanquet
(1950) and Sunouchi (1949), as follows.

Corollary 4.5. |N,,|  |N,| if and only if the following
condition is satisfied:

Corollary 4.6. Let A be a triangle matrix and (6,)) be a
sequence of positive numbers. Then, A € (|1Vp|, | N |k) if
and only if the following conditions are satisfied:

/k*
6,"  a, P,
sup |——a,,, | < o, (23)
v va‘l/ v

PAK 2 k
sup (_V) Z |Unv_0n,v+1| < > (24)
v \Dy &

5 n=v+1
Sup > [oyaa] < o0 (25)
v

where

Proof. If we take u, =1, 4, =k =1 for al n>0,
Y = 6 and A isatriangle matrix in Theorem 1.3, then the
conditions (9) and (10) directly hold, and (11) is also
reduced to

Py—q1 |k < co

Opy — Py Onv+1

Sup( ) Zn =v (26)

Note that the condition (26) is equivalent to the conditions
(23), (24) and (25). In fact, we can write (26) as

Ql/k* k

4 qVV

27
Qvpy @7)

sup
v

+T, ¢ < o,

aVV




Fz(ﬂ)ki P
v pv nv Pv Tl,V+1

n=v+1
So it is easily seen from (27) that (23), (24) and (25)
imply (26).
Conversely, if (26) is satisfied, then 4: [N, |, — [N,| is
continuous linear mapping, so there exists a number M
such that

|M@WSAMﬂHdexEWHM (28)
Taking any v >0,we apply (28) with x,., =1,
x, =0,m # v+ 1. Hence, it can be obtained that for
v=01,..

[ee]
:E: |any+1|k S;Alk_

n=v+1

(29)

Therefore, it follows from (29) that (26) implies (23), (24)
and (25). This result was given by Sarigél (2011).
Furthermore, by taking 6,=v,=n u,=1,
A, =k>1and A = I in Theorem 1.3, we can deduce
the following result according to Orhan & Sarigol (1993).
Corollary 4.7. Let k = 1. Then, |R,| < |R,]| if and only

if the following conditions are satisfied:

1
(i) sup, |v /k"g"i < oo,

Dy
Pyay

(i) sup—"W, < oo,
v 4

(iif) supQ, W, < <,
v

where

=

W = { i e (Qng;_l)k] '

n=v+1
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