
Higher order splitting approaches in analysis of the Burgers equation

Murat Sari1, *, Huseyin Tunc1, Muaz Seydaoglu2

 1Dept. of Mathematics, Faculty of Arts and Science, Yildiz Technical University
Istanbul 34220, Turkey

 2Dept. of Mathematics, Faculty of Arts and Science, Mus Alparslan University
Mus 49100, Turkey

*Corresponding author: sarim@yildiz.edu.tr

Abstract

This article proposes some higher order splitting-up techniques based on the cubic B-spline Galerkin
finite element method in analyzing the Burgers equation model. The strong form of both conservation and
diffusion parts of the time-split Burgers equation have been considered in building the Galerkin approach.
To integrate the corresponding ODE system, the Crank-Nicolson time discretization scheme is used. The
proposed schemes are shown to be unconditionally stable. Three challenging examples have been
considered that have changing values of the kinematic viscosity constant of the medium. Moreover,
cases of shock waves of severe gradient are solved and compared with the exact solution and the literature. The
qualitative and quantitative results demonstrate that our numerical approach has far higher accuracy than rival methods.

Keywords: Burgers equation; cubic B-spline; extrapolation; Galerkin method; Strang splitting.

1. Introduction

Nonlinear partial differential equations arise in
many fields of science, particularly in applied
mathematics, physics, engineering, mathematical biology,
chemistry, and finance. One of the most important model
equation is the Burgers equation. It represents various
problems in a broad range of scientific fields, such as heat
conduction (Cole, 1951), turbulence and shock waves
(Burgers, 1948), longitudinal elastic waves in an
isotropic solid (Pospelov, 1966), number theory (Pol,
1951), continuous stochastic processes (Cole, 1951),
and so on.

Under certain conditions, and by considering the
uniqueness and existence of solutions, the
mathematical analysis of Burgers equation was
discussed in the literature (Wang & Warnecke, 2003). The
Burgers equation was exactly solved by using the Hopf-Cole
transformation (Hopf, 1950; Cole, 1951) which
converts the equation to a heat diffusion
equation. In most of those cases, the solutions involve
infinite series which may diverge or converge very
slowly for relatively small values of the kinematic
viscosity constant ε, which corresponds to steep wave
fronts in the propagation of the dynamic wave forms.

Much effort has been spent in solving the Burgers
equation over the last couple of decades. Since some
exact solutions fail for small kinematic viscosity values
(Miller, 1966), ε < 0.01, many researchers have
suggested various numerical methods based on different
approaches. These include, but are not limited to, the least-
squares quadratic B-spline finite element method (Kutluay

et al., 2004), hybrid numerical scheme involving wavelets
and finite differences (Jiwari, 2015), quadratic B-spline
collocation method (Raslan, 2003), spline in
tension approximation (Talwar et al., 2016), boundary
element method (Bahadir & Saglam, 2005), various
difference schemes (Liao & Zhu, 2011), lumped Galerkin
method (Kutluay & Esen, 2004), high-order time
integration formulae (Verma & Verma, 2015),
local discontinuous Galerkin method (Shao et
al., 2011), a sixth-order CFD scheme (Sari &
Gurarslan, 2009), higher order splitting methods
(Seydaoglu et al., 2016), differential quadrature
method based on B-spline functions (Bashan et al., 2015).

This study proposes a Galerkin type finite element
method (FEM) in which a strong form of both the
conservation and diffusion parts of the equation is
preferred rather than the weak form. The use of the strong
form of the FEM in analyzing the advection-diffusion
processes represented by the Burgers equation has some
advantages in comparison to the latter. Note that the weak
form and strong form are mathematically equivalent
to each other, but computationally this is not the case.
The weak form of the equation needs more complicated
computers codes. Since the weak form of the model
equation requires additional matrices for the residual term
of the integration, this gives rise to excessive computa-
tional time and may therefore lead to loss of accuracy.

The splitting-up technique for the Burgers equation
presented by Jain & Raja (1979) splits the Burgers
equation into subproblems and solves each of them with
the finite difference method. Similar strategies were
considered in references (Jain & Holla, 1978; Jain

Kuwait J. Sci. 46 (1) pp 1-14, 2019

et al., 1992) using the cubic spline method for
approximate solutions of the Burgers equation. Time and
space splitting ideas were considered in reference Saka &
Dag (2008). Here each submodel was solved numerically
by a quintic B-spline collocation method. High order
splitting methods were presented for non-autonomous
perturbed parabolic equations in a work of Seydaoglu &
Blanes (2014). Seydaoglu et al. (2016) presented a numer-
ical solution of the Burgers equation through higher order
splitting methods, and they observed order reductions for
the Dirichlet, Neumann and Robin boundary conditions.

The outline of this paper is as follows. The gov-
erning model equation is explained in Section 2. The
considered splitting methods and their implementa-
tion to the Burgers equation will be investigated in
Section 3. Implementation of the Galerkin approach
to the split equations and time integration procedure
of the corresponding ODE system are given in Section
4. Some numerical illustrations are presented in Sec-
tion 5. Section 6 consists of some concluding remarks.

2. Governing equation

Consider the one-dimensional Burgers equation
representing the aforementioned problems into the
following form:

Saglam, 2005), various difference schemes
(Liao & Zhu, 2011), lumped Galerkin
method (Kutluay & Esen, 2004), high-order
time integration formulae (Verma &
Verma, 2015), local discontinuous Galerkin
method (Shao et al., 2011), a sixth-order
CFD scheme (Sari & Gurarslan, 2009),
higher order splitting methods (Seydaoglu
et al., 2016), differential quadrature method
based on B-spline functions (Bashan et al.,
2015).

This study proposes a Galerkin type
finite element method (FEM) in which a
strong form of both the conservation and
diffusion parts of the equation is preferred
rather than the weak form. The use of the
strong form of the FEM in analyzing the
advection-diffusion processes represented
by the Burgers equation has some
advantages in comparison to the latter. Note
that the weak form and strong form are
mathematically equivalent to each other,
but computationally this is not the case. The
weak form of the equation needs more
complicated computers codes. Since the
weak form of the model equation requires
additional matrices for the residual term of
the integration, this gives rise to excessive
computational time and may therefore lead
to loss of accuracy.

The splitting-up technique for the
Burgers equation presented by Jain & Raja
(1979) splits the Burgers equation into
subproblems and solves each of them with
the finite difference method. Similar
strategies were considered in references
(Jain & Holla, 1978; Jain et al., 1992) using
the cubic spline method for approximate
solutions of the Burgers equation. Time and
space splitting ideas were considered in
reference Saka & Dag (2008). Here each
submodel was solved numerically by a
quintic B-spline collocation method. High
order splitting methods were presented for
non-autonomous perturbed parabolic
equations in a work of Seydaoglu & Blanes
(2014). Seydaoglu et al. (2016) presented a
numerical solution of the Burgers equation
through higher order splitting methods, and
they observed order reductions for the

Dirichlet, Neumann and Robin boundary
conditions.

The outline of this paper is as
follows. The governing model equation is
explained in Section 2. The considered
splitting methods and their implementation
to the Burgers equation will be investigated
in Section 3. Implementation of the
Galerkin approach to the split equations and
time integration procedure of the
corresponding ODE system are given in
Section 4. Some numerical illustrations are
presented in Section 5. Section 6 consists of
some concluding remarks.

2. Governing equation
Consider the one-dimensional Burgers
equation representing the aforementioned
problems into the following form:

𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢* = 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**	,				𝑎𝑎𝑎𝑎 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝑏𝑏𝑏𝑏 (1)

with the boundary conditions

𝑢𝑢𝑢𝑢(𝑎𝑎𝑎𝑎, 𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓5(𝑡𝑡𝑡𝑡),			𝑡𝑡𝑡𝑡 > 0
𝑢𝑢𝑢𝑢(𝑏𝑏𝑏𝑏, 𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓7(𝑡𝑡𝑡𝑡),			𝑡𝑡𝑡𝑡 > 0 (2)

and initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥), 𝑎𝑎𝑎𝑎 < 𝑥𝑥𝑥𝑥 < 𝑏𝑏𝑏𝑏 , (3)

where 𝜀𝜀𝜀𝜀 is viscosity constant for 𝜀𝜀𝜀𝜀 > 0 and
𝑓𝑓𝑓𝑓5, 𝑓𝑓𝑓𝑓7 and 𝑔𝑔𝑔𝑔 are known functions. The
subscripts 𝑥𝑥𝑥𝑥 and 𝑡𝑡𝑡𝑡	indicate differentiations
with respect to space and time, respectively.

3. Splitting the model
Let us split the Burgers Equation (1) into
subproblems as follows

𝑢𝑢𝑢𝑢(= 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**, (4)
𝑢𝑢𝑢𝑢(= −𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*. (5)

The splitting strategy for the Burgers
Equation (1) alternately involves solving
the subproblems (4) and (5). Let the exact
solutions (or a sufficiently accurate
numerical approximation) for subproblems
(4) and (5), respectively, be the maps 𝜙𝜙𝜙𝜙;

<
and 𝜙𝜙𝜙𝜙;

= with time step 𝑘𝑘𝑘𝑘. Then one can

with the boundary conditions

Saglam, 2005), various difference schemes
(Liao & Zhu, 2011), lumped Galerkin
method (Kutluay & Esen, 2004), high-order
time integration formulae (Verma &
Verma, 2015), local discontinuous Galerkin
method (Shao et al., 2011), a sixth-order
CFD scheme (Sari & Gurarslan, 2009),
higher order splitting methods (Seydaoglu
et al., 2016), differential quadrature method
based on B-spline functions (Bashan et al.,
2015).

This study proposes a Galerkin type
finite element method (FEM) in which a
strong form of both the conservation and
diffusion parts of the equation is preferred
rather than the weak form. The use of the
strong form of the FEM in analyzing the
advection-diffusion processes represented
by the Burgers equation has some
advantages in comparison to the latter. Note
that the weak form and strong form are
mathematically equivalent to each other,
but computationally this is not the case. The
weak form of the equation needs more
complicated computers codes. Since the
weak form of the model equation requires
additional matrices for the residual term of
the integration, this gives rise to excessive
computational time and may therefore lead
to loss of accuracy.

The splitting-up technique for the
Burgers equation presented by Jain & Raja
(1979) splits the Burgers equation into
subproblems and solves each of them with
the finite difference method. Similar
strategies were considered in references
(Jain & Holla, 1978; Jain et al., 1992) using
the cubic spline method for approximate
solutions of the Burgers equation. Time and
space splitting ideas were considered in
reference Saka & Dag (2008). Here each
submodel was solved numerically by a
quintic B-spline collocation method. High
order splitting methods were presented for
non-autonomous perturbed parabolic
equations in a work of Seydaoglu & Blanes
(2014). Seydaoglu et al. (2016) presented a
numerical solution of the Burgers equation
through higher order splitting methods, and
they observed order reductions for the

Dirichlet, Neumann and Robin boundary
conditions.

The outline of this paper is as
follows. The governing model equation is
explained in Section 2. The considered
splitting methods and their implementation
to the Burgers equation will be investigated
in Section 3. Implementation of the
Galerkin approach to the split equations and
time integration procedure of the
corresponding ODE system are given in
Section 4. Some numerical illustrations are
presented in Section 5. Section 6 consists of
some concluding remarks.

2. Governing equation
Consider the one-dimensional Burgers
equation representing the aforementioned
problems into the following form:

𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢* = 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**	,				𝑎𝑎𝑎𝑎 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝑏𝑏𝑏𝑏 (1)

with the boundary conditions

𝑢𝑢𝑢𝑢(𝑎𝑎𝑎𝑎, 𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓5(𝑡𝑡𝑡𝑡),			𝑡𝑡𝑡𝑡 > 0
𝑢𝑢𝑢𝑢(𝑏𝑏𝑏𝑏, 𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓7(𝑡𝑡𝑡𝑡),			𝑡𝑡𝑡𝑡 > 0 (2)

and initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥), 𝑎𝑎𝑎𝑎 < 𝑥𝑥𝑥𝑥 < 𝑏𝑏𝑏𝑏 , (3)

where 𝜀𝜀𝜀𝜀 is viscosity constant for 𝜀𝜀𝜀𝜀 > 0 and
𝑓𝑓𝑓𝑓5, 𝑓𝑓𝑓𝑓7 and 𝑔𝑔𝑔𝑔 are known functions. The
subscripts 𝑥𝑥𝑥𝑥 and 𝑡𝑡𝑡𝑡	indicate differentiations
with respect to space and time, respectively.

3. Splitting the model
Let us split the Burgers Equation (1) into
subproblems as follows

𝑢𝑢𝑢𝑢(= 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**, (4)
𝑢𝑢𝑢𝑢(= −𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*. (5)

The splitting strategy for the Burgers
Equation (1) alternately involves solving
the subproblems (4) and (5). Let the exact
solutions (or a sufficiently accurate
numerical approximation) for subproblems
(4) and (5), respectively, be the maps 𝜙𝜙𝜙𝜙;

<
and 𝜙𝜙𝜙𝜙;

= with time step 𝑘𝑘𝑘𝑘. Then one can

and initial condition

Saglam, 2005), various difference schemes
(Liao & Zhu, 2011), lumped Galerkin
method (Kutluay & Esen, 2004), high-order
time integration formulae (Verma &
Verma, 2015), local discontinuous Galerkin
method (Shao et al., 2011), a sixth-order
CFD scheme (Sari & Gurarslan, 2009),
higher order splitting methods (Seydaoglu
et al., 2016), differential quadrature method
based on B-spline functions (Bashan et al.,
2015).

This study proposes a Galerkin type
finite element method (FEM) in which a
strong form of both the conservation and
diffusion parts of the equation is preferred
rather than the weak form. The use of the
strong form of the FEM in analyzing the
advection-diffusion processes represented
by the Burgers equation has some
advantages in comparison to the latter. Note
that the weak form and strong form are
mathematically equivalent to each other,
but computationally this is not the case. The
weak form of the equation needs more
complicated computers codes. Since the
weak form of the model equation requires
additional matrices for the residual term of
the integration, this gives rise to excessive
computational time and may therefore lead
to loss of accuracy.

The splitting-up technique for the
Burgers equation presented by Jain & Raja
(1979) splits the Burgers equation into
subproblems and solves each of them with
the finite difference method. Similar
strategies were considered in references
(Jain & Holla, 1978; Jain et al., 1992) using
the cubic spline method for approximate
solutions of the Burgers equation. Time and
space splitting ideas were considered in
reference Saka & Dag (2008). Here each
submodel was solved numerically by a
quintic B-spline collocation method. High
order splitting methods were presented for
non-autonomous perturbed parabolic
equations in a work of Seydaoglu & Blanes
(2014). Seydaoglu et al. (2016) presented a
numerical solution of the Burgers equation
through higher order splitting methods, and
they observed order reductions for the

Dirichlet, Neumann and Robin boundary
conditions.

The outline of this paper is as
follows. The governing model equation is
explained in Section 2. The considered
splitting methods and their implementation
to the Burgers equation will be investigated
in Section 3. Implementation of the
Galerkin approach to the split equations and
time integration procedure of the
corresponding ODE system are given in
Section 4. Some numerical illustrations are
presented in Section 5. Section 6 consists of
some concluding remarks.

2. Governing equation
Consider the one-dimensional Burgers
equation representing the aforementioned
problems into the following form:

𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢* = 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**	,				𝑎𝑎𝑎𝑎 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝑏𝑏𝑏𝑏 (1)

with the boundary conditions

𝑢𝑢𝑢𝑢(𝑎𝑎𝑎𝑎, 𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓5(𝑡𝑡𝑡𝑡),			𝑡𝑡𝑡𝑡 > 0
𝑢𝑢𝑢𝑢(𝑏𝑏𝑏𝑏, 𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓7(𝑡𝑡𝑡𝑡),			𝑡𝑡𝑡𝑡 > 0 (2)

and initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥), 𝑎𝑎𝑎𝑎 < 𝑥𝑥𝑥𝑥 < 𝑏𝑏𝑏𝑏 , (3)

where 𝜀𝜀𝜀𝜀 is viscosity constant for 𝜀𝜀𝜀𝜀 > 0 and
𝑓𝑓𝑓𝑓5, 𝑓𝑓𝑓𝑓7 and 𝑔𝑔𝑔𝑔 are known functions. The
subscripts 𝑥𝑥𝑥𝑥 and 𝑡𝑡𝑡𝑡	indicate differentiations
with respect to space and time, respectively.

3. Splitting the model
Let us split the Burgers Equation (1) into
subproblems as follows

𝑢𝑢𝑢𝑢(= 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**, (4)
𝑢𝑢𝑢𝑢(= −𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*. (5)

The splitting strategy for the Burgers
Equation (1) alternately involves solving
the subproblems (4) and (5). Let the exact
solutions (or a sufficiently accurate
numerical approximation) for subproblems
(4) and (5), respectively, be the maps 𝜙𝜙𝜙𝜙;

<
and 𝜙𝜙𝜙𝜙;

= with time step 𝑘𝑘𝑘𝑘. Then one can

3. Splitting the model

Let us split the Burgers Equation (1) into subproblems
as follows

Saglam, 2005), various difference schemes
(Liao & Zhu, 2011), lumped Galerkin
method (Kutluay & Esen, 2004), high-order
time integration formulae (Verma &
Verma, 2015), local discontinuous Galerkin
method (Shao et al., 2011), a sixth-order
CFD scheme (Sari & Gurarslan, 2009),
higher order splitting methods (Seydaoglu
et al., 2016), differential quadrature method
based on B-spline functions (Bashan et al.,
2015).

This study proposes a Galerkin type
finite element method (FEM) in which a
strong form of both the conservation and
diffusion parts of the equation is preferred
rather than the weak form. The use of the
strong form of the FEM in analyzing the
advection-diffusion processes represented
by the Burgers equation has some
advantages in comparison to the latter. Note
that the weak form and strong form are
mathematically equivalent to each other,
but computationally this is not the case. The
weak form of the equation needs more
complicated computers codes. Since the
weak form of the model equation requires
additional matrices for the residual term of
the integration, this gives rise to excessive
computational time and may therefore lead
to loss of accuracy.

The splitting-up technique for the
Burgers equation presented by Jain & Raja
(1979) splits the Burgers equation into
subproblems and solves each of them with
the finite difference method. Similar
strategies were considered in references
(Jain & Holla, 1978; Jain et al., 1992) using
the cubic spline method for approximate
solutions of the Burgers equation. Time and
space splitting ideas were considered in
reference Saka & Dag (2008). Here each
submodel was solved numerically by a
quintic B-spline collocation method. High
order splitting methods were presented for
non-autonomous perturbed parabolic
equations in a work of Seydaoglu & Blanes
(2014). Seydaoglu et al. (2016) presented a
numerical solution of the Burgers equation
through higher order splitting methods, and
they observed order reductions for the

Dirichlet, Neumann and Robin boundary
conditions.

The outline of this paper is as
follows. The governing model equation is
explained in Section 2. The considered
splitting methods and their implementation
to the Burgers equation will be investigated
in Section 3. Implementation of the
Galerkin approach to the split equations and
time integration procedure of the
corresponding ODE system are given in
Section 4. Some numerical illustrations are
presented in Section 5. Section 6 consists of
some concluding remarks.

2. Governing equation
Consider the one-dimensional Burgers
equation representing the aforementioned
problems into the following form:

𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢* = 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**	,				𝑎𝑎𝑎𝑎 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝑏𝑏𝑏𝑏 (1)

with the boundary conditions

𝑢𝑢𝑢𝑢(𝑎𝑎𝑎𝑎, 𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓5(𝑡𝑡𝑡𝑡),			𝑡𝑡𝑡𝑡 > 0
𝑢𝑢𝑢𝑢(𝑏𝑏𝑏𝑏, 𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓7(𝑡𝑡𝑡𝑡),			𝑡𝑡𝑡𝑡 > 0 (2)

and initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥), 𝑎𝑎𝑎𝑎 < 𝑥𝑥𝑥𝑥 < 𝑏𝑏𝑏𝑏 , (3)

where 𝜀𝜀𝜀𝜀 is viscosity constant for 𝜀𝜀𝜀𝜀 > 0 and
𝑓𝑓𝑓𝑓5, 𝑓𝑓𝑓𝑓7 and 𝑔𝑔𝑔𝑔 are known functions. The
subscripts 𝑥𝑥𝑥𝑥 and 𝑡𝑡𝑡𝑡	indicate differentiations
with respect to space and time, respectively.

3. Splitting the model
Let us split the Burgers Equation (1) into
subproblems as follows

𝑢𝑢𝑢𝑢(= 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**, (4)
𝑢𝑢𝑢𝑢(= −𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*. (5)

The splitting strategy for the Burgers
Equation (1) alternately involves solving
the subproblems (4) and (5). Let the exact
solutions (or a sufficiently accurate
numerical approximation) for subproblems
(4) and (5), respectively, be the maps 𝜙𝜙𝜙𝜙;

<
and 𝜙𝜙𝜙𝜙;

= with time step 𝑘𝑘𝑘𝑘. Then one can

The splitting strategy for the Burgers Equa-
tion (1) alternately involves solving the subprob-
lems (4) and (5). Let the exact solutions (or a
sufficiently accurate numerical approximation)
for subproblems (4) and (5), respectively, be the
maps with time step k. Then one can ap-
proximate the solution of (1) for a sufficiently small k as

 𝜙𝜙𝜙𝜙;
< and 𝜙𝜙𝜙𝜙;

= with time step 𝑘𝑘𝑘𝑘. Then one can
approximate the solution of (1) for a
sufficiently small 𝑘𝑘𝑘𝑘 as

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑘𝑘𝑘𝑘) ≈ 𝜓𝜓𝜓𝜓;𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥), (6)

where

𝜓𝜓𝜓𝜓; =

𝜙𝜙𝜙𝜙;AB
< ᴑ	𝜙𝜙𝜙𝜙;DB

= ᴑ… 	ᴑ	𝜙𝜙𝜙𝜙;AF
< ᴑ	𝜙𝜙𝜙𝜙;DG

= ᴑ		𝜙𝜙𝜙𝜙;AGHB
< ,

 (7)
or

𝜓𝜓𝜓𝜓; =
𝜙𝜙𝜙𝜙;DB
= ᴑ	𝜙𝜙𝜙𝜙;AB

< ᴑ…	𝜙𝜙𝜙𝜙;DF
= ᴑ		𝜙𝜙𝜙𝜙;AG

< ᴑ	𝜙𝜙𝜙𝜙;DGHB
= .

 (8)
The coefficients 𝑎𝑎𝑎𝑎I and 𝑏𝑏𝑏𝑏I can be defined in
the desired order by using the Baker-
Campell- Hausdorff formula (Hairer et al.,
2006; Creutz & Gocksch, 1989; Suziki,
1990; Yoshida, 1990). The Lie-Trotter
splitting method is given as follows:

𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

KL	ᴑ	𝜙𝜙𝜙𝜙;
KM	or	𝑇𝑇𝑇𝑇; = 	𝜙𝜙𝜙𝜙;

KM	ᴑ	𝜙𝜙𝜙𝜙;
KL,			 (9)

and it is first order, i.e. 𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

(<N=) +
𝑂𝑂𝑂𝑂(𝑘𝑘𝑘𝑘7). The well-known second order time
symmetric method reads

𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

< ᴑ	𝜙𝜙𝜙𝜙;
=	ᴑ	𝜙𝜙𝜙𝜙;/7

< , (10)
or
𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;
<ᴑ	𝜙𝜙𝜙𝜙;/7

= , (11)

which is referred to as the Strang splitting
method. Notice that the scheme given with
ABA pattern (7) firstly solves subproblem
(4) and then subproblem (5) alternately,
while the BAB pattern does the same in
reverse order. To decide which pattern of
the splitting schemes gives more efficient
results, we apply the Strang splitting
method with a different pattern to Example
1 in the numerical experiments.

However, the splitting schemes with
real coefficients with a higher order than
two necessarily have at least one negative
coefficient (Blanes & Casas, 2005). Thus,
one cannot use such schemes for the
Burgers equation due to the Laplacian
operator. To use the high order splitting

method with real positive coefficients, we
consider the extrapolation methods

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/7ᴑ	𝜙𝜙𝜙𝜙;/7	−

5
S
𝜙𝜙𝜙𝜙;, (12)

and
𝜓𝜓𝜓𝜓; =

T5
RU
𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S −

5V
5W
𝜙𝜙𝜙𝜙;/7	ᴑ	𝜙𝜙𝜙𝜙;/7 +

5
7R
𝜙𝜙𝜙𝜙;.				 (13)

If one uses the Strang splitting method (10)
instead of the main method 𝜙𝜙𝜙𝜙; considered
in the extrapolation process, then a fourth-
order method reads

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< −

5
S
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< , (14)

and a sixth-order method reads

𝜓𝜓𝜓𝜓; =
T5
RU
𝜙𝜙𝜙𝜙;/V
< ᴑ	𝜙𝜙𝜙𝜙;/S

= 	ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/V
< −

5V
5W
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< +

5
7R
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< . (15)

Hansen & Ostermann (2009) presented a
convergence analysis of the exponential
splitting methods for the linear evolution
equations, and they collected some
extensions of their results. Note that similar
results were derived independently in
reference (Castella et al., 2009). Formally,
one expects the same convergence results
by considering extensions in the literature
(Hansen & Ostermann, 2009; Castella et al.,
2009) for the nonlinear equation by
replacing all exponential terms to their
corresponding nonlinear flows.

4. Numerical methods
To investigate solutions of problems (1) -
(3) through (4) and (5), we have proposed
the Galerkin finite element method in strong
form with cubic B-spline basis functions for
spatial approximation and the Crank-
Nicolson method for the time integration of
the resulted ordinary differential equation
system.

 𝜙𝜙𝜙𝜙;
< and 𝜙𝜙𝜙𝜙;

= with time step 𝑘𝑘𝑘𝑘. Then one can
approximate the solution of (1) for a
sufficiently small 𝑘𝑘𝑘𝑘 as

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑘𝑘𝑘𝑘) ≈ 𝜓𝜓𝜓𝜓;𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥), (6)

where

𝜓𝜓𝜓𝜓; =

𝜙𝜙𝜙𝜙;AB
< ᴑ	𝜙𝜙𝜙𝜙;DB

= ᴑ… 	ᴑ	𝜙𝜙𝜙𝜙;AF
< ᴑ	𝜙𝜙𝜙𝜙;DG

= ᴑ		𝜙𝜙𝜙𝜙;AGHB
< ,

 (7)
or

𝜓𝜓𝜓𝜓; =
𝜙𝜙𝜙𝜙;DB
= ᴑ	𝜙𝜙𝜙𝜙;AB

< ᴑ…	𝜙𝜙𝜙𝜙;DF
= ᴑ		𝜙𝜙𝜙𝜙;AG

< ᴑ	𝜙𝜙𝜙𝜙;DGHB
= .

 (8)
The coefficients 𝑎𝑎𝑎𝑎I and 𝑏𝑏𝑏𝑏I can be defined in
the desired order by using the Baker-
Campell- Hausdorff formula (Hairer et al.,
2006; Creutz & Gocksch, 1989; Suziki,
1990; Yoshida, 1990). The Lie-Trotter
splitting method is given as follows:

𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

KL	ᴑ	𝜙𝜙𝜙𝜙;
KM	or	𝑇𝑇𝑇𝑇; = 	𝜙𝜙𝜙𝜙;

KM	ᴑ	𝜙𝜙𝜙𝜙;
KL,			 (9)

and it is first order, i.e. 𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

(<N=) +
𝑂𝑂𝑂𝑂(𝑘𝑘𝑘𝑘7). The well-known second order time
symmetric method reads

𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

< ᴑ	𝜙𝜙𝜙𝜙;
=	ᴑ	𝜙𝜙𝜙𝜙;/7

< , (10)
or
𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;
<ᴑ	𝜙𝜙𝜙𝜙;/7

= , (11)

which is referred to as the Strang splitting
method. Notice that the scheme given with
ABA pattern (7) firstly solves subproblem
(4) and then subproblem (5) alternately,
while the BAB pattern does the same in
reverse order. To decide which pattern of
the splitting schemes gives more efficient
results, we apply the Strang splitting
method with a different pattern to Example
1 in the numerical experiments.

However, the splitting schemes with
real coefficients with a higher order than
two necessarily have at least one negative
coefficient (Blanes & Casas, 2005). Thus,
one cannot use such schemes for the
Burgers equation due to the Laplacian
operator. To use the high order splitting

method with real positive coefficients, we
consider the extrapolation methods

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/7ᴑ	𝜙𝜙𝜙𝜙;/7	−

5
S
𝜙𝜙𝜙𝜙;, (12)

and
𝜓𝜓𝜓𝜓; =

T5
RU
𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S −

5V
5W
𝜙𝜙𝜙𝜙;/7	ᴑ	𝜙𝜙𝜙𝜙;/7 +

5
7R
𝜙𝜙𝜙𝜙;.				 (13)

If one uses the Strang splitting method (10)
instead of the main method 𝜙𝜙𝜙𝜙; considered
in the extrapolation process, then a fourth-
order method reads

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< −

5
S
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< , (14)

and a sixth-order method reads

𝜓𝜓𝜓𝜓; =
T5
RU
𝜙𝜙𝜙𝜙;/V
< ᴑ	𝜙𝜙𝜙𝜙;/S

= 	ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/V
< −

5V
5W
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< +

5
7R
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< . (15)

Hansen & Ostermann (2009) presented a
convergence analysis of the exponential
splitting methods for the linear evolution
equations, and they collected some
extensions of their results. Note that similar
results were derived independently in
reference (Castella et al., 2009). Formally,
one expects the same convergence results
by considering extensions in the literature
(Hansen & Ostermann, 2009; Castella et al.,
2009) for the nonlinear equation by
replacing all exponential terms to their
corresponding nonlinear flows.

4. Numerical methods
To investigate solutions of problems (1) -
(3) through (4) and (5), we have proposed
the Galerkin finite element method in strong
form with cubic B-spline basis functions for
spatial approximation and the Crank-
Nicolson method for the time integration of
the resulted ordinary differential equation
system.

 𝜙𝜙𝜙𝜙;
< and 𝜙𝜙𝜙𝜙;

= with time step 𝑘𝑘𝑘𝑘. Then one can
approximate the solution of (1) for a
sufficiently small 𝑘𝑘𝑘𝑘 as

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑘𝑘𝑘𝑘) ≈ 𝜓𝜓𝜓𝜓;𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥), (6)

where

𝜓𝜓𝜓𝜓; =

𝜙𝜙𝜙𝜙;AB
< ᴑ	𝜙𝜙𝜙𝜙;DB

= ᴑ… 	ᴑ	𝜙𝜙𝜙𝜙;AF
< ᴑ	𝜙𝜙𝜙𝜙;DG

= ᴑ		𝜙𝜙𝜙𝜙;AGHB
< ,

 (7)
or

𝜓𝜓𝜓𝜓; =
𝜙𝜙𝜙𝜙;DB
= ᴑ	𝜙𝜙𝜙𝜙;AB

< ᴑ…	𝜙𝜙𝜙𝜙;DF
= ᴑ		𝜙𝜙𝜙𝜙;AG

< ᴑ	𝜙𝜙𝜙𝜙;DGHB
= .

 (8)
The coefficients 𝑎𝑎𝑎𝑎I and 𝑏𝑏𝑏𝑏I can be defined in
the desired order by using the Baker-
Campell- Hausdorff formula (Hairer et al.,
2006; Creutz & Gocksch, 1989; Suziki,
1990; Yoshida, 1990). The Lie-Trotter
splitting method is given as follows:

𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

KL	ᴑ	𝜙𝜙𝜙𝜙;
KM	or	𝑇𝑇𝑇𝑇; = 	𝜙𝜙𝜙𝜙;

KM	ᴑ	𝜙𝜙𝜙𝜙;
KL,			 (9)

and it is first order, i.e. 𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

(<N=) +
𝑂𝑂𝑂𝑂(𝑘𝑘𝑘𝑘7). The well-known second order time
symmetric method reads

𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

< ᴑ	𝜙𝜙𝜙𝜙;
=	ᴑ	𝜙𝜙𝜙𝜙;/7

< , (10)
or
𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;
<ᴑ	𝜙𝜙𝜙𝜙;/7

= , (11)

which is referred to as the Strang splitting
method. Notice that the scheme given with
ABA pattern (7) firstly solves subproblem
(4) and then subproblem (5) alternately,
while the BAB pattern does the same in
reverse order. To decide which pattern of
the splitting schemes gives more efficient
results, we apply the Strang splitting
method with a different pattern to Example
1 in the numerical experiments.

However, the splitting schemes with
real coefficients with a higher order than
two necessarily have at least one negative
coefficient (Blanes & Casas, 2005). Thus,
one cannot use such schemes for the
Burgers equation due to the Laplacian
operator. To use the high order splitting

method with real positive coefficients, we
consider the extrapolation methods

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/7ᴑ	𝜙𝜙𝜙𝜙;/7	−

5
S
𝜙𝜙𝜙𝜙;, (12)

and
𝜓𝜓𝜓𝜓; =

T5
RU
𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S −

5V
5W
𝜙𝜙𝜙𝜙;/7	ᴑ	𝜙𝜙𝜙𝜙;/7 +

5
7R
𝜙𝜙𝜙𝜙;.				 (13)

If one uses the Strang splitting method (10)
instead of the main method 𝜙𝜙𝜙𝜙; considered
in the extrapolation process, then a fourth-
order method reads

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< −

5
S
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< , (14)

and a sixth-order method reads

𝜓𝜓𝜓𝜓; =
T5
RU
𝜙𝜙𝜙𝜙;/V
< ᴑ	𝜙𝜙𝜙𝜙;/S

= 	ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/V
< −

5V
5W
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< +

5
7R
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< . (15)

Hansen & Ostermann (2009) presented a
convergence analysis of the exponential
splitting methods for the linear evolution
equations, and they collected some
extensions of their results. Note that similar
results were derived independently in
reference (Castella et al., 2009). Formally,
one expects the same convergence results
by considering extensions in the literature
(Hansen & Ostermann, 2009; Castella et al.,
2009) for the nonlinear equation by
replacing all exponential terms to their
corresponding nonlinear flows.

4. Numerical methods
To investigate solutions of problems (1) -
(3) through (4) and (5), we have proposed
the Galerkin finite element method in strong
form with cubic B-spline basis functions for
spatial approximation and the Crank-
Nicolson method for the time integration of
the resulted ordinary differential equation
system.

(8)
The coefficients ai and bi can be defined in the desired
order by using the Baker-Campell- Hausdorff formula
(Hairer et al., 2006; Creutz & Gocksch, 1989; Suziki,
1990; Yoshida, 1990). The Lie-Trotter splitting method is
given as follows:

 𝜙𝜙𝜙𝜙;
< and 𝜙𝜙𝜙𝜙;

= with time step 𝑘𝑘𝑘𝑘. Then one can
approximate the solution of (1) for a
sufficiently small 𝑘𝑘𝑘𝑘 as

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑘𝑘𝑘𝑘) ≈ 𝜓𝜓𝜓𝜓;𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥), (6)

where

𝜓𝜓𝜓𝜓; =

𝜙𝜙𝜙𝜙;AB
< ᴑ	𝜙𝜙𝜙𝜙;DB

= ᴑ… 	ᴑ	𝜙𝜙𝜙𝜙;AF
< ᴑ	𝜙𝜙𝜙𝜙;DG

= ᴑ		𝜙𝜙𝜙𝜙;AGHB
< ,

 (7)
or

𝜓𝜓𝜓𝜓; =
𝜙𝜙𝜙𝜙;DB
= ᴑ	𝜙𝜙𝜙𝜙;AB

< ᴑ…	𝜙𝜙𝜙𝜙;DF
= ᴑ		𝜙𝜙𝜙𝜙;AG

< ᴑ	𝜙𝜙𝜙𝜙;DGHB
= .

 (8)
The coefficients 𝑎𝑎𝑎𝑎I and 𝑏𝑏𝑏𝑏I can be defined in
the desired order by using the Baker-
Campell- Hausdorff formula (Hairer et al.,
2006; Creutz & Gocksch, 1989; Suziki,
1990; Yoshida, 1990). The Lie-Trotter
splitting method is given as follows:

𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

KL	ᴑ	𝜙𝜙𝜙𝜙;
KM	or	𝑇𝑇𝑇𝑇; = 	𝜙𝜙𝜙𝜙;

KM	ᴑ	𝜙𝜙𝜙𝜙;
KL,			 (9)

and it is first order, i.e. 𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

(<N=) +
𝑂𝑂𝑂𝑂(𝑘𝑘𝑘𝑘7). The well-known second order time
symmetric method reads

𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

< ᴑ	𝜙𝜙𝜙𝜙;
=	ᴑ	𝜙𝜙𝜙𝜙;/7

< , (10)
or
𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;
<ᴑ	𝜙𝜙𝜙𝜙;/7

= , (11)

which is referred to as the Strang splitting
method. Notice that the scheme given with
ABA pattern (7) firstly solves subproblem
(4) and then subproblem (5) alternately,
while the BAB pattern does the same in
reverse order. To decide which pattern of
the splitting schemes gives more efficient
results, we apply the Strang splitting
method with a different pattern to Example
1 in the numerical experiments.

However, the splitting schemes with
real coefficients with a higher order than
two necessarily have at least one negative
coefficient (Blanes & Casas, 2005). Thus,
one cannot use such schemes for the
Burgers equation due to the Laplacian
operator. To use the high order splitting

method with real positive coefficients, we
consider the extrapolation methods

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/7ᴑ	𝜙𝜙𝜙𝜙;/7	−

5
S
𝜙𝜙𝜙𝜙;, (12)

and
𝜓𝜓𝜓𝜓; =

T5
RU
𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S −

5V
5W
𝜙𝜙𝜙𝜙;/7	ᴑ	𝜙𝜙𝜙𝜙;/7 +

5
7R
𝜙𝜙𝜙𝜙;.				 (13)

If one uses the Strang splitting method (10)
instead of the main method 𝜙𝜙𝜙𝜙; considered
in the extrapolation process, then a fourth-
order method reads

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< −

5
S
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< , (14)

and a sixth-order method reads

𝜓𝜓𝜓𝜓; =
T5
RU
𝜙𝜙𝜙𝜙;/V
< ᴑ	𝜙𝜙𝜙𝜙;/S

= 	ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/V
< −

5V
5W
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< +

5
7R
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< . (15)

Hansen & Ostermann (2009) presented a
convergence analysis of the exponential
splitting methods for the linear evolution
equations, and they collected some
extensions of their results. Note that similar
results were derived independently in
reference (Castella et al., 2009). Formally,
one expects the same convergence results
by considering extensions in the literature
(Hansen & Ostermann, 2009; Castella et al.,
2009) for the nonlinear equation by
replacing all exponential terms to their
corresponding nonlinear flows.

4. Numerical methods
To investigate solutions of problems (1) -
(3) through (4) and (5), we have proposed
the Galerkin finite element method in strong
form with cubic B-spline basis functions for
spatial approximation and the Crank-
Nicolson method for the time integration of
the resulted ordinary differential equation
system.

which is referred to as the Strang splitting
method. Notice that the scheme given with ABA
pattern (7) firstly solves subproblem (4) and then
subproblem (5) alternately, while the BAB
pattern does the same in reverse order. To decide which
pattern of the splitting schemes gives more efficient
results, we apply the Strang splitting method with a
different pattern to Example 1 in the numerical
experiments.

However, the splitting schemes with real
coefficients with a higher order than two
necessarily have at least one negative coefficient (
Blanes & Casas, 2005). Thus, one cannot use such
schemes for the Burgers equation due to the Laplacian
operator. To use the high order splitting method with real
positive coefficients, we consider the extrapolation
methods

approximate the solution of (1) for a
sufficiently small 𝑘𝑘𝑘𝑘 as

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑘𝑘𝑘𝑘) ≈ 𝜓𝜓𝜓𝜓;𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥), (6)

where

𝜓𝜓𝜓𝜓; =

𝜙𝜙𝜙𝜙;AB
< ᴑ	𝜙𝜙𝜙𝜙;DB

= ᴑ… 	ᴑ	𝜙𝜙𝜙𝜙;AF
< ᴑ	𝜙𝜙𝜙𝜙;DG

= ᴑ		𝜙𝜙𝜙𝜙;AGHB
< ,

 (7)
or

𝜓𝜓𝜓𝜓; =
𝜙𝜙𝜙𝜙;DB
= ᴑ	𝜙𝜙𝜙𝜙;AB

< ᴑ…	𝜙𝜙𝜙𝜙;DF
= ᴑ		𝜙𝜙𝜙𝜙;AG

< ᴑ	𝜙𝜙𝜙𝜙;DGHB
= .

 (8)
The coefficients 𝑎𝑎𝑎𝑎I and 𝑏𝑏𝑏𝑏I can be defined in
the desired order by using the Baker-
Campell- Hausdorff formula (Hairer et al.,
2006; Creutz & Gocksch, 1989; Suziki,
1990; Yoshida, 1990). The Lie-Trotter
splitting method is given as follows:

𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

KL	ᴑ	𝜙𝜙𝜙𝜙;
KM	or	𝑇𝑇𝑇𝑇; = 	𝜙𝜙𝜙𝜙;

KM	ᴑ	𝜙𝜙𝜙𝜙;
KL,			 (9)

and it is first order, i.e. 𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

(<N=) +
𝑂𝑂𝑂𝑂(𝑘𝑘𝑘𝑘7). The well-known second order time
symmetric method reads

𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

< ᴑ	𝜙𝜙𝜙𝜙;
=	ᴑ	𝜙𝜙𝜙𝜙;/7

< , (10)
or
𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;
<ᴑ	𝜙𝜙𝜙𝜙;/7

= , (11)

which is referred to as the Strang splitting
method. Notice that the scheme given with
ABA pattern (7) firstly solves subproblem
(4) and then subproblem (5) alternately,
while the BAB pattern does the same in
reverse order. To decide which pattern of
the splitting schemes gives more efficient
results, we apply the Strang splitting
method with a different pattern to Example
1 in the numerical experiments.

However, the splitting schemes with
real coefficients with a higher order than
two necessarily have at least one negative
coefficient (Blanes & Casas, 2005). Thus,
one cannot use such schemes for the
Burgers equation due to the Laplacian
operator. To use the high order splitting

method with real positive coefficients, we
consider the extrapolation methods

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/7ᴑ	𝜙𝜙𝜙𝜙;/7	−

5
S
𝜙𝜙𝜙𝜙;, (12)

and
𝜓𝜓𝜓𝜓; =

T5
RU
𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S −

5V
5W
𝜙𝜙𝜙𝜙;/7	ᴑ	𝜙𝜙𝜙𝜙;/7 +

5
7R
𝜙𝜙𝜙𝜙;.				 (13)

If one uses the Strang splitting method (10)
instead of the main method 𝜙𝜙𝜙𝜙; considered
in the extrapolation process, then a fourth-
order method reads

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< −

5
S
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< , (14)

and a sixth-order method reads

𝜓𝜓𝜓𝜓; =
T5
RU
𝜙𝜙𝜙𝜙;/V
< ᴑ	𝜙𝜙𝜙𝜙;/S

= 	ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/V
< −

5V
5W
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< +

5
7R
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< . (15)

Hansen & Ostermann (2009) presented a
convergence analysis of the exponential
splitting methods for the linear evolution
equations, and they collected some
extensions of their results. Note that similar
results were derived independently in
reference (Castella et al., 2009). Formally,
one expects the same convergence results
by considering extensions in the literature
(Hansen & Ostermann, 2009; Castella et al.,
2009) for the nonlinear equation by
replacing all exponential terms to their
corresponding nonlinear flows.

4. Numerical methods
To investigate solutions of problems (1) -
(3) through (4) and (5), we have proposed
the Galerkin finite element method in strong
form with cubic B-spline basis functions for
spatial approximation and the Crank-
Nicolson method for the time integration of
the resulted ordinary differential equation
system.

If one uses the Strang splitting method (10)
instead of the main method considered in the
extrapolation process, then a fourth-order method reads

approximate the solution of (1) for a
sufficiently small 𝑘𝑘𝑘𝑘 as

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑘𝑘𝑘𝑘) ≈ 𝜓𝜓𝜓𝜓;𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥), (6)

where

𝜓𝜓𝜓𝜓; =

𝜙𝜙𝜙𝜙;AB
< ᴑ	𝜙𝜙𝜙𝜙;DB

= ᴑ… 	ᴑ	𝜙𝜙𝜙𝜙;AF
< ᴑ	𝜙𝜙𝜙𝜙;DG

= ᴑ		𝜙𝜙𝜙𝜙;AGHB
< ,

 (7)
or

𝜓𝜓𝜓𝜓; =
𝜙𝜙𝜙𝜙;DB
= ᴑ	𝜙𝜙𝜙𝜙;AB

< ᴑ…	𝜙𝜙𝜙𝜙;DF
= ᴑ		𝜙𝜙𝜙𝜙;AG

< ᴑ	𝜙𝜙𝜙𝜙;DGHB
= .

 (8)
The coefficients 𝑎𝑎𝑎𝑎I and 𝑏𝑏𝑏𝑏I can be defined in
the desired order by using the Baker-
Campell- Hausdorff formula (Hairer et al.,
2006; Creutz & Gocksch, 1989; Suziki,
1990; Yoshida, 1990). The Lie-Trotter
splitting method is given as follows:

𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

KL	ᴑ	𝜙𝜙𝜙𝜙;
KM	or	𝑇𝑇𝑇𝑇; = 	𝜙𝜙𝜙𝜙;

KM	ᴑ	𝜙𝜙𝜙𝜙;
KL,			 (9)

and it is first order, i.e. 𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

(<N=) +
𝑂𝑂𝑂𝑂(𝑘𝑘𝑘𝑘7). The well-known second order time
symmetric method reads

𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

< ᴑ	𝜙𝜙𝜙𝜙;
=	ᴑ	𝜙𝜙𝜙𝜙;/7

< , (10)
or
𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;
<ᴑ	𝜙𝜙𝜙𝜙;/7

= , (11)

which is referred to as the Strang splitting
method. Notice that the scheme given with
ABA pattern (7) firstly solves subproblem
(4) and then subproblem (5) alternately,
while the BAB pattern does the same in
reverse order. To decide which pattern of
the splitting schemes gives more efficient
results, we apply the Strang splitting
method with a different pattern to Example
1 in the numerical experiments.

However, the splitting schemes with
real coefficients with a higher order than
two necessarily have at least one negative
coefficient (Blanes & Casas, 2005). Thus,
one cannot use such schemes for the
Burgers equation due to the Laplacian
operator. To use the high order splitting

method with real positive coefficients, we
consider the extrapolation methods

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/7ᴑ	𝜙𝜙𝜙𝜙;/7	−

5
S
𝜙𝜙𝜙𝜙;, (12)

and
𝜓𝜓𝜓𝜓; =

T5
RU
𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S −

5V
5W
𝜙𝜙𝜙𝜙;/7	ᴑ	𝜙𝜙𝜙𝜙;/7 +

5
7R
𝜙𝜙𝜙𝜙;.				 (13)

If one uses the Strang splitting method (10)
instead of the main method 𝜙𝜙𝜙𝜙; considered
in the extrapolation process, then a fourth-
order method reads

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< −

5
S
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< , (14)

and a sixth-order method reads

𝜓𝜓𝜓𝜓; =
T5
RU
𝜙𝜙𝜙𝜙;/V
< ᴑ	𝜙𝜙𝜙𝜙;/S

= 	ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/V
< −

5V
5W
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< +

5
7R
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< . (15)

Hansen & Ostermann (2009) presented a
convergence analysis of the exponential
splitting methods for the linear evolution
equations, and they collected some
extensions of their results. Note that similar
results were derived independently in
reference (Castella et al., 2009). Formally,
one expects the same convergence results
by considering extensions in the literature
(Hansen & Ostermann, 2009; Castella et al.,
2009) for the nonlinear equation by
replacing all exponential terms to their
corresponding nonlinear flows.

4. Numerical methods
To investigate solutions of problems (1) -
(3) through (4) and (5), we have proposed
the Galerkin finite element method in strong
form with cubic B-spline basis functions for
spatial approximation and the Crank-
Nicolson method for the time integration of
the resulted ordinary differential equation
system.

approximate the solution of (1) for a
sufficiently small 𝑘𝑘𝑘𝑘 as

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑘𝑘𝑘𝑘) ≈ 𝜓𝜓𝜓𝜓;𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥), (6)

where

𝜓𝜓𝜓𝜓; =

𝜙𝜙𝜙𝜙;AB
< ᴑ	𝜙𝜙𝜙𝜙;DB

= ᴑ… 	ᴑ	𝜙𝜙𝜙𝜙;AF
< ᴑ	𝜙𝜙𝜙𝜙;DG

= ᴑ		𝜙𝜙𝜙𝜙;AGHB
< ,

 (7)
or

𝜓𝜓𝜓𝜓; =
𝜙𝜙𝜙𝜙;DB
= ᴑ	𝜙𝜙𝜙𝜙;AB

< ᴑ…	𝜙𝜙𝜙𝜙;DF
= ᴑ		𝜙𝜙𝜙𝜙;AG

< ᴑ	𝜙𝜙𝜙𝜙;DGHB
= .

 (8)
The coefficients 𝑎𝑎𝑎𝑎I and 𝑏𝑏𝑏𝑏I can be defined in
the desired order by using the Baker-
Campell- Hausdorff formula (Hairer et al.,
2006; Creutz & Gocksch, 1989; Suziki,
1990; Yoshida, 1990). The Lie-Trotter
splitting method is given as follows:

𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

KL	ᴑ	𝜙𝜙𝜙𝜙;
KM	or	𝑇𝑇𝑇𝑇; = 	𝜙𝜙𝜙𝜙;

KM	ᴑ	𝜙𝜙𝜙𝜙;
KL,			 (9)

and it is first order, i.e. 𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

(<N=) +
𝑂𝑂𝑂𝑂(𝑘𝑘𝑘𝑘7). The well-known second order time
symmetric method reads

𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

< ᴑ	𝜙𝜙𝜙𝜙;
=	ᴑ	𝜙𝜙𝜙𝜙;/7

< , (10)
or
𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;
<ᴑ	𝜙𝜙𝜙𝜙;/7

= , (11)

which is referred to as the Strang splitting
method. Notice that the scheme given with
ABA pattern (7) firstly solves subproblem
(4) and then subproblem (5) alternately,
while the BAB pattern does the same in
reverse order. To decide which pattern of
the splitting schemes gives more efficient
results, we apply the Strang splitting
method with a different pattern to Example
1 in the numerical experiments.

However, the splitting schemes with
real coefficients with a higher order than
two necessarily have at least one negative
coefficient (Blanes & Casas, 2005). Thus,
one cannot use such schemes for the
Burgers equation due to the Laplacian
operator. To use the high order splitting

method with real positive coefficients, we
consider the extrapolation methods

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/7ᴑ	𝜙𝜙𝜙𝜙;/7	−

5
S
𝜙𝜙𝜙𝜙;, (12)

and
𝜓𝜓𝜓𝜓; =

T5
RU
𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S −

5V
5W
𝜙𝜙𝜙𝜙;/7	ᴑ	𝜙𝜙𝜙𝜙;/7 +

5
7R
𝜙𝜙𝜙𝜙;.				 (13)

If one uses the Strang splitting method (10)
instead of the main method 𝜙𝜙𝜙𝜙; considered
in the extrapolation process, then a fourth-
order method reads

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< −

5
S
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< , (14)

and a sixth-order method reads

𝜓𝜓𝜓𝜓; =
T5
RU
𝜙𝜙𝜙𝜙;/V
< ᴑ	𝜙𝜙𝜙𝜙;/S

= 	ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/V
< −

5V
5W
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< +

5
7R
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< . (15)

Hansen & Ostermann (2009) presented a
convergence analysis of the exponential
splitting methods for the linear evolution
equations, and they collected some
extensions of their results. Note that similar
results were derived independently in
reference (Castella et al., 2009). Formally,
one expects the same convergence results
by considering extensions in the literature
(Hansen & Ostermann, 2009; Castella et al.,
2009) for the nonlinear equation by
replacing all exponential terms to their
corresponding nonlinear flows.

4. Numerical methods
To investigate solutions of problems (1) -
(3) through (4) and (5), we have proposed
the Galerkin finite element method in strong
form with cubic B-spline basis functions for
spatial approximation and the Crank-
Nicolson method for the time integration of
the resulted ordinary differential equation
system.

and a sixth-order method reads

approximate the solution of (1) for a
sufficiently small 𝑘𝑘𝑘𝑘 as

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑘𝑘𝑘𝑘) ≈ 𝜓𝜓𝜓𝜓;𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥), (6)

where

𝜓𝜓𝜓𝜓; =

𝜙𝜙𝜙𝜙;AB
< ᴑ	𝜙𝜙𝜙𝜙;DB

= ᴑ… 	ᴑ	𝜙𝜙𝜙𝜙;AF
< ᴑ	𝜙𝜙𝜙𝜙;DG

= ᴑ		𝜙𝜙𝜙𝜙;AGHB
< ,

 (7)
or

𝜓𝜓𝜓𝜓; =
𝜙𝜙𝜙𝜙;DB
= ᴑ	𝜙𝜙𝜙𝜙;AB

< ᴑ…	𝜙𝜙𝜙𝜙;DF
= ᴑ		𝜙𝜙𝜙𝜙;AG

< ᴑ	𝜙𝜙𝜙𝜙;DGHB
= .

 (8)
The coefficients 𝑎𝑎𝑎𝑎I and 𝑏𝑏𝑏𝑏I can be defined in
the desired order by using the Baker-
Campell- Hausdorff formula (Hairer et al.,
2006; Creutz & Gocksch, 1989; Suziki,
1990; Yoshida, 1990). The Lie-Trotter
splitting method is given as follows:

𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

KL	ᴑ	𝜙𝜙𝜙𝜙;
KM	or	𝑇𝑇𝑇𝑇; = 	𝜙𝜙𝜙𝜙;

KM	ᴑ	𝜙𝜙𝜙𝜙;
KL,			 (9)

and it is first order, i.e. 𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

(<N=) +
𝑂𝑂𝑂𝑂(𝑘𝑘𝑘𝑘7). The well-known second order time
symmetric method reads

𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

< ᴑ	𝜙𝜙𝜙𝜙;
=	ᴑ	𝜙𝜙𝜙𝜙;/7

< , (10)
or
𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;
<ᴑ	𝜙𝜙𝜙𝜙;/7

= , (11)

which is referred to as the Strang splitting
method. Notice that the scheme given with
ABA pattern (7) firstly solves subproblem
(4) and then subproblem (5) alternately,
while the BAB pattern does the same in
reverse order. To decide which pattern of
the splitting schemes gives more efficient
results, we apply the Strang splitting
method with a different pattern to Example
1 in the numerical experiments.

However, the splitting schemes with
real coefficients with a higher order than
two necessarily have at least one negative
coefficient (Blanes & Casas, 2005). Thus,
one cannot use such schemes for the
Burgers equation due to the Laplacian
operator. To use the high order splitting

method with real positive coefficients, we
consider the extrapolation methods

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/7ᴑ	𝜙𝜙𝜙𝜙;/7	−

5
S
𝜙𝜙𝜙𝜙;, (12)

and
𝜓𝜓𝜓𝜓; =

T5
RU
𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S −

5V
5W
𝜙𝜙𝜙𝜙;/7	ᴑ	𝜙𝜙𝜙𝜙;/7 +

5
7R
𝜙𝜙𝜙𝜙;.				 (13)

If one uses the Strang splitting method (10)
instead of the main method 𝜙𝜙𝜙𝜙; considered
in the extrapolation process, then a fourth-
order method reads

𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< −

5
S
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< , (14)

and a sixth-order method reads

𝜓𝜓𝜓𝜓; =
T5
RU
𝜙𝜙𝜙𝜙;/V
< ᴑ	𝜙𝜙𝜙𝜙;/S

= 	ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/V
< −

5V
5W
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< +

5
7R
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< . (15)

Hansen & Ostermann (2009) presented a
convergence analysis of the exponential
splitting methods for the linear evolution
equations, and they collected some
extensions of their results. Note that similar
results were derived independently in
reference (Castella et al., 2009). Formally,
one expects the same convergence results
by considering extensions in the literature
(Hansen & Ostermann, 2009; Castella et al.,
2009) for the nonlinear equation by
replacing all exponential terms to their
corresponding nonlinear flows.

4. Numerical methods
To investigate solutions of problems (1) -
(3) through (4) and (5), we have proposed
the Galerkin finite element method in strong
form with cubic B-spline basis functions for
spatial approximation and the Crank-
Nicolson method for the time integration of
the resulted ordinary differential equation
system.

Murat Sari, Huseyin Tunc, Muaz Seydaoglu 2

where ε is viscosity constant for ε > 0 and f1, f2 and g are
known functions. The subscripts x and t indicate differ-
entiations with respect to space and time, respectively.

where

Hansen & Ostermann (2009) presented a con-
vergence analysis of the exponential splitting
methods for the linear evolution equations, and they
collected some extensions of their results. Note that similar
results were derived independently in reference (Cas-
tella et al., 2009). Formally, one expects the same con-
vergence results by considering extensions in the lit-
erature (Hansen & Ostermann, 2009; Castella et al.,
2009) for the nonlinear equation by replacing all expo-
nential terms to their corresponding nonlinear flows.

4. Numerical methods

To investigate solutions of problems (1) - (3) through
(4) and (5), we have proposed the Galerkin finite el-
ement method in strong form with cubic B-spline
basis functions for spatial approximation and the
Crank-Nicolson method for the time integration of
the resulted ordinary differential equation system.
4.1. Cubic B-spline basis functions
The interval [a,b] is partitioned into N finite elements.
Each element has equal length h, and element nodes are
defined as

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

The corresponding cubic —spline basis functions
include the set of splines and
the global approximation function can be
expressed as

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

where βm(t) are the time part of
approximation function It will be
determined from the time approximation.

To compute element matrices easily, the local
coordinate system in (16) is required. As is the case in the
literature (Soliman, 2012; Karakoc et al., 2015), letting

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

where x in

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

(18)

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

The local approximation function on the element
[xm,xm+1] is defined as follows:4.1. Cubic B-spline basis functions

The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

Values of the local approximation function
 and its first two derivatives at the end points
of the interval [xm,xm+1] are defined in terms of the
time dependent quantities βm (t) using both (19) and
Table 1. The corresponding values then become:

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

Now it is time to apply the Galerkin
method to both the diffusion part (4) and conserva-
tion part (5). By considering element [xm,xm+1], let us
multiply Equations (4) and (5) by a test function v and
integrate over the interval [xm,xm+1]. One can then write:

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

The test function v is selected to be equal to the
cubic B-spline basis functions. This type of proce-
dure is known as the Galerkin approach in the fi-
nite element method. Using (19) and (18), Equa-
tions (21) and (22) yield the following relations:

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

(23)

and

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

(24)

3 Higher order splitting approaches in analysis of the Burgers equation

Each finite element is covered by the set
of four cubic B-splines
Table 1 shows the value of at
the end pointsof elements

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

4.1. Cubic B-spline basis functions
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁
finite elements. Each element has equal
length ℎ, and element nodes are defined as
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,
where
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis
functions as given by Prenter (1975):

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

 (16)

The corresponding cubic —spline basis
functions include the set of splines
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be
expressed as

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 , (17)

where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be
determined from the time approximation.
 To compute element matrices
easily, the local coordinate system in (16) is
required. As is the case in the literature
(Soliman, 2012; Karakoc et al., 2015),
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form

 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			

 (18)
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered
by the set of four cubic B-splines
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local

approximation function on the element
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5 (19)

Values of the local approximation function
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are
defined in terms of the time dependent
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table
1. The corresponding values then become:

𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5,
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5), (20)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5),

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^).

Now it is time to apply the Galerkin method
to both the diffusion part (4) and
conservation part (5). By considering
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5].
One can then write:

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(− 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

 (21)

∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢(+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

 (22)

The test function 𝑣𝑣𝑣𝑣 is selected to be equal to
the cubic B-spline basis functions. This type
of procedure is known as the Galerkin
approach in the finite element method.
Using (19) and (18), Equations (21) and
(22) yield the following relations:

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0 (23)

and

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0

 (24)
or in a matrix notation

or in a matrix notation

𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
− 𝜀𝜀𝜀𝜀Ke𝛽𝛽𝛽𝛽ã = 0, (25)

and
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
+ βâ

àå𝐿𝐿𝐿𝐿ã𝛽𝛽𝛽𝛽ã = 0, (26)

where

Mèá
à = ê 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w

U
,

Kèá
à = ∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä

yyw
U 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (27)

L	èáâà = ê𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy

w

U

𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,

𝛽𝛽𝛽𝛽ã = (𝛽𝛽𝛽𝛽ìe5, 𝛽𝛽𝛽𝛽ì, 𝛽𝛽𝛽𝛽ìN5, 𝛽𝛽𝛽𝛽ìN7)å,

and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1,𝑚𝑚𝑚𝑚 + 2 for
the element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. In (25) and (26);
𝑀𝑀𝑀𝑀ã and 𝐾𝐾𝐾𝐾ã are (4 × 4) matrices and are
independent of time. 𝐿𝐿𝐿𝐿ã is the (4 × 4 × 4)
matrix, and 𝐿𝐿𝐿𝐿 can be transformed to a time
dependent matrix 𝑅𝑅𝑅𝑅 by using

𝑅𝑅𝑅𝑅IÄã = 	∑ 𝐿𝐿𝐿𝐿IÄ;ã 𝛽𝛽𝛽𝛽;ãIN7

;uIe5 . (28)

After the assembling process of each
element, the matrix form will finally be

𝑀𝑀𝑀𝑀∗ ÇÉ

Ç(
− 𝜀𝜀𝜀𝜀𝐾𝐾𝐾𝐾∗𝛽𝛽𝛽𝛽 = 0, (29)

and
𝑀𝑀𝑀𝑀∗	ÇÉ

Ç(
+ 𝑅𝑅𝑅𝑅∗𝛽𝛽𝛽𝛽 = 0, (30)

for the diffusion and conservation parts,
respectively. Here 𝑀𝑀𝑀𝑀∗, 	𝑅𝑅𝑅𝑅∗ and 𝐾𝐾𝐾𝐾∗ are (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) matrices and 𝛽𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time
approximation vector. Consideration of
(29) and (30) gives a system of ordinary
differential equations, which are solved
using the Crank-Nicolson time integration
scheme, as discussed in the following
section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the
ODE system (29) and (30) can be explained
as follows (Tunc, 2017):

𝛽𝛽𝛽𝛽 =
1
2 ({𝛽𝛽𝛽𝛽}ú 	+

{𝛽𝛽𝛽𝛽}úN5),	

	ÇÉ
Ç(

= 5
Ç(
({𝛽𝛽𝛽𝛽}úN5 − {𝛽𝛽𝛽𝛽}ú), (31)

where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes
Equations (29) and (30) as in following
forms:

[𝑀𝑀𝑀𝑀∗ − Ç(

7
	𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ +

	Ç(
7
𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}ú (32)

and
[𝑀𝑀𝑀𝑀∗ + Ç(

7
	𝑅𝑅𝑅𝑅úN5∗]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ − Ç(

7
𝑅𝑅𝑅𝑅ú∗]{𝛽𝛽𝛽𝛽}ú,

 (33)

where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent
of time while 𝑅𝑅𝑅𝑅∗ depends on time.

Moreover, to cope with difficulties
in the nonlinearity in the time dependent
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following
correction relation:

{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗), (34)

where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú.
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU,
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system:

𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U ,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥])
 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U).

By using the recursive relation in (32) - (33)
and the corrector relation in (34), the
diffusion and conservation parts of the
Burgers equation is solved under the
consideration of the splitting formulae
given in Equations (10), (14) and (15). The
algorithm of the proposed methods has been
presented in Algorithm 1. Computer codes
of the algorithm have been produced in
MATLAB R2016a.

(25)

(26)

(27)

and i,j,k=m-1,m,m+1,m+2 for the element [xm,xm+1].
In (25) and (26); Me and Ke are (4×4) matrices and are
independent of time. Le is the (4×4×4) matrix, and Le can
be transformed to a time dependent matrix R by using

𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
− 𝜀𝜀𝜀𝜀Ke𝛽𝛽𝛽𝛽ã = 0, (25)

and
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
+ βâ

àå𝐿𝐿𝐿𝐿ã𝛽𝛽𝛽𝛽ã = 0, (26)

where

Mèá
à = ê 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w

U
,

Kèá
à = ∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä

yyw
U 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (27)

L	èáâà = ê𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy

w

U

𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,

𝛽𝛽𝛽𝛽ã = (𝛽𝛽𝛽𝛽ìe5, 𝛽𝛽𝛽𝛽ì, 𝛽𝛽𝛽𝛽ìN5, 𝛽𝛽𝛽𝛽ìN7)å,

and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1,𝑚𝑚𝑚𝑚 + 2 for
the element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. In (25) and (26);
𝑀𝑀𝑀𝑀ã and 𝐾𝐾𝐾𝐾ã are (4 × 4) matrices and are
independent of time. 𝐿𝐿𝐿𝐿ã is the (4 × 4 × 4)
matrix, and 𝐿𝐿𝐿𝐿 can be transformed to a time
dependent matrix 𝑅𝑅𝑅𝑅 by using

𝑅𝑅𝑅𝑅IÄã = 	∑ 𝐿𝐿𝐿𝐿IÄ;ã 𝛽𝛽𝛽𝛽;ãIN7

;uIe5 . (28)

After the assembling process of each
element, the matrix form will finally be

𝑀𝑀𝑀𝑀∗ ÇÉ

Ç(
− 𝜀𝜀𝜀𝜀𝐾𝐾𝐾𝐾∗𝛽𝛽𝛽𝛽 = 0, (29)

and
𝑀𝑀𝑀𝑀∗	ÇÉ

Ç(
+ 𝑅𝑅𝑅𝑅∗𝛽𝛽𝛽𝛽 = 0, (30)

for the diffusion and conservation parts,
respectively. Here 𝑀𝑀𝑀𝑀∗, 	𝑅𝑅𝑅𝑅∗ and 𝐾𝐾𝐾𝐾∗ are (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) matrices and 𝛽𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time
approximation vector. Consideration of
(29) and (30) gives a system of ordinary
differential equations, which are solved
using the Crank-Nicolson time integration
scheme, as discussed in the following
section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the
ODE system (29) and (30) can be explained
as follows (Tunc, 2017):

𝛽𝛽𝛽𝛽 =
1
2 ({𝛽𝛽𝛽𝛽}ú 	+

{𝛽𝛽𝛽𝛽}úN5),	

	ÇÉ
Ç(

= 5
Ç(
({𝛽𝛽𝛽𝛽}úN5 − {𝛽𝛽𝛽𝛽}ú), (31)

where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes
Equations (29) and (30) as in following
forms:

[𝑀𝑀𝑀𝑀∗ − Ç(

7
	𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ +

	Ç(
7
𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}ú (32)

and
[𝑀𝑀𝑀𝑀∗ + Ç(

7
	𝑅𝑅𝑅𝑅úN5∗]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ − Ç(

7
𝑅𝑅𝑅𝑅ú∗]{𝛽𝛽𝛽𝛽}ú,

 (33)

where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent
of time while 𝑅𝑅𝑅𝑅∗ depends on time.

Moreover, to cope with difficulties
in the nonlinearity in the time dependent
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following
correction relation:

{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗), (34)

where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú.
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU,
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system:

𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U ,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥])
 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U).

By using the recursive relation in (32) - (33)
and the corrector relation in (34), the
diffusion and conservation parts of the
Burgers equation is solved under the
consideration of the splitting formulae
given in Equations (10), (14) and (15). The
algorithm of the proposed methods has been
presented in Algorithm 1. Computer codes
of the algorithm have been produced in
MATLAB R2016a.

(28)

After the assembling process of each element, the
matrix form will finally be

𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
− 𝜀𝜀𝜀𝜀Ke𝛽𝛽𝛽𝛽ã = 0, (25)

and
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
+ βâ

àå𝐿𝐿𝐿𝐿ã𝛽𝛽𝛽𝛽ã = 0, (26)

where

Mèá
à = ê 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w

U
,

Kèá
à = ∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä

yyw
U 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (27)

L	èáâà = ê𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy

w

U

𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,

𝛽𝛽𝛽𝛽ã = (𝛽𝛽𝛽𝛽ìe5, 𝛽𝛽𝛽𝛽ì, 𝛽𝛽𝛽𝛽ìN5, 𝛽𝛽𝛽𝛽ìN7)å,

and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1,𝑚𝑚𝑚𝑚 + 2 for
the element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. In (25) and (26);
𝑀𝑀𝑀𝑀ã and 𝐾𝐾𝐾𝐾ã are (4 × 4) matrices and are
independent of time. 𝐿𝐿𝐿𝐿ã is the (4 × 4 × 4)
matrix, and 𝐿𝐿𝐿𝐿 can be transformed to a time
dependent matrix 𝑅𝑅𝑅𝑅 by using

𝑅𝑅𝑅𝑅IÄã = 	∑ 𝐿𝐿𝐿𝐿IÄ;ã 𝛽𝛽𝛽𝛽;ãIN7

;uIe5 . (28)

After the assembling process of each
element, the matrix form will finally be

𝑀𝑀𝑀𝑀∗ ÇÉ

Ç(
− 𝜀𝜀𝜀𝜀𝐾𝐾𝐾𝐾∗𝛽𝛽𝛽𝛽 = 0, (29)

and
𝑀𝑀𝑀𝑀∗	ÇÉ

Ç(
+ 𝑅𝑅𝑅𝑅∗𝛽𝛽𝛽𝛽 = 0, (30)

for the diffusion and conservation parts,
respectively. Here 𝑀𝑀𝑀𝑀∗, 	𝑅𝑅𝑅𝑅∗ and 𝐾𝐾𝐾𝐾∗ are (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) matrices and 𝛽𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time
approximation vector. Consideration of
(29) and (30) gives a system of ordinary
differential equations, which are solved
using the Crank-Nicolson time integration
scheme, as discussed in the following
section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the
ODE system (29) and (30) can be explained
as follows (Tunc, 2017):

𝛽𝛽𝛽𝛽 =
1
2 ({𝛽𝛽𝛽𝛽}ú 	+

{𝛽𝛽𝛽𝛽}úN5),	

	ÇÉ
Ç(

= 5
Ç(
({𝛽𝛽𝛽𝛽}úN5 − {𝛽𝛽𝛽𝛽}ú), (31)

where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes
Equations (29) and (30) as in following
forms:

[𝑀𝑀𝑀𝑀∗ − Ç(

7
	𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ +

	Ç(
7
𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}ú (32)

and
[𝑀𝑀𝑀𝑀∗ + Ç(

7
	𝑅𝑅𝑅𝑅úN5∗]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ − Ç(

7
𝑅𝑅𝑅𝑅ú∗]{𝛽𝛽𝛽𝛽}ú,

 (33)

where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent
of time while 𝑅𝑅𝑅𝑅∗ depends on time.

Moreover, to cope with difficulties
in the nonlinearity in the time dependent
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following
correction relation:

{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗), (34)

where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú.
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU,
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system:

𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U ,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥])
 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U).

By using the recursive relation in (32) - (33)
and the corrector relation in (34), the
diffusion and conservation parts of the
Burgers equation is solved under the
consideration of the splitting formulae
given in Equations (10), (14) and (15). The
algorithm of the proposed methods has been
presented in Algorithm 1. Computer codes
of the algorithm have been produced in
MATLAB R2016a.

(29)

(30)

𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
− 𝜀𝜀𝜀𝜀Ke𝛽𝛽𝛽𝛽ã = 0, (25)

and
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
+ βâ

àå𝐿𝐿𝐿𝐿ã𝛽𝛽𝛽𝛽ã = 0, (26)

where

Mèá
à = ê 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w

U
,

Kèá
à = ∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä

yyw
U 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (27)

L	èáâà = ê𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy

w

U

𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,

𝛽𝛽𝛽𝛽ã = (𝛽𝛽𝛽𝛽ìe5, 𝛽𝛽𝛽𝛽ì, 𝛽𝛽𝛽𝛽ìN5, 𝛽𝛽𝛽𝛽ìN7)å,

and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1,𝑚𝑚𝑚𝑚 + 2 for
the element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. In (25) and (26);
𝑀𝑀𝑀𝑀ã and 𝐾𝐾𝐾𝐾ã are (4 × 4) matrices and are
independent of time. 𝐿𝐿𝐿𝐿ã is the (4 × 4 × 4)
matrix, and 𝐿𝐿𝐿𝐿 can be transformed to a time
dependent matrix 𝑅𝑅𝑅𝑅 by using

𝑅𝑅𝑅𝑅IÄã = 	∑ 𝐿𝐿𝐿𝐿IÄ;ã 𝛽𝛽𝛽𝛽;ãIN7

;uIe5 . (28)

After the assembling process of each
element, the matrix form will finally be

𝑀𝑀𝑀𝑀∗ ÇÉ

Ç(
− 𝜀𝜀𝜀𝜀𝐾𝐾𝐾𝐾∗𝛽𝛽𝛽𝛽 = 0, (29)

and
𝑀𝑀𝑀𝑀∗	ÇÉ

Ç(
+ 𝑅𝑅𝑅𝑅∗𝛽𝛽𝛽𝛽 = 0, (30)

for the diffusion and conservation parts,
respectively. Here 𝑀𝑀𝑀𝑀∗, 	𝑅𝑅𝑅𝑅∗ and 𝐾𝐾𝐾𝐾∗ are (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) matrices and 𝛽𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time
approximation vector. Consideration of
(29) and (30) gives a system of ordinary
differential equations, which are solved
using the Crank-Nicolson time integration
scheme, as discussed in the following
section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the
ODE system (29) and (30) can be explained
as follows (Tunc, 2017):

𝛽𝛽𝛽𝛽 =
1
2 ({𝛽𝛽𝛽𝛽}ú 	+

{𝛽𝛽𝛽𝛽}úN5),	

	ÇÉ
Ç(

= 5
Ç(
({𝛽𝛽𝛽𝛽}úN5 − {𝛽𝛽𝛽𝛽}ú), (31)

where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes
Equations (29) and (30) as in following
forms:

[𝑀𝑀𝑀𝑀∗ − Ç(

7
	𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ +

	Ç(
7
𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}ú (32)

and
[𝑀𝑀𝑀𝑀∗ + Ç(

7
	𝑅𝑅𝑅𝑅úN5∗]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ − Ç(

7
𝑅𝑅𝑅𝑅ú∗]{𝛽𝛽𝛽𝛽}ú,

 (33)

where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent
of time while 𝑅𝑅𝑅𝑅∗ depends on time.

Moreover, to cope with difficulties
in the nonlinearity in the time dependent
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following
correction relation:

{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗), (34)

where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú.
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU,
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system:

𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U ,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥])
 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U).

By using the recursive relation in (32) - (33)
and the corrector relation in (34), the
diffusion and conservation parts of the
Burgers equation is solved under the
consideration of the splitting formulae
given in Equations (10), (14) and (15). The
algorithm of the proposed methods has been
presented in Algorithm 1. Computer codes
of the algorithm have been produced in
MATLAB R2016a.

for the diffusion and conservation parts, respective-
ly. Here M*, R* and K* are (N+3)×(N+3) matrices and
β=(β(-1),β0,…,β(N+1))

T is the unknown time approxi-
mation vector. Consideration of (29) and (30) gives
a system of ordinary differential equations, which
are solved using the Crank-Nicolson time integra-
tion scheme, as discussed in the following section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the ODE system
(29) and (30) can be explained as follows (Tunc, 2017):

(31)

where ts+1-ts=dt. Use of (31) makes Equations (29) and
(30) as in following forms:

𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
− 𝜀𝜀𝜀𝜀Ke𝛽𝛽𝛽𝛽ã = 0, (25)

and
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
+ βâ

àå𝐿𝐿𝐿𝐿ã𝛽𝛽𝛽𝛽ã = 0, (26)

where

Mèá
à = ê 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w

U
,

Kèá
à = ∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä

yyw
U 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (27)

L	èáâà = ê𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy

w

U

𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,

𝛽𝛽𝛽𝛽ã = (𝛽𝛽𝛽𝛽ìe5, 𝛽𝛽𝛽𝛽ì, 𝛽𝛽𝛽𝛽ìN5, 𝛽𝛽𝛽𝛽ìN7)å,

and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1,𝑚𝑚𝑚𝑚 + 2 for
the element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. In (25) and (26);
𝑀𝑀𝑀𝑀ã and 𝐾𝐾𝐾𝐾ã are (4 × 4) matrices and are
independent of time. 𝐿𝐿𝐿𝐿ã is the (4 × 4 × 4)
matrix, and 𝐿𝐿𝐿𝐿 can be transformed to a time
dependent matrix 𝑅𝑅𝑅𝑅 by using

𝑅𝑅𝑅𝑅IÄã = 	∑ 𝐿𝐿𝐿𝐿IÄ;ã 𝛽𝛽𝛽𝛽;ãIN7

;uIe5 . (28)

After the assembling process of each
element, the matrix form will finally be

𝑀𝑀𝑀𝑀∗ ÇÉ

Ç(
− 𝜀𝜀𝜀𝜀𝐾𝐾𝐾𝐾∗𝛽𝛽𝛽𝛽 = 0, (29)

and
𝑀𝑀𝑀𝑀∗	ÇÉ

Ç(
+ 𝑅𝑅𝑅𝑅∗𝛽𝛽𝛽𝛽 = 0, (30)

for the diffusion and conservation parts,
respectively. Here 𝑀𝑀𝑀𝑀∗, 	𝑅𝑅𝑅𝑅∗ and 𝐾𝐾𝐾𝐾∗ are (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) matrices and 𝛽𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time
approximation vector. Consideration of
(29) and (30) gives a system of ordinary
differential equations, which are solved
using the Crank-Nicolson time integration
scheme, as discussed in the following
section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the
ODE system (29) and (30) can be explained
as follows (Tunc, 2017):

𝛽𝛽𝛽𝛽 =
1
2 ({𝛽𝛽𝛽𝛽}ú 	+

{𝛽𝛽𝛽𝛽}úN5),	

	ÇÉ
Ç(

= 5
Ç(
({𝛽𝛽𝛽𝛽}úN5 − {𝛽𝛽𝛽𝛽}ú), (31)

where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes
Equations (29) and (30) as in following
forms:

[𝑀𝑀𝑀𝑀∗ − Ç(

7
	𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ +

	Ç(
7
𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}ú (32)

and
[𝑀𝑀𝑀𝑀∗ + Ç(

7
	𝑅𝑅𝑅𝑅úN5∗]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ − Ç(

7
𝑅𝑅𝑅𝑅ú∗]{𝛽𝛽𝛽𝛽}ú,

 (33)

where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent
of time while 𝑅𝑅𝑅𝑅∗ depends on time.

Moreover, to cope with difficulties
in the nonlinearity in the time dependent
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following
correction relation:

{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗), (34)

where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú.
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU,
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system:

𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U ,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥])
 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U).

By using the recursive relation in (32) - (33)
and the corrector relation in (34), the
diffusion and conservation parts of the
Burgers equation is solved under the
consideration of the splitting formulae
given in Equations (10), (14) and (15). The
algorithm of the proposed methods has been
presented in Algorithm 1. Computer codes
of the algorithm have been produced in
MATLAB R2016a.

(32)

𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
− 𝜀𝜀𝜀𝜀Ke𝛽𝛽𝛽𝛽ã = 0, (25)

and
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
+ βâ

àå𝐿𝐿𝐿𝐿ã𝛽𝛽𝛽𝛽ã = 0, (26)

where

Mèá
à = ê 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w

U
,

Kèá
à = ∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä

yyw
U 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (27)

L	èáâà = ê𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy

w

U

𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,

𝛽𝛽𝛽𝛽ã = (𝛽𝛽𝛽𝛽ìe5, 𝛽𝛽𝛽𝛽ì, 𝛽𝛽𝛽𝛽ìN5, 𝛽𝛽𝛽𝛽ìN7)å,

and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1,𝑚𝑚𝑚𝑚 + 2 for
the element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. In (25) and (26);
𝑀𝑀𝑀𝑀ã and 𝐾𝐾𝐾𝐾ã are (4 × 4) matrices and are
independent of time. 𝐿𝐿𝐿𝐿ã is the (4 × 4 × 4)
matrix, and 𝐿𝐿𝐿𝐿 can be transformed to a time
dependent matrix 𝑅𝑅𝑅𝑅 by using

𝑅𝑅𝑅𝑅IÄã = 	∑ 𝐿𝐿𝐿𝐿IÄ;ã 𝛽𝛽𝛽𝛽;ãIN7

;uIe5 . (28)

After the assembling process of each
element, the matrix form will finally be

𝑀𝑀𝑀𝑀∗ ÇÉ

Ç(
− 𝜀𝜀𝜀𝜀𝐾𝐾𝐾𝐾∗𝛽𝛽𝛽𝛽 = 0, (29)

and
𝑀𝑀𝑀𝑀∗	ÇÉ

Ç(
+ 𝑅𝑅𝑅𝑅∗𝛽𝛽𝛽𝛽 = 0, (30)

for the diffusion and conservation parts,
respectively. Here 𝑀𝑀𝑀𝑀∗, 	𝑅𝑅𝑅𝑅∗ and 𝐾𝐾𝐾𝐾∗ are (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) matrices and 𝛽𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time
approximation vector. Consideration of
(29) and (30) gives a system of ordinary
differential equations, which are solved
using the Crank-Nicolson time integration
scheme, as discussed in the following
section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the
ODE system (29) and (30) can be explained
as follows (Tunc, 2017):

𝛽𝛽𝛽𝛽 =
1
2 ({𝛽𝛽𝛽𝛽}ú 	+

{𝛽𝛽𝛽𝛽}úN5),	

	ÇÉ
Ç(

= 5
Ç(
({𝛽𝛽𝛽𝛽}úN5 − {𝛽𝛽𝛽𝛽}ú), (31)

where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes
Equations (29) and (30) as in following
forms:

[𝑀𝑀𝑀𝑀∗ − Ç(

7
	𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ +

	Ç(
7
𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}ú (32)

and
[𝑀𝑀𝑀𝑀∗ + Ç(

7
	𝑅𝑅𝑅𝑅úN5∗]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ − Ç(

7
𝑅𝑅𝑅𝑅ú∗]{𝛽𝛽𝛽𝛽}ú,

 (33)

where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent
of time while 𝑅𝑅𝑅𝑅∗ depends on time.

Moreover, to cope with difficulties
in the nonlinearity in the time dependent
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following
correction relation:

{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗), (34)

where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú.
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU,
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system:

𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U ,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥])
 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U).

By using the recursive relation in (32) - (33)
and the corrector relation in (34), the
diffusion and conservation parts of the
Burgers equation is solved under the
consideration of the splitting formulae
given in Equations (10), (14) and (15). The
algorithm of the proposed methods has been
presented in Algorithm 1. Computer codes
of the algorithm have been produced in
MATLAB R2016a.

(33)

where matrices M* and K* are indepen-
dent of time while R* depends on time.
Moreover, to cope with difficulties in the non-
linearity in the time dependent matrix R*(s+1),
we used the following correction relation:

𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
− 𝜀𝜀𝜀𝜀Ke𝛽𝛽𝛽𝛽ã = 0, (25)

and
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
+ βâ

àå𝐿𝐿𝐿𝐿ã𝛽𝛽𝛽𝛽ã = 0, (26)

where

Mèá
à = ê 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w

U
,

Kèá
à = ∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä

yyw
U 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (27)

L	èáâà = ê𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy

w

U

𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,

𝛽𝛽𝛽𝛽ã = (𝛽𝛽𝛽𝛽ìe5, 𝛽𝛽𝛽𝛽ì, 𝛽𝛽𝛽𝛽ìN5, 𝛽𝛽𝛽𝛽ìN7)å,

and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1,𝑚𝑚𝑚𝑚 + 2 for
the element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. In (25) and (26);
𝑀𝑀𝑀𝑀ã and 𝐾𝐾𝐾𝐾ã are (4 × 4) matrices and are
independent of time. 𝐿𝐿𝐿𝐿ã is the (4 × 4 × 4)
matrix, and 𝐿𝐿𝐿𝐿 can be transformed to a time
dependent matrix 𝑅𝑅𝑅𝑅 by using

𝑅𝑅𝑅𝑅IÄã = 	∑ 𝐿𝐿𝐿𝐿IÄ;ã 𝛽𝛽𝛽𝛽;ãIN7

;uIe5 . (28)

After the assembling process of each
element, the matrix form will finally be

𝑀𝑀𝑀𝑀∗ ÇÉ

Ç(
− 𝜀𝜀𝜀𝜀𝐾𝐾𝐾𝐾∗𝛽𝛽𝛽𝛽 = 0, (29)

and
𝑀𝑀𝑀𝑀∗	ÇÉ

Ç(
+ 𝑅𝑅𝑅𝑅∗𝛽𝛽𝛽𝛽 = 0, (30)

for the diffusion and conservation parts,
respectively. Here 𝑀𝑀𝑀𝑀∗, 	𝑅𝑅𝑅𝑅∗ and 𝐾𝐾𝐾𝐾∗ are (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) matrices and 𝛽𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time
approximation vector. Consideration of
(29) and (30) gives a system of ordinary
differential equations, which are solved
using the Crank-Nicolson time integration
scheme, as discussed in the following
section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the
ODE system (29) and (30) can be explained
as follows (Tunc, 2017):

𝛽𝛽𝛽𝛽 =
1
2 ({𝛽𝛽𝛽𝛽}ú 	+

{𝛽𝛽𝛽𝛽}úN5),	

	ÇÉ
Ç(

= 5
Ç(
({𝛽𝛽𝛽𝛽}úN5 − {𝛽𝛽𝛽𝛽}ú), (31)

where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes
Equations (29) and (30) as in following
forms:

[𝑀𝑀𝑀𝑀∗ − Ç(

7
	𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ +

	Ç(
7
𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}ú (32)

and
[𝑀𝑀𝑀𝑀∗ + Ç(

7
	𝑅𝑅𝑅𝑅úN5∗]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ − Ç(

7
𝑅𝑅𝑅𝑅ú∗]{𝛽𝛽𝛽𝛽}ú,

 (33)

where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent
of time while 𝑅𝑅𝑅𝑅∗ depends on time.

Moreover, to cope with difficulties
in the nonlinearity in the time dependent
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following
correction relation:

{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗), (34)

where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú.
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU,
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system:

𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U ,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥])
 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U).

By using the recursive relation in (32) - (33)
and the corrector relation in (34), the
diffusion and conservation parts of the
Burgers equation is solved under the
consideration of the splitting formulae
given in Equations (10), (14) and (15). The
algorithm of the proposed methods has been
presented in Algorithm 1. Computer codes
of the algorithm have been produced in
MATLAB R2016a.

(34)

𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
− 𝜀𝜀𝜀𝜀Ke𝛽𝛽𝛽𝛽ã = 0, (25)

and
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
+ βâ

àå𝐿𝐿𝐿𝐿ã𝛽𝛽𝛽𝛽ã = 0, (26)

where

Mèá
à = ê 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w

U
,

Kèá
à = ∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä

yyw
U 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (27)

L	èáâà = ê𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy

w

U

𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,

𝛽𝛽𝛽𝛽ã = (𝛽𝛽𝛽𝛽ìe5, 𝛽𝛽𝛽𝛽ì, 𝛽𝛽𝛽𝛽ìN5, 𝛽𝛽𝛽𝛽ìN7)å,

and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1,𝑚𝑚𝑚𝑚 + 2 for
the element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. In (25) and (26);
𝑀𝑀𝑀𝑀ã and 𝐾𝐾𝐾𝐾ã are (4 × 4) matrices and are
independent of time. 𝐿𝐿𝐿𝐿ã is the (4 × 4 × 4)
matrix, and 𝐿𝐿𝐿𝐿 can be transformed to a time
dependent matrix 𝑅𝑅𝑅𝑅 by using

𝑅𝑅𝑅𝑅IÄã = 	∑ 𝐿𝐿𝐿𝐿IÄ;ã 𝛽𝛽𝛽𝛽;ãIN7

;uIe5 . (28)

After the assembling process of each
element, the matrix form will finally be

𝑀𝑀𝑀𝑀∗ ÇÉ

Ç(
− 𝜀𝜀𝜀𝜀𝐾𝐾𝐾𝐾∗𝛽𝛽𝛽𝛽 = 0, (29)

and
𝑀𝑀𝑀𝑀∗	ÇÉ

Ç(
+ 𝑅𝑅𝑅𝑅∗𝛽𝛽𝛽𝛽 = 0, (30)

for the diffusion and conservation parts,
respectively. Here 𝑀𝑀𝑀𝑀∗, 	𝑅𝑅𝑅𝑅∗ and 𝐾𝐾𝐾𝐾∗ are (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) matrices and 𝛽𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time
approximation vector. Consideration of
(29) and (30) gives a system of ordinary
differential equations, which are solved
using the Crank-Nicolson time integration
scheme, as discussed in the following
section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the
ODE system (29) and (30) can be explained
as follows (Tunc, 2017):

𝛽𝛽𝛽𝛽 =
1
2 ({𝛽𝛽𝛽𝛽}ú 	+

{𝛽𝛽𝛽𝛽}úN5),	

	ÇÉ
Ç(

= 5
Ç(
({𝛽𝛽𝛽𝛽}úN5 − {𝛽𝛽𝛽𝛽}ú), (31)

where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes
Equations (29) and (30) as in following
forms:

[𝑀𝑀𝑀𝑀∗ − Ç(

7
	𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ +

	Ç(
7
𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}ú (32)

and
[𝑀𝑀𝑀𝑀∗ + Ç(

7
	𝑅𝑅𝑅𝑅úN5∗]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ − Ç(

7
𝑅𝑅𝑅𝑅ú∗]{𝛽𝛽𝛽𝛽}ú,

 (33)

where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent
of time while 𝑅𝑅𝑅𝑅∗ depends on time.

Moreover, to cope with difficulties
in the nonlinearity in the time dependent
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following
correction relation:

{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗), (34)

where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú.
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU,
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system:

𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U ,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥])
 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U).

By using the recursive relation in (32) - (33)
and the corrector relation in (34), the
diffusion and conservation parts of the
Burgers equation is solved under the
consideration of the splitting formulae
given in Equations (10), (14) and (15). The
algorithm of the proposed methods has been
presented in Algorithm 1. Computer codes
of the algorithm have been produced in
MATLAB R2016a.

𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
− 𝜀𝜀𝜀𝜀Ke𝛽𝛽𝛽𝛽ã = 0, (25)

and
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
+ βâ

àå𝐿𝐿𝐿𝐿ã𝛽𝛽𝛽𝛽ã = 0, (26)

where

Mèá
à = ê 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w

U
,

Kèá
à = ∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä

yyw
U 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (27)

L	èáâà = ê𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy

w

U

𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,

𝛽𝛽𝛽𝛽ã = (𝛽𝛽𝛽𝛽ìe5, 𝛽𝛽𝛽𝛽ì, 𝛽𝛽𝛽𝛽ìN5, 𝛽𝛽𝛽𝛽ìN7)å,

and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1,𝑚𝑚𝑚𝑚 + 2 for
the element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. In (25) and (26);
𝑀𝑀𝑀𝑀ã and 𝐾𝐾𝐾𝐾ã are (4 × 4) matrices and are
independent of time. 𝐿𝐿𝐿𝐿ã is the (4 × 4 × 4)
matrix, and 𝐿𝐿𝐿𝐿 can be transformed to a time
dependent matrix 𝑅𝑅𝑅𝑅 by using

𝑅𝑅𝑅𝑅IÄã = 	∑ 𝐿𝐿𝐿𝐿IÄ;ã 𝛽𝛽𝛽𝛽;ãIN7

;uIe5 . (28)

After the assembling process of each
element, the matrix form will finally be

𝑀𝑀𝑀𝑀∗ ÇÉ

Ç(
− 𝜀𝜀𝜀𝜀𝐾𝐾𝐾𝐾∗𝛽𝛽𝛽𝛽 = 0, (29)

and
𝑀𝑀𝑀𝑀∗	ÇÉ

Ç(
+ 𝑅𝑅𝑅𝑅∗𝛽𝛽𝛽𝛽 = 0, (30)

for the diffusion and conservation parts,
respectively. Here 𝑀𝑀𝑀𝑀∗, 	𝑅𝑅𝑅𝑅∗ and 𝐾𝐾𝐾𝐾∗ are (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) matrices and 𝛽𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time
approximation vector. Consideration of
(29) and (30) gives a system of ordinary
differential equations, which are solved
using the Crank-Nicolson time integration
scheme, as discussed in the following
section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the
ODE system (29) and (30) can be explained
as follows (Tunc, 2017):

𝛽𝛽𝛽𝛽 =
1
2 ({𝛽𝛽𝛽𝛽}ú 	+

{𝛽𝛽𝛽𝛽}úN5),	

	ÇÉ
Ç(

= 5
Ç(
({𝛽𝛽𝛽𝛽}úN5 − {𝛽𝛽𝛽𝛽}ú), (31)

where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes
Equations (29) and (30) as in following
forms:

[𝑀𝑀𝑀𝑀∗ − Ç(

7
	𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ +

	Ç(
7
𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}ú (32)

and
[𝑀𝑀𝑀𝑀∗ + Ç(

7
	𝑅𝑅𝑅𝑅úN5∗]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ − Ç(

7
𝑅𝑅𝑅𝑅ú∗]{𝛽𝛽𝛽𝛽}ú,

 (33)

where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent
of time while 𝑅𝑅𝑅𝑅∗ depends on time.

Moreover, to cope with difficulties
in the nonlinearity in the time dependent
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following
correction relation:

{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗), (34)

where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú.
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU,
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system:

𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U ,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥])
 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U).

By using the recursive relation in (32) - (33)
and the corrector relation in (34), the
diffusion and conservation parts of the
Burgers equation is solved under the
consideration of the splitting formulae
given in Equations (10), (14) and (15). The
algorithm of the proposed methods has been
presented in Algorithm 1. Computer codes
of the algorithm have been produced in
MATLAB R2016a.

By using the recursive relation in (32) - (33) and the
corrector relation in (34), the diffusion and conservation
parts of the Burgers equation is solved under the consid-
eration of the splitting formulae given in Equations (10),
(14) and (15). The algorithm of the proposed methods
has been presented in Algorithm 1. Computer codes of
the algorithm have been produced in MATLAB R2016a.

Table 1. Values of approximate function and its
derivatives at the end points of the element.

Table 1. Values of approximate function and its derivatives at the end points of the element.
𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥Ie7 𝑥𝑥𝑥𝑥Ie5 𝑥𝑥𝑥𝑥I 𝑥𝑥𝑥𝑥IN5 𝑥𝑥𝑥𝑥IN7
𝜑𝜑𝜑𝜑^ 0 1 4 1 0

 𝜑𝜑𝜑𝜑^
y 0 -3/h 0 3/ℎ 0

 𝜑𝜑𝜑𝜑^
yy	 0 6/h2 -12/h2 6/h2 0

Algorithm 1. Algorithm to find numerical solutions of the Burgers equation
by using splitting methods (7) using (6) for a time step

Begin
Initialize spatial interval, time interval, element numbers
Initialize initial and boundary conditions
Procedure

1. Calculate local matrices given in (25)-(26).
2. Decide the type of the splitting approach (say Strang and ABA).
3. Produce a time integration loop for the discrete relations (32)-(33).
4. Evaluate the solution of the diffusion part (32) by considering the

given initial condition.
5. Evaluate the solution of the conservation part (33) by considering

the initial guess which is produced in the last step.
6. Evaluate the solution of the diffusion part (32) by considering the

initial guess which is produced in the last step.
7. The produced solution in step 6 is the final solution.
8. End of the time integration loop.

End

5. Stability analysis
The von Neumann stability analysis is one
of the most widely used methods for
analyzing the stability of numerical
methods that are meant to approximately
solve partial differential equations (Kutluay
et al., 2004; Soliman, 2012, Sari & Tunc,
2017). As pointed out in the corresponding
literature, this stability method is more
suitable for the algebraic equation system
studied here. The stability of the current
numerical approach directly depends on the
individual stability of the diffusion and
conservation parts of the Burgers equation.
Thus, to understand stability condition of
each subproblem, we have analyzed
Equations (32)-(33) using the von Neumann
theory with the Fourier growth factor
defined by

 𝛽𝛽𝛽𝛽úü = 𝛽𝛽𝛽𝛽†ü𝑒𝑒𝑒𝑒Iú¢w , (35)
where 𝜏𝜏𝜏𝜏 and ℎ	 stand for the mode number
and the element size, respectively, which

are selected for recursive approximations
(32)-(33). To evaluate a typical row of (33),
β§N5 and β§ values in the time dependent
matrices 𝑅𝑅𝑅𝑅úN5∗ and 𝑅𝑅𝑅𝑅ú∗ are considered to be
locally constant and equal to	𝑝𝑝𝑝𝑝, as is the case
in the literature (Sari & Tunc, 2017; Tunc,
2017). The stability analysis of the diffusion
and the conservation parts is performed,
respectively, as in the following
subsections.

5.1 Stability of the Diffusion Part
By considering the entries of the included
matrices in Equation (32), a typical row of
Equation (32) can be stated as

𝑐𝑐𝑐𝑐5β§eSßN5 + 𝑐𝑐𝑐𝑐7β§e7ßN5 + 𝑐𝑐𝑐𝑐Sβ§e5ßN5 + 𝑐𝑐𝑐𝑐Rβ§ßN5 +
𝑐𝑐𝑐𝑐Wβ§N5ßN5 + 𝑐𝑐𝑐𝑐Vβ§N7ßN5 + 𝑐𝑐𝑐𝑐®β§NSßN5 	= 𝑐𝑐𝑐𝑐Tβ§eSß +
𝑐𝑐𝑐𝑐©β§e7ß + 𝑐𝑐𝑐𝑐5Uβ§e5ß + 𝑐𝑐𝑐𝑐55β§ß + 𝑐𝑐𝑐𝑐57β§N5ß +
𝑐𝑐𝑐𝑐5Sβ§N7ß + 𝑐𝑐𝑐𝑐5Rβ§NSß ,

5. Stability analysis

The von Neumann stability analysis is one of the most
widely used methods for analyzing the stability of nu-
merical methods that are meant to approximately solve
partial differential equations (Kutluay et al., 2004; So-
liman, 2012, Sari & Tunc, 2017). As pointed out in the
corresponding literature, this stability method is more
suitable for the algebraic equation system studied here.

Murat Sari, Huseyin Tunc, Muaz Seydaoglu 4

where is the corrected from of Note that
to find first approximation we need to solve the
following linear system:

𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
− 𝜀𝜀𝜀𝜀Ke𝛽𝛽𝛽𝛽ã = 0, (25)

and
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
+ βâ

àå𝐿𝐿𝐿𝐿ã𝛽𝛽𝛽𝛽ã = 0, (26)

where

Mèá
à = ê 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w

U
,

Kèá
à = ∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä

yyw
U 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (27)

L	èáâà = ê𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy

w

U

𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,

𝛽𝛽𝛽𝛽ã = (𝛽𝛽𝛽𝛽ìe5, 𝛽𝛽𝛽𝛽ì, 𝛽𝛽𝛽𝛽ìN5, 𝛽𝛽𝛽𝛽ìN7)å,

and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1,𝑚𝑚𝑚𝑚 + 2 for
the element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. In (25) and (26);
𝑀𝑀𝑀𝑀ã and 𝐾𝐾𝐾𝐾ã are (4 × 4) matrices and are
independent of time. 𝐿𝐿𝐿𝐿ã is the (4 × 4 × 4)
matrix, and 𝐿𝐿𝐿𝐿 can be transformed to a time
dependent matrix 𝑅𝑅𝑅𝑅 by using

𝑅𝑅𝑅𝑅IÄã = 	∑ 𝐿𝐿𝐿𝐿IÄ;ã 𝛽𝛽𝛽𝛽;ãIN7

;uIe5 . (28)

After the assembling process of each
element, the matrix form will finally be

𝑀𝑀𝑀𝑀∗ ÇÉ

Ç(
− 𝜀𝜀𝜀𝜀𝐾𝐾𝐾𝐾∗𝛽𝛽𝛽𝛽 = 0, (29)

and
𝑀𝑀𝑀𝑀∗	ÇÉ

Ç(
+ 𝑅𝑅𝑅𝑅∗𝛽𝛽𝛽𝛽 = 0, (30)

for the diffusion and conservation parts,
respectively. Here 𝑀𝑀𝑀𝑀∗, 	𝑅𝑅𝑅𝑅∗ and 𝐾𝐾𝐾𝐾∗ are (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) matrices and 𝛽𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time
approximation vector. Consideration of
(29) and (30) gives a system of ordinary
differential equations, which are solved
using the Crank-Nicolson time integration
scheme, as discussed in the following
section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the
ODE system (29) and (30) can be explained
as follows (Tunc, 2017):

𝛽𝛽𝛽𝛽 =
1
2 ({𝛽𝛽𝛽𝛽}ú 	+

{𝛽𝛽𝛽𝛽}úN5),	

	ÇÉ
Ç(

= 5
Ç(
({𝛽𝛽𝛽𝛽}úN5 − {𝛽𝛽𝛽𝛽}ú), (31)

where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes
Equations (29) and (30) as in following
forms:

[𝑀𝑀𝑀𝑀∗ − Ç(

7
	𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ +

	Ç(
7
𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}ú (32)

and
[𝑀𝑀𝑀𝑀∗ + Ç(

7
	𝑅𝑅𝑅𝑅úN5∗]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ − Ç(

7
𝑅𝑅𝑅𝑅ú∗]{𝛽𝛽𝛽𝛽}ú,

 (33)

where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent
of time while 𝑅𝑅𝑅𝑅∗ depends on time.

Moreover, to cope with difficulties
in the nonlinearity in the time dependent
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following
correction relation:

{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗), (34)

where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú.
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU,
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system:

𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U ,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥])
 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U).

By using the recursive relation in (32) - (33)
and the corrector relation in (34), the
diffusion and conservation parts of the
Burgers equation is solved under the
consideration of the splitting formulae
given in Equations (10), (14) and (15). The
algorithm of the proposed methods has been
presented in Algorithm 1. Computer codes
of the algorithm have been produced in
MATLAB R2016a.

𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
− 𝜀𝜀𝜀𝜀Ke𝛽𝛽𝛽𝛽ã = 0, (25)

and
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
+ βâ

àå𝐿𝐿𝐿𝐿ã𝛽𝛽𝛽𝛽ã = 0, (26)

where

Mèá
à = ê 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w

U
,

Kèá
à = ∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä

yyw
U 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (27)

L	èáâà = ê𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy

w

U

𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,

𝛽𝛽𝛽𝛽ã = (𝛽𝛽𝛽𝛽ìe5, 𝛽𝛽𝛽𝛽ì, 𝛽𝛽𝛽𝛽ìN5, 𝛽𝛽𝛽𝛽ìN7)å,

and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1,𝑚𝑚𝑚𝑚 + 2 for
the element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. In (25) and (26);
𝑀𝑀𝑀𝑀ã and 𝐾𝐾𝐾𝐾ã are (4 × 4) matrices and are
independent of time. 𝐿𝐿𝐿𝐿ã is the (4 × 4 × 4)
matrix, and 𝐿𝐿𝐿𝐿 can be transformed to a time
dependent matrix 𝑅𝑅𝑅𝑅 by using

𝑅𝑅𝑅𝑅IÄã = 	∑ 𝐿𝐿𝐿𝐿IÄ;ã 𝛽𝛽𝛽𝛽;ãIN7

;uIe5 . (28)

After the assembling process of each
element, the matrix form will finally be

𝑀𝑀𝑀𝑀∗ ÇÉ

Ç(
− 𝜀𝜀𝜀𝜀𝐾𝐾𝐾𝐾∗𝛽𝛽𝛽𝛽 = 0, (29)

and
𝑀𝑀𝑀𝑀∗	ÇÉ

Ç(
+ 𝑅𝑅𝑅𝑅∗𝛽𝛽𝛽𝛽 = 0, (30)

for the diffusion and conservation parts,
respectively. Here 𝑀𝑀𝑀𝑀∗, 	𝑅𝑅𝑅𝑅∗ and 𝐾𝐾𝐾𝐾∗ are (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) matrices and 𝛽𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time
approximation vector. Consideration of
(29) and (30) gives a system of ordinary
differential equations, which are solved
using the Crank-Nicolson time integration
scheme, as discussed in the following
section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the
ODE system (29) and (30) can be explained
as follows (Tunc, 2017):

𝛽𝛽𝛽𝛽 =
1
2 ({𝛽𝛽𝛽𝛽}ú 	+

{𝛽𝛽𝛽𝛽}úN5),	

	ÇÉ
Ç(

= 5
Ç(
({𝛽𝛽𝛽𝛽}úN5 − {𝛽𝛽𝛽𝛽}ú), (31)

where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes
Equations (29) and (30) as in following
forms:

[𝑀𝑀𝑀𝑀∗ − Ç(

7
	𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ +

	Ç(
7
𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}ú (32)

and
[𝑀𝑀𝑀𝑀∗ + Ç(

7
	𝑅𝑅𝑅𝑅úN5∗]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ − Ç(

7
𝑅𝑅𝑅𝑅ú∗]{𝛽𝛽𝛽𝛽}ú,

 (33)

where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent
of time while 𝑅𝑅𝑅𝑅∗ depends on time.

Moreover, to cope with difficulties
in the nonlinearity in the time dependent
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following
correction relation:

{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗), (34)

where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú.
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU,
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system:

𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U ,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥])
 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U).

By using the recursive relation in (32) - (33)
and the corrector relation in (34), the
diffusion and conservation parts of the
Burgers equation is solved under the
consideration of the splitting formulae
given in Equations (10), (14) and (15). The
algorithm of the proposed methods has been
presented in Algorithm 1. Computer codes
of the algorithm have been produced in
MATLAB R2016a.

𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
− 𝜀𝜀𝜀𝜀Ke𝛽𝛽𝛽𝛽ã = 0, (25)

and
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
+ βâ

àå𝐿𝐿𝐿𝐿ã𝛽𝛽𝛽𝛽ã = 0, (26)

where

Mèá
à = ê 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w

U
,

Kèá
à = ∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä

yyw
U 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (27)

L	èáâà = ê𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy

w

U

𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,

𝛽𝛽𝛽𝛽ã = (𝛽𝛽𝛽𝛽ìe5, 𝛽𝛽𝛽𝛽ì, 𝛽𝛽𝛽𝛽ìN5, 𝛽𝛽𝛽𝛽ìN7)å,

and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1,𝑚𝑚𝑚𝑚 + 2 for
the element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. In (25) and (26);
𝑀𝑀𝑀𝑀ã and 𝐾𝐾𝐾𝐾ã are (4 × 4) matrices and are
independent of time. 𝐿𝐿𝐿𝐿ã is the (4 × 4 × 4)
matrix, and 𝐿𝐿𝐿𝐿 can be transformed to a time
dependent matrix 𝑅𝑅𝑅𝑅 by using

𝑅𝑅𝑅𝑅IÄã = 	∑ 𝐿𝐿𝐿𝐿IÄ;ã 𝛽𝛽𝛽𝛽;ãIN7

;uIe5 . (28)

After the assembling process of each
element, the matrix form will finally be

𝑀𝑀𝑀𝑀∗ ÇÉ

Ç(
− 𝜀𝜀𝜀𝜀𝐾𝐾𝐾𝐾∗𝛽𝛽𝛽𝛽 = 0, (29)

and
𝑀𝑀𝑀𝑀∗	ÇÉ

Ç(
+ 𝑅𝑅𝑅𝑅∗𝛽𝛽𝛽𝛽 = 0, (30)

for the diffusion and conservation parts,
respectively. Here 𝑀𝑀𝑀𝑀∗, 	𝑅𝑅𝑅𝑅∗ and 𝐾𝐾𝐾𝐾∗ are (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) matrices and 𝛽𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time
approximation vector. Consideration of
(29) and (30) gives a system of ordinary
differential equations, which are solved
using the Crank-Nicolson time integration
scheme, as discussed in the following
section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the
ODE system (29) and (30) can be explained
as follows (Tunc, 2017):

𝛽𝛽𝛽𝛽 =
1
2 ({𝛽𝛽𝛽𝛽}ú 	+

{𝛽𝛽𝛽𝛽}úN5),	

	ÇÉ
Ç(

= 5
Ç(
({𝛽𝛽𝛽𝛽}úN5 − {𝛽𝛽𝛽𝛽}ú), (31)

where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes
Equations (29) and (30) as in following
forms:

[𝑀𝑀𝑀𝑀∗ − Ç(

7
	𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ +

	Ç(
7
𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}ú (32)

and
[𝑀𝑀𝑀𝑀∗ + Ç(

7
	𝑅𝑅𝑅𝑅úN5∗]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ − Ç(

7
𝑅𝑅𝑅𝑅ú∗]{𝛽𝛽𝛽𝛽}ú,

 (33)

where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent
of time while 𝑅𝑅𝑅𝑅∗ depends on time.

Moreover, to cope with difficulties
in the nonlinearity in the time dependent
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following
correction relation:

{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗), (34)

where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú.
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU,
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system:

𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U ,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥])
 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U).

By using the recursive relation in (32) - (33)
and the corrector relation in (34), the
diffusion and conservation parts of the
Burgers equation is solved under the
consideration of the splitting formulae
given in Equations (10), (14) and (15). The
algorithm of the proposed methods has been
presented in Algorithm 1. Computer codes
of the algorithm have been produced in
MATLAB R2016a.

𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
− 𝜀𝜀𝜀𝜀Ke𝛽𝛽𝛽𝛽ã = 0, (25)

and
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
+ βâ

àå𝐿𝐿𝐿𝐿ã𝛽𝛽𝛽𝛽ã = 0, (26)

where

Mèá
à = ê 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w

U
,

Kèá
à = ∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä

yyw
U 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (27)

L	èáâà = ê𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy

w

U

𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,

𝛽𝛽𝛽𝛽ã = (𝛽𝛽𝛽𝛽ìe5, 𝛽𝛽𝛽𝛽ì, 𝛽𝛽𝛽𝛽ìN5, 𝛽𝛽𝛽𝛽ìN7)å,

and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1,𝑚𝑚𝑚𝑚 + 2 for
the element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. In (25) and (26);
𝑀𝑀𝑀𝑀ã and 𝐾𝐾𝐾𝐾ã are (4 × 4) matrices and are
independent of time. 𝐿𝐿𝐿𝐿ã is the (4 × 4 × 4)
matrix, and 𝐿𝐿𝐿𝐿 can be transformed to a time
dependent matrix 𝑅𝑅𝑅𝑅 by using

𝑅𝑅𝑅𝑅IÄã = 	∑ 𝐿𝐿𝐿𝐿IÄ;ã 𝛽𝛽𝛽𝛽;ãIN7

;uIe5 . (28)

After the assembling process of each
element, the matrix form will finally be

𝑀𝑀𝑀𝑀∗ ÇÉ

Ç(
− 𝜀𝜀𝜀𝜀𝐾𝐾𝐾𝐾∗𝛽𝛽𝛽𝛽 = 0, (29)

and
𝑀𝑀𝑀𝑀∗	ÇÉ

Ç(
+ 𝑅𝑅𝑅𝑅∗𝛽𝛽𝛽𝛽 = 0, (30)

for the diffusion and conservation parts,
respectively. Here 𝑀𝑀𝑀𝑀∗, 	𝑅𝑅𝑅𝑅∗ and 𝐾𝐾𝐾𝐾∗ are (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) matrices and 𝛽𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time
approximation vector. Consideration of
(29) and (30) gives a system of ordinary
differential equations, which are solved
using the Crank-Nicolson time integration
scheme, as discussed in the following
section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the
ODE system (29) and (30) can be explained
as follows (Tunc, 2017):

𝛽𝛽𝛽𝛽 =
1
2 ({𝛽𝛽𝛽𝛽}ú 	+

{𝛽𝛽𝛽𝛽}úN5),	

	ÇÉ
Ç(

= 5
Ç(
({𝛽𝛽𝛽𝛽}úN5 − {𝛽𝛽𝛽𝛽}ú), (31)

where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes
Equations (29) and (30) as in following
forms:

[𝑀𝑀𝑀𝑀∗ − Ç(

7
	𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ +

	Ç(
7
𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}ú (32)

and
[𝑀𝑀𝑀𝑀∗ + Ç(

7
	𝑅𝑅𝑅𝑅úN5∗]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ − Ç(

7
𝑅𝑅𝑅𝑅ú∗]{𝛽𝛽𝛽𝛽}ú,

 (33)

where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent
of time while 𝑅𝑅𝑅𝑅∗ depends on time.

Moreover, to cope with difficulties
in the nonlinearity in the time dependent
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following
correction relation:

{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗), (34)

where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú.
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU,
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system:

𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U ,
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U)

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥])
 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U).

By using the recursive relation in (32) - (33)
and the corrector relation in (34), the
diffusion and conservation parts of the
Burgers equation is solved under the
consideration of the splitting formulae
given in Equations (10), (14) and (15). The
algorithm of the proposed methods has been
presented in Algorithm 1. Computer codes
of the algorithm have been produced in
MATLAB R2016a.

Table 1. Values of approximate function and its derivatives at the end points of the element.
𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥^e7 𝑥𝑥𝑥𝑥^e5 𝑥𝑥𝑥𝑥^ 𝑥𝑥𝑥𝑥^N5 𝑥𝑥𝑥𝑥^N7
𝜑𝜑𝜑𝜑^ 0 1 4 1 0

 𝜑𝜑𝜑𝜑^
y 0 -3/h 0 3/ℎ 0

 𝜑𝜑𝜑𝜑^
yy	 0 6/h2 -12/h2 6/h2 0

Algorithm 1. Algorithm to find numerical solutions of the Burgers equation
by using splitting methods (7) using (6) for a time step

Begin
Initialize spatial interval, time interval, element numbers
Initialize initial and boundary conditions
Procedure

1. Calculate local matrices given in (25)-(26).
2. Decide the type of the splitting approach (say Strang and ABA).
3. Produce a time integration loop for the discrete relations (32)-(33).
4. Evaluate the solution of the diffusion part (32) by considering the

given initial condition.
5. Evaluate the solution of the conservation part (33) by considering

the initial guess which is produced in the last step.
6. Evaluate the solution of the diffusion part (32) by considering the

initial guess which is produced in the last step.
7. The produced solution in step 6 is the final solution.
8. End of the time integration loop.

End

5. Stability analysis
The von Neumann stability analysis is one
of the most widely used methods for
analyzing the stability of numerical
methods that are meant to approximately
solve partial differential equations (Kutluay
et al., 2004; Soliman, 2012, Sari & Tunc,
2017). As pointed out in the corresponding
literature, this stability method is more
suitable for the algebraic equation system
studied here. The stability of the current
numerical approach directly depends on the
individual stability of the diffusion and
conservation parts of the Burgers equation.
Thus, to understand stability condition of
each subproblem, we have analyzed
Equations (32)-(33) using the von Neumann
theory with the Fourier growth factor
defined by
 𝛽𝛽𝛽𝛽úü = 𝛽𝛽𝛽𝛽†ü𝑒𝑒𝑒𝑒Iú¢w , (35)
where 𝜏𝜏𝜏𝜏 and ℎ	 stand for the mode number
and the element size, respectively, which
are selected for recursive approximations

(32)-(33). To evaluate a typical row of (33),
β§N5 and β§ values in the time dependent
matrices 𝑅𝑅𝑅𝑅úN5∗ and 𝑅𝑅𝑅𝑅ú∗ are considered to be
locally constant and equal to	𝑝𝑝𝑝𝑝, as is the case
in the literature (Sari & Tunc, 2017; Tunc,
2017). The stability analysis of the diffusion
and the conservation parts is performed,
respectively, as in the following
subsections.

5.1 Stability of the Diffusion Part
By considering the entries of the included
matrices in Equation (32), a typical row of
Equation (32) can be stated as

𝑐𝑐𝑐𝑐5β§eSßN5 + 𝑐𝑐𝑐𝑐7β§e7ßN5 + 𝑐𝑐𝑐𝑐Sβ§e5ßN5 + 𝑐𝑐𝑐𝑐Rβ§ßN5 +
𝑐𝑐𝑐𝑐Wβ§N5ßN5 + 𝑐𝑐𝑐𝑐Vβ§N7ßN5 + 𝑐𝑐𝑐𝑐®β§NSßN5 	= 𝑐𝑐𝑐𝑐Tβ§eSß +
𝑐𝑐𝑐𝑐©β§e7ß + 𝑐𝑐𝑐𝑐5Uβ§e5ß + 𝑐𝑐𝑐𝑐55β§ß + 𝑐𝑐𝑐𝑐57β§N5ß +
𝑐𝑐𝑐𝑐5Sβ§N7ß + 𝑐𝑐𝑐𝑐5Rβ§NSß , (36)

where
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,

The stability of the current numerical approach
directly depends on the individual stability of the
diffusion and conservation parts of the Burgers
equation. Thus, to understand stability condition of each
subproblem, we have analyzed Equations (32)-(33)using
the von Neumann theory with the Fourier growth factor
defined by

where τ and h stand for the mode number and the
element size, respectively, which are selected for
recursive approximations (32)-(33). To evaluate a
typical row of (33), β(s+1) and βs values in the time
dependent matrices R*

(s+1)and Rs
* are considered to be

locally constant and equal to p, as is the case in the
literature (Sari & Tunc, 2017; Tunc, 2017). The
stability analysis of the diffusion and the conservation
parts is performed, respectively, as in the following
subsections.

5.1 Stability of the Diffusion Part
By considering the entries of the included matrices in
Equation (32), a typical row of Equation (32) can be
stated as

(35)

Table 1. Values of approximate function and its derivatives at the end points of the element.
𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥Ie7 𝑥𝑥𝑥𝑥Ie5 𝑥𝑥𝑥𝑥I 𝑥𝑥𝑥𝑥IN5 𝑥𝑥𝑥𝑥IN7
𝜑𝜑𝜑𝜑^ 0 1 4 1 0

 𝜑𝜑𝜑𝜑^
y 0 -3/h 0 3/ℎ 0

 𝜑𝜑𝜑𝜑^
yy	 0 6/h2 -12/h2 6/h2 0

Algorithm 1. Algorithm to find numerical solutions of the Burgers equation
by using splitting methods (7) using (6) for a time step

Begin
Initialize spatial interval, time interval, element numbers
Initialize initial and boundary conditions
Procedure

1. Calculate local matrices given in (25)-(26).
2. Decide the type of the splitting approach (say Strang and ABA).
3. Produce a time integration loop for the discrete relations (32)-(33).
4. Evaluate the solution of the diffusion part (32) by considering the

given initial condition.
5. Evaluate the solution of the conservation part (33) by considering

the initial guess which is produced in the last step.
6. Evaluate the solution of the diffusion part (32) by considering the

initial guess which is produced in the last step.
7. The produced solution in step 6 is the final solution.
8. End of the time integration loop.

End

5. Stability analysis
The von Neumann stability analysis is one
of the most widely used methods for
analyzing the stability of numerical
methods that are meant to approximately
solve partial differential equations (Kutluay
et al., 2004; Soliman, 2012, Sari & Tunc,
2017). As pointed out in the corresponding
literature, this stability method is more
suitable for the algebraic equation system
studied here. The stability of the current
numerical approach directly depends on the
individual stability of the diffusion and
conservation parts of the Burgers equation.
Thus, to understand stability condition of
each subproblem, we have analyzed
Equations (32)-(33) using the von Neumann
theory with the Fourier growth factor
defined by

 𝛽𝛽𝛽𝛽úü = 𝛽𝛽𝛽𝛽†ü𝑒𝑒𝑒𝑒Iú¢w , (35)
where 𝜏𝜏𝜏𝜏 and ℎ	 stand for the mode number
and the element size, respectively, which

are selected for recursive approximations
(32)-(33). To evaluate a typical row of (33),
β§N5 and β§ values in the time dependent
matrices 𝑅𝑅𝑅𝑅úN5∗ and 𝑅𝑅𝑅𝑅ú∗ are considered to be
locally constant and equal to	𝑝𝑝𝑝𝑝, as is the case
in the literature (Sari & Tunc, 2017; Tunc,
2017). The stability analysis of the diffusion
and the conservation parts is performed,
respectively, as in the following
subsections.

5.1 Stability of the Diffusion Part
By considering the entries of the included
matrices in Equation (32), a typical row of
Equation (32) can be stated as

𝑐𝑐𝑐𝑐5β§eSßN5 + 𝑐𝑐𝑐𝑐7β§e7ßN5 + 𝑐𝑐𝑐𝑐Sβ§e5ßN5 + 𝑐𝑐𝑐𝑐Rβ§ßN5 +
𝑐𝑐𝑐𝑐Wβ§N5ßN5 + 𝑐𝑐𝑐𝑐Vβ§N7ßN5 + 𝑐𝑐𝑐𝑐®β§NSßN5 	= 𝑐𝑐𝑐𝑐Tβ§eSß +
𝑐𝑐𝑐𝑐©β§e7ß + 𝑐𝑐𝑐𝑐5Uβ§e5ß + 𝑐𝑐𝑐𝑐55β§ß + 𝑐𝑐𝑐𝑐57β§N5ß +
𝑐𝑐𝑐𝑐5Sβ§N7ß + 𝑐𝑐𝑐𝑐5Rβ§NSß ,

(36)

wherewhere
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 ,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 ,
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt .

Substituting (35) into (36) and using the
Euler expansion for exponential terms leads
to the following relation:

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß, (38)

where

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) +
 (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) +
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5.

Equation (38) can be rewritten as follows:

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß, (39)
where 𝑧𝑧𝑧𝑧 is the amplification factor of the
iteration (32). Iteration (32) is stable if the
modulus of the amplification factor is less
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1.
 Thus, iteration (32) for the diffusion
system is unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be
expressed as given in Equation (36) with the
following coefficients:

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S,

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7,
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
. (40)

Writing (35) into (36) with the considered
coefficients (40) and with the use of the
Euler expansion leads to

 (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,

where

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ).

It is obvious that the amplification factor
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition.
Hence, iteration (33) for the conservation
part of Equation (1) is unconditionally
stable. In conclusion, the splitting iteration
system (32)-(33) is thus unconditionally
stable.

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us
consider Burgers Equation (1) with the
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1 (42)
and homogeneous Dirichlet boundary
conditions

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	 (43)
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0. (44)
The exact solution of (1) under the
consideration of cases (42)-(44) given by
Cole (1951) is

(37)

Substituting (35) into (36) and using the Euler expansion
for exponential terms leads to the following relation:

where
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 ,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 ,
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt .

Substituting (35) into (36) and using the
Euler expansion for exponential terms leads
to the following relation:

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß, (38)

where

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) +
 (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) +
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5.

Equation (38) can be rewritten as follows:

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß, (39)
where 𝑧𝑧𝑧𝑧 is the amplification factor of the
iteration (32). Iteration (32) is stable if the
modulus of the amplification factor is less
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1.
 Thus, iteration (32) for the diffusion
system is unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be
expressed as given in Equation (36) with the
following coefficients:

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S,

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7,
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
. (40)

Writing (35) into (36) with the considered
coefficients (40) and with the use of the
Euler expansion leads to

 (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,

where

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ).

It is obvious that the amplification factor
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition.
Hence, iteration (33) for the conservation
part of Equation (1) is unconditionally
stable. In conclusion, the splitting iteration
system (32)-(33) is thus unconditionally
stable.

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us
consider Burgers Equation (1) with the
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1 (42)
and homogeneous Dirichlet boundary
conditions

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	 (43)
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0. (44)
The exact solution of (1) under the
consideration of cases (42)-(44) given by
Cole (1951) is

(38)

where

where
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 ,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 ,
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt .

Substituting (35) into (36) and using the
Euler expansion for exponential terms leads
to the following relation:

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß, (38)

where

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) +
 (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) +
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5.

Equation (38) can be rewritten as follows:

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß, (39)
where 𝑧𝑧𝑧𝑧 is the amplification factor of the
iteration (32). Iteration (32) is stable if the
modulus of the amplification factor is less
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1.
 Thus, iteration (32) for the diffusion
system is unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be
expressed as given in Equation (36) with the
following coefficients:

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S,

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7,
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
. (40)

Writing (35) into (36) with the considered
coefficients (40) and with the use of the
Euler expansion leads to

 (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,

where

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ).

It is obvious that the amplification factor
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition.
Hence, iteration (33) for the conservation
part of Equation (1) is unconditionally
stable. In conclusion, the splitting iteration
system (32)-(33) is thus unconditionally
stable.

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us
consider Burgers Equation (1) with the
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1 (42)
and homogeneous Dirichlet boundary
conditions

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	 (43)
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0. (44)
The exact solution of (1) under the
consideration of cases (42)-(44) given by
Cole (1951) is

where
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 ,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 ,
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt .

Substituting (35) into (36) and using the
Euler expansion for exponential terms leads
to the following relation:

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß, (38)

where

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) +
 (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) +
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5.

Equation (38) can be rewritten as follows:

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß, (39)
where 𝑧𝑧𝑧𝑧 is the amplification factor of the
iteration (32). Iteration (32) is stable if the
modulus of the amplification factor is less
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1.
 Thus, iteration (32) for the diffusion
system is unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be
expressed as given in Equation (36) with the
following coefficients:

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S,

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7,
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
. (40)

Writing (35) into (36) with the considered
coefficients (40) and with the use of the
Euler expansion leads to

 (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,

where

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ).

It is obvious that the amplification factor
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition.
Hence, iteration (33) for the conservation
part of Equation (1) is unconditionally
stable. In conclusion, the splitting iteration
system (32)-(33) is thus unconditionally
stable.

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us
consider Burgers Equation (1) with the
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1 (42)
and homogeneous Dirichlet boundary
conditions

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	 (43)
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0. (44)
The exact solution of (1) under the
consideration of cases (42)-(44) given by
Cole (1951) is

Equation (38) can be rewritten as follows:

where
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 ,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 ,
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt .

Substituting (35) into (36) and using the
Euler expansion for exponential terms leads
to the following relation:

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß, (38)

where

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) +
 (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) +
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5.

Equation (38) can be rewritten as follows:

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß, (39)
where 𝑧𝑧𝑧𝑧 is the amplification factor of the
iteration (32). Iteration (32) is stable if the
modulus of the amplification factor is less
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1.
 Thus, iteration (32) for the diffusion
system is unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be
expressed as given in Equation (36) with the
following coefficients:

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S,

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7,
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
. (40)

Writing (35) into (36) with the considered
coefficients (40) and with the use of the
Euler expansion leads to

 (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,

where

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ).

It is obvious that the amplification factor
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition.
Hence, iteration (33) for the conservation
part of Equation (1) is unconditionally
stable. In conclusion, the splitting iteration
system (32)-(33) is thus unconditionally
stable.

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us
consider Burgers Equation (1) with the
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1 (42)
and homogeneous Dirichlet boundary
conditions

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	 (43)
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0. (44)
The exact solution of (1) under the
consideration of cases (42)-(44) given by
Cole (1951) is

(39)

where z is the amplification factor of the itera-
tion (32). Iteration (32) is stable if the modulus of
the amplification factor is less than or equal to one,

i.e. |z|≤1. By considering , the following in-
equalities always hold |w*-120r2 |≤|w+120r2 | and |z|≤1.
 Thus, iteration (32) for the diffusion system is
unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be expressed as
given in Equation (36) with the following coefficients:

where
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 ,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 ,
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt .

Substituting (35) into (36) and using the
Euler expansion for exponential terms leads
to the following relation:

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß, (38)

where

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) +
 (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) +
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5.

Equation (38) can be rewritten as follows:

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß, (39)
where 𝑧𝑧𝑧𝑧 is the amplification factor of the
iteration (32). Iteration (32) is stable if the
modulus of the amplification factor is less
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1.
 Thus, iteration (32) for the diffusion
system is unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be
expressed as given in Equation (36) with the
following coefficients:

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S,

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7,
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
. (40)

Writing (35) into (36) with the considered
coefficients (40) and with the use of the
Euler expansion leads to

 (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,

where

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ).

It is obvious that the amplification factor
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition.
Hence, iteration (33) for the conservation
part of Equation (1) is unconditionally
stable. In conclusion, the splitting iteration
system (32)-(33) is thus unconditionally
stable.

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us
consider Burgers Equation (1) with the
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1 (42)
and homogeneous Dirichlet boundary
conditions

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	 (43)
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0. (44)
The exact solution of (1) under the
consideration of cases (42)-(44) given by
Cole (1951) is

where
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 ,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 ,
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt .

Substituting (35) into (36) and using the
Euler expansion for exponential terms leads
to the following relation:

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß, (38)

where

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) +
 (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) +
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5.

Equation (38) can be rewritten as follows:

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß, (39)
where 𝑧𝑧𝑧𝑧 is the amplification factor of the
iteration (32). Iteration (32) is stable if the
modulus of the amplification factor is less
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1.
 Thus, iteration (32) for the diffusion
system is unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be
expressed as given in Equation (36) with the
following coefficients:

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S,

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7,
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
. (40)

Writing (35) into (36) with the considered
coefficients (40) and with the use of the
Euler expansion leads to

 (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,

where

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ).

It is obvious that the amplification factor
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition.
Hence, iteration (33) for the conservation
part of Equation (1) is unconditionally
stable. In conclusion, the splitting iteration
system (32)-(33) is thus unconditionally
stable.

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us
consider Burgers Equation (1) with the
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1 (42)
and homogeneous Dirichlet boundary
conditions

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	 (43)
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0. (44)
The exact solution of (1) under the
consideration of cases (42)-(44) given by
Cole (1951) is

where
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 ,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 ,
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt .

Substituting (35) into (36) and using the
Euler expansion for exponential terms leads
to the following relation:

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß, (38)

where

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) +
 (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) +
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5.

Equation (38) can be rewritten as follows:

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß, (39)
where 𝑧𝑧𝑧𝑧 is the amplification factor of the
iteration (32). Iteration (32) is stable if the
modulus of the amplification factor is less
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1.
 Thus, iteration (32) for the diffusion
system is unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be
expressed as given in Equation (36) with the
following coefficients:

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S,

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7,
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
. (40)

Writing (35) into (36) with the considered
coefficients (40) and with the use of the
Euler expansion leads to

 (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,

where

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ).

It is obvious that the amplification factor
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition.
Hence, iteration (33) for the conservation
part of Equation (1) is unconditionally
stable. In conclusion, the splitting iteration
system (32)-(33) is thus unconditionally
stable.

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us
consider Burgers Equation (1) with the
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1 (42)
and homogeneous Dirichlet boundary
conditions

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	 (43)
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0. (44)
The exact solution of (1) under the
consideration of cases (42)-(44) given by
Cole (1951) is

(40)

Writing (35) into (36) with the considered coefficients
(40) and with the use of the Euler expansion leads to

where
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 ,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 ,
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt .

Substituting (35) into (36) and using the
Euler expansion for exponential terms leads
to the following relation:

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß, (38)

where

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) +
 (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) +
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5.

Equation (38) can be rewritten as follows:

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß, (39)
where 𝑧𝑧𝑧𝑧 is the amplification factor of the
iteration (32). Iteration (32) is stable if the
modulus of the amplification factor is less
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1.
 Thus, iteration (32) for the diffusion
system is unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be
expressed as given in Equation (36) with the
following coefficients:

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S,

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7,
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
. (40)

Writing (35) into (36) with the considered
coefficients (40) and with the use of the
Euler expansion leads to

 (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,

where

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ).

It is obvious that the amplification factor
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition.
Hence, iteration (33) for the conservation
part of Equation (1) is unconditionally
stable. In conclusion, the splitting iteration
system (32)-(33) is thus unconditionally
stable.

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us
consider Burgers Equation (1) with the
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1 (42)
and homogeneous Dirichlet boundary
conditions

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	 (43)
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0. (44)
The exact solution of (1) under the
consideration of cases (42)-(44) given by
Cole (1951) is

(41)

where

where
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 ,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 ,
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt .

Substituting (35) into (36) and using the
Euler expansion for exponential terms leads
to the following relation:

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß, (38)

where

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) +
 (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) +
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5.

Equation (38) can be rewritten as follows:

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß, (39)
where 𝑧𝑧𝑧𝑧 is the amplification factor of the
iteration (32). Iteration (32) is stable if the
modulus of the amplification factor is less
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1.
 Thus, iteration (32) for the diffusion
system is unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be
expressed as given in Equation (36) with the
following coefficients:

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S,

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7,
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
. (40)

Writing (35) into (36) with the considered
coefficients (40) and with the use of the
Euler expansion leads to

 (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,

where

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ).

It is obvious that the amplification factor
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition.
Hence, iteration (33) for the conservation
part of Equation (1) is unconditionally
stable. In conclusion, the splitting iteration
system (32)-(33) is thus unconditionally
stable.

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us
consider Burgers Equation (1) with the
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1 (42)
and homogeneous Dirichlet boundary
conditions

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	 (43)
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0. (44)
The exact solution of (1) under the
consideration of cases (42)-(44) given by
Cole (1951) is

Table 1. Values of approximate function and its derivatives at the end points of the element.
𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥Ie7 𝑥𝑥𝑥𝑥Ie5 𝑥𝑥𝑥𝑥I 𝑥𝑥𝑥𝑥IN5 𝑥𝑥𝑥𝑥IN7
𝜑𝜑𝜑𝜑^ 0 1 4 1 0

 𝜑𝜑𝜑𝜑^
y 0 -3/h 0 3/ℎ 0

 𝜑𝜑𝜑𝜑^
yy	 0 6/h2 -12/h2 6/h2 0

Algorithm 1. Algorithm to find numerical solutions of the Burgers equation
by using splitting methods (7) using (6) for a time step

Begin
Initialize spatial interval, time interval, element numbers
Initialize initial and boundary conditions
Procedure

1. Calculate local matrices given in (25)-(26).
2. Decide the type of the splitting approach (say Strang and ABA).
3. Produce a time integration loop for the discrete relations (32)-(33).
4. Evaluate the solution of the diffusion part (32) by considering the

given initial condition.
5. Evaluate the solution of the conservation part (33) by considering

the initial guess which is produced in the last step.
6. Evaluate the solution of the diffusion part (32) by considering the

initial guess which is produced in the last step.
7. The produced solution in step 6 is the final solution.
8. End of the time integration loop.

End

5. Stability analysis
The von Neumann stability analysis is one
of the most widely used methods for
analyzing the stability of numerical
methods that are meant to approximately
solve partial differential equations (Kutluay
et al., 2004; Soliman, 2012, Sari & Tunc,
2017). As pointed out in the corresponding
literature, this stability method is more
suitable for the algebraic equation system
studied here. The stability of the current
numerical approach directly depends on the
individual stability of the diffusion and
conservation parts of the Burgers equation.
Thus, to understand stability condition of
each subproblem, we have analyzed
Equations (32)-(33) using the von Neumann
theory with the Fourier growth factor
defined by

 𝛽𝛽𝛽𝛽úü = 𝛽𝛽𝛽𝛽†ü𝑒𝑒𝑒𝑒Iú¢w , (35)
where 𝜏𝜏𝜏𝜏 and ℎ	 stand for the mode number
and the element size, respectively, which

are selected for recursive approximations
(32)-(33). To evaluate a typical row of (33),
β§N5 and β§ values in the time dependent
matrices 𝑅𝑅𝑅𝑅úN5∗ and 𝑅𝑅𝑅𝑅ú∗ are considered to be
locally constant and equal to	𝑝𝑝𝑝𝑝, as is the case
in the literature (Sari & Tunc, 2017; Tunc,
2017). The stability analysis of the diffusion
and the conservation parts is performed,
respectively, as in the following
subsections.

5.1 Stability of the Diffusion Part
By considering the entries of the included
matrices in Equation (32), a typical row of
Equation (32) can be stated as

𝑐𝑐𝑐𝑐5β§eSßN5 + 𝑐𝑐𝑐𝑐7β§e7ßN5 + 𝑐𝑐𝑐𝑐Sβ§e5ßN5 + 𝑐𝑐𝑐𝑐Rβ§ßN5 +
𝑐𝑐𝑐𝑐Wβ§N5ßN5 + 𝑐𝑐𝑐𝑐Vβ§N7ßN5 + 𝑐𝑐𝑐𝑐®β§NSßN5 	= 𝑐𝑐𝑐𝑐Tβ§eSß +
𝑐𝑐𝑐𝑐©β§e7ß + 𝑐𝑐𝑐𝑐5Uβ§e5ß + 𝑐𝑐𝑐𝑐55β§ß + 𝑐𝑐𝑐𝑐57β§N5ß +
𝑐𝑐𝑐𝑐5Sβ§N7ß + 𝑐𝑐𝑐𝑐5Rβ§NSß ,

It is obvious that the amplification factor z=1 and
satisfies the stability condition. Hence, iteration
(33) for the conservation part of Equation (1) is
unconditionally stable. In conclusion, the splitting it-
eration system (32)-(33) is thus unconditionally stable.

6. Numerical experiments

We present the results for the following schemes with
real coefficients:
 Strang: The second-order symmetric Strang
splitting method (10);
 EX4: The fourth-order extrapolation method
(14); and,
 EX6: The sixth-order extrapolation method
(15).

Example 1 (Sari & Gurarslan, 2009) Let us
consider Burgers Equation (1) with the initial condition

where
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 ,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 ,
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt .

Substituting (35) into (36) and using the
Euler expansion for exponential terms leads
to the following relation:

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß, (38)

where

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) +
 (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) +
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5.

Equation (38) can be rewritten as follows:

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß, (39)
where 𝑧𝑧𝑧𝑧 is the amplification factor of the
iteration (32). Iteration (32) is stable if the
modulus of the amplification factor is less
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1.
 Thus, iteration (32) for the diffusion
system is unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be
expressed as given in Equation (36) with the
following coefficients:

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S,

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7,
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
. (40)

Writing (35) into (36) with the considered
coefficients (40) and with the use of the
Euler expansion leads to

 (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,

where

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ).

It is obvious that the amplification factor
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition.
Hence, iteration (33) for the conservation
part of Equation (1) is unconditionally
stable. In conclusion, the splitting iteration
system (32)-(33) is thus unconditionally
stable.

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us
consider Burgers Equation (1) with the
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1 (42)
and homogeneous Dirichlet boundary
conditions

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	 (43)
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0. (44)
The exact solution of (1) under the
consideration of cases (42)-(44) given by
Cole (1951) is

(44)
(43)

where
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 ,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 ,
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt .

Substituting (35) into (36) and using the
Euler expansion for exponential terms leads
to the following relation:

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß, (38)

where

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) +
 (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) +
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7)cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5.

Equation (38) can be rewritten as follows:

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß, (39)
where 𝑧𝑧𝑧𝑧 is the amplification factor of the
iteration (32). Iteration (32) is stable if the
modulus of the amplification factor is less
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1.
 Thus, iteration (32) for the diffusion
system is unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be
expressed as given in Equation (36) with the
following coefficients:

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5,
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7,
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S,

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7,
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
. (40)

Writing (35) into (36) with the considered
coefficients (40) and with the use of the
Euler expansion leads to

 (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,

where

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5,

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ).

It is obvious that the amplification factor
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition.
Hence, iteration (33) for the conservation
part of Equation (1) is unconditionally
stable. In conclusion, the splitting iteration
system (32)-(33) is thus unconditionally
stable.

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us
consider Burgers Equation (1) with the
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1 (42)
and homogeneous Dirichlet boundary
conditions

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	 (43)
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0. (44)
The exact solution of (1) under the
consideration of cases (42)-(44) given by
Cole (1951) is

(42)

and homogeneous Dirichlet boundary conditions

The exact solution of (1) under the consideration of
cases (42)-(44) given by Cole (1951) is

5 Higher order splitting approaches in analysis of the Burgers equation

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
∑ A¡ à¬√ƒeü∑≈∑Ø(∆üúIü(ü≈*)«
¡»B

A…N∑ A¡ à¬√(eü∑≈∑Ø() Àú(ü≈*)«
¡»B

 (45)
with the Fourier coefficients

𝑎𝑎𝑎𝑎U = ê 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−(2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)e5[1 − cos(𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)]}𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
5

U
,

𝑎𝑎𝑎𝑎ü = 2∫ 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−(2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)e5[1 −5
U

																																		cos(𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)]}cos	(𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥.

In all numerical experiments, we prefer to
use pattern (10) instead of pattern (11). If
one solves nonlinear advection part two
times, then the computational cost is higher
and the accuracy is less than pattern (10)
because of the necessity of the correction

relation in the nonlinear advection part.
Table 2 shows the comparison of the
produced results using the present approach
with the literature (Mukundan & Awasthi,
2015) and exact solutions for various spatial
points at 𝑡𝑡𝑡𝑡 = 0.5. As seen in the table, the
present study is more accurate and more
economical, with a far smaller number of
elements, in comparison to their results. In
addition, it is shown that the pattern ABA
produces more accurate results than the
pattern BAB in Table 2.

Table 2. Comparison of the produced results at 𝑡𝑡𝑡𝑡 = 0.5 for 𝜋𝜋𝜋𝜋 = 1, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001.

 𝑥𝑥𝑥𝑥

EX6
Splitting
Present
N=40

EX4
Splitting
Present
N=40

Strang
Splitting
Present

(ABA)-N=40

Strang
Splitting
Present

(BAB)-N=40

Mukundan
& Awasthi

(2015)
𝑁𝑁𝑁𝑁=100

Exact

𝑥𝑥𝑥𝑥 = 0.1 0.00221300 0.00221299 0.00221298 0.00221292 0.002213 0.00221301
𝑥𝑥𝑥𝑥 = 0.2 0.00421007 0.00421005 0.00421003 0.00420990 0.004209 0.00421007
𝑥𝑥𝑥𝑥 = 0.3 0.00579612 0.00579610 0.00579606 0.00579589 0.005795 0.00579612
𝑥𝑥𝑥𝑥 = 0.4 0.00681592 0.00681588 0.00681585 0.00681565 0.006815 0.00681592
𝑥𝑥𝑥𝑥 = 0.5 0.00716920 0.00716917 0.00716913 0.00716892 0.007168 0.00716921
𝑥𝑥𝑥𝑥 = 0.6 0.00682072 0.00682069 0.00682066 0.00682045 0.006820 0.00682073
𝑥𝑥𝑥𝑥 = 0.7 0.00580390 0.00580387 0.00580384 0.00580367 0.005803 0.00580390
𝑥𝑥𝑥𝑥 = 0.8 0.00421785 0.00421783 0.00421780 0.00421768 0.004217 0.00421785
𝑥𝑥𝑥𝑥 = 0.9 0.00221781 0.00221780 0.00221779 0.00221772 0.002218 0.00221781

Table 3. Comparison of the produced results at 𝑡𝑡𝑡𝑡 = 2.3 for 𝜋𝜋𝜋𝜋 = 0.1, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.01.

𝑥𝑥𝑥𝑥

EX6
Splitting
Present
N=50

EX4
Splitting
Present
N=50

Strang
Splitting
Present
N=50

Mukundan &
Awasthi (2015)

𝑁𝑁𝑁𝑁=100
Exact

𝑥𝑥𝑥𝑥 = 0.1 0.0221396 0.0221397 0.0221395 0.02253 0.0221396
𝑥𝑥𝑥𝑥 = 0.2 0.0427956 0.0427957 0.0427954 0.04357 0.0427956
𝑥𝑥𝑥𝑥 = 0.3 0.0604313 0.0604314 0.0604310 0.06155 0.0604313
𝑥𝑥𝑥𝑥 = 0.4 0.0734431 0.0734432 0.0734426 0.07485 0.0734431
𝑥𝑥𝑥𝑥 = 0.5 0.0802310 0.0802311 0.0802302 0.08182 0.0802310
𝑥𝑥𝑥𝑥 = 0.6 0.0793988 0.0793988 0.0793977 0.08104 0.0793988
𝑥𝑥𝑥𝑥 = 0.7 0.0701068 0.0701067 0.0701055 0.07161 0.0701068
𝑥𝑥𝑥𝑥 = 0.8 0.0525198 0.0525196 0.0525186 0.05368 0.0525198
𝑥𝑥𝑥𝑥 = 0.9 0.0281740 0.0281739 0.0281733 0.02881 0.0281740

(45)

with the Fourier coefficients

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
∑ A¡ à¬√ƒeü∑≈∑Ø(∆üúIü(ü≈*)«
¡»B

A…N∑ A¡ à¬√(eü∑≈∑Ø() Àú(ü≈*)«
¡»B

 (45)
with the Fourier coefficients

𝑎𝑎𝑎𝑎U = ê 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−(2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)e5[1 − cos(𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)]}𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
5

U
,

𝑎𝑎𝑎𝑎ü = 2∫ 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−(2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)e5[1 −5
U

																																		cos(𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)]}cos	(𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥.

In all numerical experiments, we prefer to
use pattern (10) instead of pattern (11). If
one solves nonlinear advection part two
times, then the computational cost is higher
and the accuracy is less than pattern (10)
because of the necessity of the correction

relation in the nonlinear advection part.
Table 2 shows the comparison of the
produced results using the present approach
with the literature (Mukundan & Awasthi,
2015) and exact solutions for various spatial
points at 𝑡𝑡𝑡𝑡 = 0.5. As seen in the table, the
present study is more accurate and more
economical, with a far smaller number of
elements, in comparison to their results. In
addition, it is shown that the pattern ABA
produces more accurate results than the
pattern BAB in Table 2.

Table 2. Comparison of the produced results at 𝑡𝑡𝑡𝑡 = 0.5 for 𝜋𝜋𝜋𝜋 = 1, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001.

 𝑥𝑥𝑥𝑥

EX6
Splitting
Present
N=40

EX4
Splitting
Present
N=40

Strang
Splitting
Present

(ABA)-N=40

Strang
Splitting
Present

(BAB)-N=40

Mukundan
& Awasthi

(2015)
𝑁𝑁𝑁𝑁=100

Exact

𝑥𝑥𝑥𝑥 = 0.1 0.00221300 0.00221299 0.00221298 0.00221292 0.002213 0.00221301
𝑥𝑥𝑥𝑥 = 0.2 0.00421007 0.00421005 0.00421003 0.00420990 0.004209 0.00421007
𝑥𝑥𝑥𝑥 = 0.3 0.00579612 0.00579610 0.00579606 0.00579589 0.005795 0.00579612
𝑥𝑥𝑥𝑥 = 0.4 0.00681592 0.00681588 0.00681585 0.00681565 0.006815 0.00681592
𝑥𝑥𝑥𝑥 = 0.5 0.00716920 0.00716917 0.00716913 0.00716892 0.007168 0.00716921
𝑥𝑥𝑥𝑥 = 0.6 0.00682072 0.00682069 0.00682066 0.00682045 0.006820 0.00682073
𝑥𝑥𝑥𝑥 = 0.7 0.00580390 0.00580387 0.00580384 0.00580367 0.005803 0.00580390
𝑥𝑥𝑥𝑥 = 0.8 0.00421785 0.00421783 0.00421780 0.00421768 0.004217 0.00421785
𝑥𝑥𝑥𝑥 = 0.9 0.00221781 0.00221780 0.00221779 0.00221772 0.002218 0.00221781

Table 3. Comparison of the produced results at 𝑡𝑡𝑡𝑡 = 2.3 for 𝜋𝜋𝜋𝜋 = 0.1, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.01.

𝑥𝑥𝑥𝑥

EX6
Splitting
Present
N=50

EX4
Splitting
Present
N=50

Strang
Splitting
Present
N=50

Mukundan &
Awasthi (2015)

𝑁𝑁𝑁𝑁=100
Exact

𝑥𝑥𝑥𝑥 = 0.1 0.0221396 0.0221397 0.0221395 0.02253 0.0221396
𝑥𝑥𝑥𝑥 = 0.2 0.0427956 0.0427957 0.0427954 0.04357 0.0427956
𝑥𝑥𝑥𝑥 = 0.3 0.0604313 0.0604314 0.0604310 0.06155 0.0604313
𝑥𝑥𝑥𝑥 = 0.4 0.0734431 0.0734432 0.0734426 0.07485 0.0734431
𝑥𝑥𝑥𝑥 = 0.5 0.0802310 0.0802311 0.0802302 0.08182 0.0802310
𝑥𝑥𝑥𝑥 = 0.6 0.0793988 0.0793988 0.0793977 0.08104 0.0793988
𝑥𝑥𝑥𝑥 = 0.7 0.0701068 0.0701067 0.0701055 0.07161 0.0701068
𝑥𝑥𝑥𝑥 = 0.8 0.0525198 0.0525196 0.0525186 0.05368 0.0525198
𝑥𝑥𝑥𝑥 = 0.9 0.0281740 0.0281739 0.0281733 0.02881 0.0281740

In all numerical experiments, we prefer to use pattern (10)
instead of pattern (11). If one solves nonlinear advection
part two times, then the computational cost is higher
and the accuracy is less than pattern (10) because of the
necessity of the correction relation in the nonlinear
advection part. Table 2 shows the comparison of the
produced results using the present approach with the
literature (Mukundan & Awasthi, 2015) and
exact solutions for various spatial points at t=0.5.
As seen in the table, the present study is more
accurate and more economical, with a far smaller
number of elements, in comparison to their results.
In addition, it is shown that the pattern ABA produces
more accurate results than the pattern BAB in Table 2.

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
∑ A¡ à¬√ƒeü∑≈∑Ø(∆üúIü(ü≈*)«
¡»B

A…N∑ A¡ à¬√(eü∑≈∑Ø() Àú(ü≈*)«
¡»B

 (45)
with the Fourier coefficients

𝑎𝑎𝑎𝑎U = ê 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−(2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)e5[1 − cos(𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)]}𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
5

U
,

𝑎𝑎𝑎𝑎ü = 2∫ 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−(2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)e5[1 −5
U

																																		cos(𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)]}cos	(𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥.

In all numerical experiments, we prefer to
use pattern (10) instead of pattern (11). If
one solves nonlinear advection part two
times, then the computational cost is higher
and the accuracy is less than pattern (10)
because of the necessity of the correction

relation in the nonlinear advection part.
Table 2 shows the comparison of the
produced results using the present approach
with the literature (Mukundan & Awasthi,
2015) and exact solutions for various spatial
points at 𝑡𝑡𝑡𝑡 = 0.5. As seen in the table, the
present study is more accurate and more
economical, with a far smaller number of
elements, in comparison to their results. In
addition, it is shown that the pattern ABA
produces more accurate results than the
pattern BAB in Table 2.

Table 2. Comparison of the produced results at 𝑡𝑡𝑡𝑡 = 0.5 for 𝜋𝜋𝜋𝜋 = 1, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001.

 𝑥𝑥𝑥𝑥

EX6
Splitting
Present
N=40

EX4
Splitting
Present
N=40

Strang
Splitting
Present

(ABA)-N=40

Strang
Splitting
Present

(BAB)-N=40

Mukundan
& Awasthi

(2015)
𝑁𝑁𝑁𝑁=100

Exact

𝑥𝑥𝑥𝑥 = 0.1 0.00221300 0.00221299 0.00221298 0.00221292 0.002213 0.00221301
𝑥𝑥𝑥𝑥 = 0.2 0.00421007 0.00421005 0.00421003 0.00420990 0.004209 0.00421007
𝑥𝑥𝑥𝑥 = 0.3 0.00579612 0.00579610 0.00579606 0.00579589 0.005795 0.00579612
𝑥𝑥𝑥𝑥 = 0.4 0.00681592 0.00681588 0.00681585 0.00681565 0.006815 0.00681592
𝑥𝑥𝑥𝑥 = 0.5 0.00716920 0.00716917 0.00716913 0.00716892 0.007168 0.00716921
𝑥𝑥𝑥𝑥 = 0.6 0.00682072 0.00682069 0.00682066 0.00682045 0.006820 0.00682073
𝑥𝑥𝑥𝑥 = 0.7 0.00580390 0.00580387 0.00580384 0.00580367 0.005803 0.00580390
𝑥𝑥𝑥𝑥 = 0.8 0.00421785 0.00421783 0.00421780 0.00421768 0.004217 0.00421785
𝑥𝑥𝑥𝑥 = 0.9 0.00221781 0.00221780 0.00221779 0.00221772 0.002218 0.00221781

Table 3. Comparison of the produced results at 𝑡𝑡𝑡𝑡 = 2.3 for 𝜋𝜋𝜋𝜋 = 0.1, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.01.

𝑥𝑥𝑥𝑥

EX6
Splitting
Present
N=50

EX4
Splitting
Present
N=50

Strang
Splitting
Present
N=50

Mukundan &
Awasthi (2015)

𝑁𝑁𝑁𝑁=100
Exact

𝑥𝑥𝑥𝑥 = 0.1 0.0221396 0.0221397 0.0221395 0.02253 0.0221396
𝑥𝑥𝑥𝑥 = 0.2 0.0427956 0.0427957 0.0427954 0.04357 0.0427956
𝑥𝑥𝑥𝑥 = 0.3 0.0604313 0.0604314 0.0604310 0.06155 0.0604313
𝑥𝑥𝑥𝑥 = 0.4 0.0734431 0.0734432 0.0734426 0.07485 0.0734431
𝑥𝑥𝑥𝑥 = 0.5 0.0802310 0.0802311 0.0802302 0.08182 0.0802310
𝑥𝑥𝑥𝑥 = 0.6 0.0793988 0.0793988 0.0793977 0.08104 0.0793988
𝑥𝑥𝑥𝑥 = 0.7 0.0701068 0.0701067 0.0701055 0.07161 0.0701068
𝑥𝑥𝑥𝑥 = 0.8 0.0525198 0.0525196 0.0525186 0.05368 0.0525198
𝑥𝑥𝑥𝑥 = 0.9 0.0281740 0.0281739 0.0281733 0.02881 0.0281740

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
∑ A¡ à¬√ƒeü∑≈∑Ø(∆üúIü(ü≈*)«
¡»B

A…N∑ A¡ à¬√(eü∑≈∑Ø() Àú(ü≈*)«
¡»B

 (45)
with the Fourier coefficients

𝑎𝑎𝑎𝑎U = ê 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−(2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)e5[1 − cos(𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)]}𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
5

U
,

𝑎𝑎𝑎𝑎ü = 2∫ 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−(2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)e5[1 −5
U

																																		cos(𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)]}cos	(𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥.

In all numerical experiments, we prefer to
use pattern (10) instead of pattern (11). If
one solves nonlinear advection part two
times, then the computational cost is higher
and the accuracy is less than pattern (10)
because of the necessity of the correction

relation in the nonlinear advection part.
Table 2 shows the comparison of the
produced results using the present approach
with the literature (Mukundan & Awasthi,
2015) and exact solutions for various spatial
points at 𝑡𝑡𝑡𝑡 = 0.5. As seen in the table, the
present study is more accurate and more
economical, with a far smaller number of
elements, in comparison to their results. In
addition, it is shown that the pattern ABA
produces more accurate results than the
pattern BAB in Table 2.

Table 2. Comparison of the produced results at 𝑡𝑡𝑡𝑡 = 0.5 for 𝜋𝜋𝜋𝜋 = 1, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001.

 𝑥𝑥𝑥𝑥

EX6
Splitting
Present
N=40

EX4
Splitting
Present
N=40

Strang
Splitting
Present

(ABA)-N=40

Strang
Splitting
Present

(BAB)-N=40

Mukundan
& Awasthi

(2015)
𝑁𝑁𝑁𝑁=100

Exact

𝑥𝑥𝑥𝑥 = 0.1 0.00221300 0.00221299 0.00221298 0.00221292 0.002213 0.00221301
𝑥𝑥𝑥𝑥 = 0.2 0.00421007 0.00421005 0.00421003 0.00420990 0.004209 0.00421007
𝑥𝑥𝑥𝑥 = 0.3 0.00579612 0.00579610 0.00579606 0.00579589 0.005795 0.00579612
𝑥𝑥𝑥𝑥 = 0.4 0.00681592 0.00681588 0.00681585 0.00681565 0.006815 0.00681592
𝑥𝑥𝑥𝑥 = 0.5 0.00716920 0.00716917 0.00716913 0.00716892 0.007168 0.00716921
𝑥𝑥𝑥𝑥 = 0.6 0.00682072 0.00682069 0.00682066 0.00682045 0.006820 0.00682073
𝑥𝑥𝑥𝑥 = 0.7 0.00580390 0.00580387 0.00580384 0.00580367 0.005803 0.00580390
𝑥𝑥𝑥𝑥 = 0.8 0.00421785 0.00421783 0.00421780 0.00421768 0.004217 0.00421785
𝑥𝑥𝑥𝑥 = 0.9 0.00221781 0.00221780 0.00221779 0.00221772 0.002218 0.00221781

Table 3. Comparison of the produced results at 𝑡𝑡𝑡𝑡 = 2.3 for 𝜋𝜋𝜋𝜋 = 0.1, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.01.

𝑥𝑥𝑥𝑥

EX6
Splitting
Present
N=50

EX4
Splitting
Present
N=50

Strang
Splitting
Present
N=50

Mukundan &
Awasthi (2015)

𝑁𝑁𝑁𝑁=100
Exact

𝑥𝑥𝑥𝑥 = 0.1 0.0221396 0.0221397 0.0221395 0.02253 0.0221396
𝑥𝑥𝑥𝑥 = 0.2 0.0427956 0.0427957 0.0427954 0.04357 0.0427956
𝑥𝑥𝑥𝑥 = 0.3 0.0604313 0.0604314 0.0604310 0.06155 0.0604313
𝑥𝑥𝑥𝑥 = 0.4 0.0734431 0.0734432 0.0734426 0.07485 0.0734431
𝑥𝑥𝑥𝑥 = 0.5 0.0802310 0.0802311 0.0802302 0.08182 0.0802310
𝑥𝑥𝑥𝑥 = 0.6 0.0793988 0.0793988 0.0793977 0.08104 0.0793988
𝑥𝑥𝑥𝑥 = 0.7 0.0701068 0.0701067 0.0701055 0.07161 0.0701068
𝑥𝑥𝑥𝑥 = 0.8 0.0525198 0.0525196 0.0525186 0.05368 0.0525198
𝑥𝑥𝑥𝑥 = 0.9 0.0281740 0.0281739 0.0281733 0.02881 0.0281740

Table 3 shows the comparison of the present
numerical solution with the exact solution and the
literature (Mukundan & Awasthi, 2015). The kinematic
viscosity constant is chosen to be ε=0.1. The results are
produced for the parameters taken to be dt=0.01 and

h=0.02. Even as we consider a smaller num-
ber of spatial elements, accuracy of the present
method is far higher than the literature (Mukun-
dan & Awasthi, 2015) at every spatial point.
The presented results in Table 4 are compared with
the literature (Bahadir & Saglam, 2005; Sari &
Gurarslan, 2009) and the exact solution. Even with
the use of fewer time elements, the comparison
revealed that the suggested technique is able to produce
more accurate results than the corresponding literature
(Bahadir & Saglam, 2005; Sari & Gurarslan, 2009). In
the comparison, responses of the physical system have
been observed for the elapsed times of t=0.5, t=2.0,
and t=4.0 at various positions for h=0.01 (Table 4).

Now it is time to deal with far smaller
kinematic viscosity constants. A comparison of the
currently produced solutions has been carried out
with the literature, and the exact solution for two
different viscosity values, ε=0.004 and ε=0.003,
respectively (Tables 5-6). The present study reveals that
even by using fewer time elements in Table 5, one can find
more accurate results than the literature (Jiwari, 2015).

In the work of Aksan (2006), the model
equation with conditions (23)-(25) is solved using the
quadratic B-spline FEM in the weak form with the Newton
iteration for nonlinear systems. In another work (Dag
et al., 2005), the researchers used the weak form of the
governing equation, the cubic B-spline basis approach

Murat Sari, Huseyin Tunc, Muaz Seydaoglu 6

and the first-order splitting approach. The computed
results in Table 7 show that the present method is more
accurate for a far smaller number of time elements than
the results of references (Aksan, 2006; Dag et al., 2005).

Table 8 is another comparison which was
completed with various schemes given in the
literature (Kutluay et al., 1999; Tsai et al., 2017) with
the currently proposed schemes in terms of maximum
error norms. The compared results are taken from Table
4 of the reference Tsai et al. (2017). As realized from
Table 8, the current results are far more accurate than
the literature (Tsai et al., 2017; Kutluay et al., 1999).
The numerical method is seen to have a high capacity
in capturing gradual nonlinear steep behaviour, .
Figures 1 (a) and (b) show the splitting-up solutions
of Example 1 with small parameter values, ε=0.001,
ε=0.0005, respectively. In Figure 2, the present
numerical methods are also compared in terms of com-
putational costs, i.e. CPU times of the iterations are

from Table 4 of the reference Tsai et al.
(2017). As realized from Table 8, the
current results are far more accurate than the
literature (Tsai et al., 2017; Kutluay et al.,
1999).

The numerical method is seen to
have a high capacity in capturing gradual
nonlinear steep behaviour, 𝜀𝜀𝜀𝜀 ≪ 1. Figures 1
(a) and (b) show the splitting-up solutions
of Example 1 with small parameter values,
𝜀𝜀𝜀𝜀 = 0.001, 𝜀𝜀𝜀𝜀 = 0.0005, respectively. In
Figure 2, the present numerical methods are
also compared in terms of computational
costs, i.e. CPU times of the iterations are
demonstrated for various number of spatial
elements 𝑁𝑁𝑁𝑁. Among those methods, the
Strang approach is the most economical. If
one prescribes boundary conditions, error
terms are generally not uniformly bounded
on the interval [0 ,T] in the infinite
dimensional space, so it is no longer
possible to establish a guarantee of
convergence order (Hansen & Ostermann,
2009; Seydaoglu et al., 2016). Thus, order

reductions occured for higher order splitting
methods when the Dirichlet boundary
conditions were impossed.

In Figure 3(a), we compare the
efficiency of the present methods given in
Table 2 at the final time 𝑡𝑡𝑡𝑡 = 3. We
demonstrate the infinity error norm versus
the number of evaluations of 𝜙𝜙𝜙𝜙;

<, which
usually requires the more costly
computation for several step sizes. As seen
in Figure 3(a), in spite of the correct
convergence orders not being obtained, the
high order extrapolation methods produce
more reliable results in terms of both
accuracy and computational cost.

Table 5. Comparison of the produced results for the parameter values 𝜀𝜀𝜀𝜀 = 0.004, ℎ = 0.01.

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡

EX6 Splitting
Present

𝑁𝑁𝑁𝑁 = 100, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 =
0.0125

EX4 Splitting
Present

𝑁𝑁𝑁𝑁 = 100, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 =
0.0125

Strang Splitting
Present

𝑁𝑁𝑁𝑁 = 100, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 =
0.0125

Jiwari (2015)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡	 = 0.001 Exact

𝑥𝑥𝑥𝑥 = 0.25

𝑡𝑡𝑡𝑡 = 1 0.18890403 0.18890403 0.18888074 0.18891 0.18890403
𝑡𝑡𝑡𝑡 = 5 0.04697225 0.04697225 0.04697036 0.04697 0.04697225
𝑡𝑡𝑡𝑡 = 10 0.02421935 0.02421935 0.02421883 0.02422 0.02421935
𝑡𝑡𝑡𝑡 = 15 0.01631540 0.01631540 0.01631517 0.01632 0.01631540

𝑥𝑥𝑥𝑥 = 0.5

𝑡𝑡𝑡𝑡 = 1 0.37597616 0.37597617 0.37594050 0.37598 0.37597616
𝑡𝑡𝑡𝑡 = 5 0.09393781 0.09393781 0.09393407 0.09394 0.09393781
𝑡𝑡𝑡𝑡 = 10 0.04843716 0.04843716 0.04843613 0.04843 0.04843716
𝑡𝑡𝑡𝑡 = 15 0.03259459 0.03259459 0.03259412 0.03259 0.03259459

𝑥𝑥𝑥𝑥 = 0.75

𝑡𝑡𝑡𝑡 = 1 0.55883376 0.55882869 0.55882287 0.55883 0.55883764
𝑡𝑡𝑡𝑡 = 5 0.14088686 0.14088685 0.14088137 0.14089 0.14088686
𝑡𝑡𝑡𝑡 = 10 0.07220247 0.07220246 0.07220095 0.07221 0.07220247
𝑡𝑡𝑡𝑡 = 15 0.04677529 0.04677529 0.04677452 0.04678 0.04677529

demonstrated for various number of spatial elements N.
Among those methods, the Strang approach is the most
economical. If one prescribes boundary conditions, error
terms are generally not uniformly bounded on the interval
[0 ,T] in the infinite dimensional space, so it is no longer
possible to establish a guarantee of convergence order
(Hansen & Ostermann, 2009; Seydaoglu et al., 2016).
Thus, order reductions occured for higher order splitting
methods when the Dirichlet boundary conditions were
impossed.

In Figure 3(a), we compare the efficiency of the
present methods given in Table 2 at the final
time t=3. We demonstrate the infinity error norm
versus the number of evaluations of ϕk

A, which usually
requires the more costly computation for
several step sizes. As seen in Figure 3(a), in spite of the
correct convergence orders not being obtained, the high
order extrapolation methods produce more reliable
results in terms of both accuracy and computational cost.

Table 4. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.01.

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡

EX6
Splitting
Present
dt=0.004	

EX4
Splitting
Present
dt=0.004	

Strang
Splitting
Present
dt=0.004	

Bahadir &
Saglam,
(2005)

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡	 = 0.001	

Sari &
Gurarslan,

(2009)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡	 = 0.001 Exact

𝑥𝑥𝑥𝑥 = 0.1
𝑡𝑡𝑡𝑡 = 0.50 0.1211435314 0.1211435314 0.1211416234 0.12079 0.12114 0.1211435315
𝑡𝑡𝑡𝑡 = 2.00 0.0429637769 0.0429637769 0.0429634430 0.04300 0.04295 0.0429637769
𝑡𝑡𝑡𝑡 = 4.00 0.0231042327 0.0231042327 0.0231041297 0.02324 0.02310 0.0231042327

𝑥𝑥𝑥𝑥 = 0.3
𝑡𝑡𝑡𝑡 = 0.50 0.3602710556 0.3602710556 0.3602669996 0.36113 0.36027 0.3602710559
𝑡𝑡𝑡𝑡 = 2.00 0.1288398903 0.1288398903 0.1288389190 0.12887 0.12882 0.1288398903
𝑡𝑡𝑡𝑡 = 4.00 0.0693082904 0.0693082904 0.0693079840 0.06935 0.06930 0.0693082904

𝑥𝑥𝑥𝑥 = 0.5
𝑡𝑡𝑡𝑡 = 0.50 0.5886957730 0.5886957729 0.5886945639 0.59559 0.58870 0.5886957735
𝑡𝑡𝑡𝑡 = 2.00 0.2145580542 0.2145580542 0.2145565380 0.21468 0.21455 0.2145580543
𝑡𝑡𝑡𝑡 = 4.00 0.1154947563 0.1154947560 0.1154942553 0.11550 0.11549 0.1154947563

𝑥𝑥𝑥𝑥 = 0.7
𝑡𝑡𝑡𝑡 = 0.50 0.7934934046 0.7934934039 0.7935031783 0.81257 0.79354 0.7934934058
𝑡𝑡𝑡𝑡 = 2.00 0.2999977673 0.2999977659 0.2999958750 0.30075 0.29999 0.2999977677
𝑡𝑡𝑡𝑡 = 4.00 0.1612146519 0.1612146463 0.1612140083 0.16125 0.16121 0.1612146543

𝑥𝑥𝑥𝑥 = 0.9
𝑡𝑡𝑡𝑡 = 0.50 0.9381067387 0.9381059346 0.9381462298 0.97184 0.93822 0.9381083431
𝑡𝑡𝑡𝑡 = 2.00 0.3732772096 0.3732774294 0.3732786012 0.37452 0.37328 0.3732776288
𝑡𝑡𝑡𝑡 = 4.00 0.1660587273 0.1660588088 0.1660571831 0.16515 0.16605 0.1660587216

Table 3 shows the comparison of the present
numerical solution with the exact solution
and the literature (Mukundan & Awasthi,
2015). The kinematic viscosity constant is
chosen to be	𝜀𝜀𝜀𝜀 = 0.1. The results are
produced for the parameters taken to be
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.01 and ℎ = 0.02. Even as we
consider a smaller number of spatial
elements, accuracy of the present method is
far higher than the literature (Mukundan &
Awasthi, 2015) at every spatial point.
 The presented results in Table 4 are
compared with the literature (Bahadir &
Saglam, 2005; Sari & Gurarslan, 2009) and
the exact solution. Even with the use of
fewer time elements, the comparison
revealed that the suggested technique is able
to produce more accurate results than the
corresponding literature (Bahadir &
Saglam, 2005; Sari & Gurarslan, 2009). In
the comparison, responses of the physical
system have been observed for the elapsed
times of 𝑡𝑡𝑡𝑡 = 0.5, 𝑡𝑡𝑡𝑡 = 2.0, and 𝑡𝑡𝑡𝑡 = 4.0 at
various positions for ℎ = 0.01 (Table 4).
 Now it is time to deal with far
smaller kinematic viscosity constants. A
comparison of the currently produced

solutions has been carried out with the
literature, and the exact solution for two
different viscosity values, 𝜀𝜀𝜀𝜀 = 0.004 and
𝜀𝜀𝜀𝜀 = 0.003, respectively (Tables 5-6). The
present study reveals that even by using
fewer time elements in Table 5, one can find
more accurate results than the literature
(Jiwari, 2015).

In the work of Aksan (2006), the
model equation with conditions (23)-(25) is
solved using the quadratic B-spline FEM in
the weak form with the Newton iteration for
nonlinear systems. In another work (Dag et
al., 2005), the researchers used the weak
form of the governing equation, the cubic
B-spline basis approach and the first-order
splitting approach. The computed results in
Table 7 show that the present method is
more accurate for a far smaller number of
time elements than the results of references
(Aksan, 2006; Dag et al., 2005).
 Table 8 is another comparison
which was completed with various schemes
given in the literature (Kutluay et al., 1999;
Tsai et al., 2017) with the currently
proposed schemes in terms of maximum
error norms. The compared results are taken

7 Higher order splitting approaches in analysis of the Burgers equation

from Table 4 of the reference Tsai et al.
(2017). As realized from Table 8, the
current results are far more accurate than the
literature (Tsai et al., 2017; Kutluay et al.,
1999).

The numerical method is seen to
have a high capacity in capturing gradual
nonlinear steep behaviour, 𝜀𝜀𝜀𝜀 ≪ 1. Figures 1
(a) and (b) show the splitting-up solutions
of Example 1 with small parameter values,
𝜀𝜀𝜀𝜀 = 0.001, 𝜀𝜀𝜀𝜀 = 0.0005, respectively. In
Figure 2, the present numerical methods are
also compared in terms of computational
costs, i.e. CPU times of the iterations are
demonstrated for various number of spatial
elements 𝑁𝑁𝑁𝑁. Among those methods, the
Strang approach is the most economical. If
one prescribes boundary conditions, error
terms are generally not uniformly bounded
on the interval [0 ,T] in the infinite
dimensional space, so it is no longer
possible to establish a guarantee of
convergence order (Hansen & Ostermann,
2009; Seydaoglu et al., 2016). Thus, order

reductions occured for higher order splitting
methods when the Dirichlet boundary
conditions were impossed.

In Figure 3(a), we compare the
efficiency of the present methods given in
Table 2 at the final time 𝑡𝑡𝑡𝑡 = 3. We
demonstrate the infinity error norm versus
the number of evaluations of 𝜙𝜙𝜙𝜙;

<, which
usually requires the more costly
computation for several step sizes. As seen
in Figure 3(a), in spite of the correct
convergence orders not being obtained, the
high order extrapolation methods produce
more reliable results in terms of both
accuracy and computational cost.

Table 5. Comparison of the produced results for the parameter values 𝜀𝜀𝜀𝜀 = 0.004, ℎ = 0.01.

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡

EX6 Splitting
Present

𝑁𝑁𝑁𝑁 = 100, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 =
0.0125

EX4 Splitting
Present
𝑁𝑁𝑁𝑁 = 100,

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125

Strang Splitting
Present
𝑁𝑁𝑁𝑁 = 100,

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125

Jiwari (2015)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡	 = 0.001 Exact

𝑥𝑥𝑥𝑥 = 0.25

𝑡𝑡𝑡𝑡 = 1 0.18890403 0.18890403 0.18888074 0.18891 0.18890403
𝑡𝑡𝑡𝑡 = 5 0.04697225 0.04697225 0.04697036 0.04697 0.04697225
𝑡𝑡𝑡𝑡 = 10 0.02421935 0.02421935 0.02421883 0.02422 0.02421935
𝑡𝑡𝑡𝑡 = 15 0.01631540 0.01631540 0.01631517 0.01632 0.01631540

𝑥𝑥𝑥𝑥 = 0.5

𝑡𝑡𝑡𝑡 = 1 0.37597616 0.37597617 0.37594050 0.37598 0.37597616
𝑡𝑡𝑡𝑡 = 5 0.09393781 0.09393781 0.09393407 0.09394 0.09393781
𝑡𝑡𝑡𝑡 = 10 0.04843716 0.04843716 0.04843613 0.04843 0.04843716
𝑡𝑡𝑡𝑡 = 15 0.03259459 0.03259459 0.03259412 0.03259 0.03259459

𝑥𝑥𝑥𝑥 = 0.75

𝑡𝑡𝑡𝑡 = 1 0.55883376 0.55882869 0.55882287 0.55883 0.55883764
𝑡𝑡𝑡𝑡 = 5 0.14088686 0.14088685 0.14088137 0.14089 0.14088686
𝑡𝑡𝑡𝑡 = 10 0.07220247 0.07220246 0.07220095 0.07221 0.07220247
𝑡𝑡𝑡𝑡 = 15 0.04677529 0.04677529 0.04677452 0.04678 0.04677529

Table 8. Comparison of maximum error norms of various schemes for 𝜀𝜀𝜀𝜀 = 0.01, ℎ = 0.0125.

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡

EFDM
Kutluay et al.

(1999)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0001

EEFDM
Kutluay et al.

(1999)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0001

TFPM
Tsai et al.

(2017)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0001

Strang Splitting
Present

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001

EX4 Splitting
Present

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001

EX6 Splitting
Present

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001

𝑥𝑥𝑥𝑥 = 0.25

𝑡𝑡𝑡𝑡 = 0.4 5.54E-4 1.60E-5 9.28E-6 3.40E-08 2.22E-09 1.24E-09
𝑡𝑡𝑡𝑡 = 0.6 3.49E-4 1.10E-5 1.05E-5 1.41E-08 2.21E-09 1.05E-09
𝑡𝑡𝑡𝑡 = 0.8 2.46E-4 4.40E-6 8.46E-6 4.27E-09 1.06E-09 8.65E-10
𝑡𝑡𝑡𝑡 = 1.0 1.85E-4 5.10E-6 5.12E-6 1.11E-10 5.67E-10 6.27E-10
𝑡𝑡𝑡𝑡 = 3.0 2.23E-4 2.30E-6 6.35E-6 2.33E-09 3.53E-10 2.16E-11

𝑥𝑥𝑥𝑥 = 0.50

𝑡𝑡𝑡𝑡 = 0.4 5.22E-4 7.50E-6 1.44E-5 1.40E-07 4.55E-10 4.54E-09
𝑡𝑡𝑡𝑡 = 0.6 4.46E-4 4.50E-6 7.61E-6 7.06E-08 4.53E-09 3.28E-09
𝑡𝑡𝑡𝑡 = 0.8 3.56E-4 3.90E-6 2.57E-6 3.58E-08 8.39E-09 1.96E-09
𝑡𝑡𝑡𝑡 = 1.0 2.96E-4 4.00E-6 1.14E-5 1.55E-08 9.08E-09 9.75E-10
𝑡𝑡𝑡𝑡 = 3.0 3.49E-5 5.10E-6 1.09E-5 4.74E-09 1.49E-10 5.66E-11

𝑥𝑥𝑥𝑥 = 0.75

𝑡𝑡𝑡𝑡 = 0.4 1.12E-4 1.80E-5 4.41E-5 2.92E-07 3.83E-08 2.59E-09
𝑡𝑡𝑡𝑡 = 0.6 2.05E-4 5.00E-6 7.80E-5 2.02E-07 2.52E-08 4.60E-09
𝑡𝑡𝑡𝑡 = 0.8 2.62E-4 1.80E-6 8.28E-5 1.55E-07 8.42E-09 4.69E-09
𝑡𝑡𝑡𝑡 = 1.0 2.44E-4 5.60E-6 7.31E-5 1.13E-07 1.95E-10 3.65E-09
𝑡𝑡𝑡𝑡 = 3.0 3.21E-5 2.10E-6 9.26E-6 4.87E-09 2.87E-10 7.14E-11

 (a) (b)

Fig. 1. Numerical solution of Example 1with the Strang splitting approach at different times for
the parameters (a) 	𝜀𝜀𝜀𝜀 = 0.001, ℎ = 0.0025 and 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.002 and (b) 𝜀𝜀𝜀𝜀 = 0.0005, ℎ = 0.002
and 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0013

Murat Sari, Huseyin Tunc, Muaz Seydaoglu 8

Table 6. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.003 and ℎ = 0.01.

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡

EX6 Splitting
Present
𝑁𝑁𝑁𝑁 = 100,

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125

EX4 Splitting
Present
𝑁𝑁𝑁𝑁 = 100,

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125

Strang Splitting
Present
𝑁𝑁𝑁𝑁 = 100,

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125

Jiwari (2015)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡	 = 0.001 Exact

𝑥𝑥𝑥𝑥 = 0.25

𝑡𝑡𝑡𝑡 = 1 0.18901910 0.18901910 0.18899538 0.18902 0.18901910
𝑡𝑡𝑡𝑡 = 5 0.04698094 0.04698094 0.04697901 0.04698 0.04698094
𝑡𝑡𝑡𝑡 = 10 0.02422174 0.02422174 0.02422121 0.02422 0.02422174
𝑡𝑡𝑡𝑡 = 15 0.01631712 0.01631712 0.01631688 0.01631 0.01631712

𝑥𝑥𝑥𝑥 = 0.5

𝑡𝑡𝑡𝑡 = 1 0.37622719 0.37622719 0.37619067 0.37623 0.37622719
𝑡𝑡𝑡𝑡 = 5 0.09395531 0.09395531 0.09395150 0.09396 0.09395531
𝑡𝑡𝑡𝑡 = 10 0.04844299 0.04844299 0.04844194 0.04844 0.04844299
𝑡𝑡𝑡𝑡 = 15 0.03263170 0.03263170 0.03263122 0.03263 0.03263170

𝑥𝑥𝑥𝑥 = 0.75

𝑡𝑡𝑡𝑡 = 1 0.55927734 0.55927597 0.55925619 0.55928 0.55927734
𝑡𝑡𝑡𝑡 = 5 0.14091634 0.14091634 0.14091072 0.14092 0.14091634
𝑡𝑡𝑡𝑡 = 10 0.07260297 0.07260297 0.07260142 0.07261 0.07260298
𝑡𝑡𝑡𝑡 = 15 0.04838641 0.04838641 0.04838568 0.04839 0.04838642

Table 7. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.1	and ℎ = 0.0125.

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡
EX6 Splitting

Present
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001

EX4 Splitting
Present

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001

Strang Splitting
Present

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001

Dag et al.
(2005)

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0001

Aksan
(2006)

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0001
Exact

x=0.25

t=0.4 0.3088942 0.3088942 0.3088942 0.30890 0.30891 0.3088942
t=0.6 0.2407390 0.2407390 0.2407390 0.24074 0.24075 0.2407390
t=0.8 0.1956756 0.1956756 0.1956756 0.19568 0.19568 0.1956756
t=1.0 0.1625648 0.1625648 0.1625648 0.16257 0.16257 0.1625649
t=3.0 0.0272023 0.0272023 0.0272023 0.02720 0.02721 0.0272023

x=0.50

t=0.4 0.5696324 0.5696324 0.5696325 0.56964 0.56969 0.5696325
t=0.6 0.4472055 0.4472055 0.4472055 0.44721 0.44723 0.4472055
t=0.8 0.3592360 0.3592360 0.3592360 0.35924 0.35926 0.3592361
t=1.0 0.2919159 0.2919159 0.2919159 0.29191 0.29193 0.2919160
t=3.0 0.0402049 0.0402049 0.0402049 0.04020 0.04021 0.0402049

x=0.75

t=0.4 0.6254379 0.6254379 0.6254376 0.62541 0.62543 0.6254379
t=0.6 0.4872150 0.4872150 0.4872148 0.48719 0.48723 0.4872150
t=0.8 0.3739218 0.3739218 0.3739217 0.37390 0.37394 0.3739218
t=1.0 0.2874745 0.2874745 0.2874744 0.28746 0.28750 0.2874744
t=3.0 0.0297721 0.0297721 0.0297721 0.02977 0.02978 0.0297721

Table 6. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.003 and ℎ = 0.01.

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡

EX6 Splitting
Present
𝑁𝑁𝑁𝑁 = 100,

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125

EX4 Splitting
Present
𝑁𝑁𝑁𝑁 = 100,

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125

Strang Splitting
Present
𝑁𝑁𝑁𝑁 = 100,

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125

Jiwari (2015)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡	 = 0.001 Exact

𝑥𝑥𝑥𝑥 = 0.25

𝑡𝑡𝑡𝑡 = 1 0.18901910 0.18901910 0.18899538 0.18902 0.18901910
𝑡𝑡𝑡𝑡 = 5 0.04698094 0.04698094 0.04697901 0.04698 0.04698094
𝑡𝑡𝑡𝑡 = 10 0.02422174 0.02422174 0.02422121 0.02422 0.02422174
𝑡𝑡𝑡𝑡 = 15 0.01631712 0.01631712 0.01631688 0.01631 0.01631712

𝑥𝑥𝑥𝑥 = 0.5

𝑡𝑡𝑡𝑡 = 1 0.37622719 0.37622719 0.37619067 0.37623 0.37622719
𝑡𝑡𝑡𝑡 = 5 0.09395531 0.09395531 0.09395150 0.09396 0.09395531
𝑡𝑡𝑡𝑡 = 10 0.04844299 0.04844299 0.04844194 0.04844 0.04844299
𝑡𝑡𝑡𝑡 = 15 0.03263170 0.03263170 0.03263122 0.03263 0.03263170

𝑥𝑥𝑥𝑥 = 0.75

𝑡𝑡𝑡𝑡 = 1 0.55927734 0.55927597 0.55925619 0.55928 0.55927734
𝑡𝑡𝑡𝑡 = 5 0.14091634 0.14091634 0.14091072 0.14092 0.14091634
𝑡𝑡𝑡𝑡 = 10 0.07260297 0.07260297 0.07260142 0.07261 0.07260298
𝑡𝑡𝑡𝑡 = 15 0.04838641 0.04838641 0.04838568 0.04839 0.04838642

Table 7. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.1	and ℎ = 0.0125.

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡
EX6 Splitting

Present
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001

EX4 Splitting
Present

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001

Strang Splitting
Present

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001

Dag et al.
(2005)

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0001

Aksan
(2006)

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0001
Exact

x=0.25

t=0.4 0.3088942 0.3088942 0.3088942 0.30890 0.30891 0.3088942
t=0.6 0.2407390 0.2407390 0.2407390 0.24074 0.24075 0.2407390
t=0.8 0.1956756 0.1956756 0.1956756 0.19568 0.19568 0.1956756
t=1.0 0.1625648 0.1625648 0.1625648 0.16257 0.16257 0.1625649
t=3.0 0.0272023 0.0272023 0.0272023 0.02720 0.02721 0.0272023

x=0.50

t=0.4 0.5696324 0.5696324 0.5696325 0.56964 0.56969 0.5696325
t=0.6 0.4472055 0.4472055 0.4472055 0.44721 0.44723 0.4472055
t=0.8 0.3592360 0.3592360 0.3592360 0.35924 0.35926 0.3592361
t=1.0 0.2919159 0.2919159 0.2919159 0.29191 0.29193 0.2919160
t=3.0 0.0402049 0.0402049 0.0402049 0.04020 0.04021 0.0402049

x=0.75

t=0.4 0.6254379 0.6254379 0.6254376 0.62541 0.62543 0.6254379
t=0.6 0.4872150 0.4872150 0.4872148 0.48719 0.48723 0.4872150
t=0.8 0.3739218 0.3739218 0.3739217 0.37390 0.37394 0.3739218
t=1.0 0.2874745 0.2874745 0.2874744 0.28746 0.28750 0.2874744
t=3.0 0.0297721 0.0297721 0.0297721 0.02977 0.02978 0.0297721

Fig. 1. Numerical solution of Example 1with the Strang splitting approach at different times for the parameters (a)
ε =0.001, h=0.0025 and dt=0.002 and (b) ε =0.0005, h=0.002 and dt=0.0013

Fig. 2. Comparison of CPU times for various number
of spatial elements and dt=0.001

Fig. 3. a) Error versus number of evaluations of ϕk
A for

the numerical solution of Example 1 at t=3,ε=0.1 and
h=0.0125. b) Numerical solution of Example 2 at t=1
with different kinematic viscosity constants a) ε=0.5
b) ε=0.1 c) ε=0.05 d) ε=0.01 e) ε=0.005 f) ε=0.003

Example 2 (Sari & Tunc, 2017) Let us now consider the
Burgers equation (1) with initial condition

Fig. 2. Comparison of CPU times for various number of spatial elements and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001

(a) (b)

Fig. 3. a) Error versus number of evaluations of 𝜙𝜙𝜙𝜙;
< for the numerical solution of Example 1 at

𝑑𝑑𝑑𝑑 = 3, 𝜀𝜀𝜀𝜀 = 0.1 and ℎ = 0.0125. b) Numerical solution of Example 2 at 𝑑𝑑𝑑𝑑 = 1 with different
kinematic viscosity constants a) 𝜀𝜀𝜀𝜀 = 0.5 b) 𝜀𝜀𝜀𝜀 = 0.1 c) 𝜀𝜀𝜀𝜀 = 0.05 d) 𝜀𝜀𝜀𝜀 = 0.01 e) 𝜀𝜀𝜀𝜀 = 0.005 f)
𝜀𝜀𝜀𝜀 = 0.003

Example 2 (Sari & Tunc, 2017) Let us now
consider the Burgers equation (1) with
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 4𝑥𝑥𝑥𝑥(1 − 𝑥𝑥𝑥𝑥), 0 < 𝑥𝑥𝑥𝑥 < 1
 (46)
and homogeneous boundary conditions

𝑢𝑢𝑢𝑢(0, 𝑑𝑑𝑑𝑑) = 0, 𝑑𝑑𝑑𝑑 > 0 (47)
𝑢𝑢𝑢𝑢(1, 𝑑𝑑𝑑𝑑) = 0, 𝑑𝑑𝑑𝑑 > 0. (48)

The exact solution of (1) under the
consideration of cases (46) - (48) is given
by Cole (1951) as in (45) but with the
Fourier coefficients
𝑎𝑎𝑎𝑎U = ∫ 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−𝑥𝑥𝑥𝑥7(3𝜀𝜀𝜀𝜀)e5(3 − 2𝑥𝑥𝑥𝑥)}𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥5

U

(46)

and homogeneous boundary conditions

Fig. 2. Comparison of CPU times for various number of spatial elements and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001

(a) (b)

Fig. 3. a) Error versus number of evaluations of 𝜙𝜙𝜙𝜙;
< for the numerical solution of Example 1 at

𝑑𝑑𝑑𝑑 = 3, 𝜀𝜀𝜀𝜀 = 0.1 and ℎ = 0.0125. b) Numerical solution of Example 2 at 𝑑𝑑𝑑𝑑 = 1 with different
kinematic viscosity constants a) 𝜀𝜀𝜀𝜀 = 0.5 b) 𝜀𝜀𝜀𝜀 = 0.1 c) 𝜀𝜀𝜀𝜀 = 0.05 d) 𝜀𝜀𝜀𝜀 = 0.01 e) 𝜀𝜀𝜀𝜀 = 0.005 f)
𝜀𝜀𝜀𝜀 = 0.003

Example 2 (Sari & Tunc, 2017) Let us now
consider the Burgers equation (1) with
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 4𝑥𝑥𝑥𝑥(1 − 𝑥𝑥𝑥𝑥), 0 < 𝑥𝑥𝑥𝑥 < 1
 (46)
and homogeneous boundary conditions

𝑢𝑢𝑢𝑢(0, 𝑑𝑑𝑑𝑑) = 0, 𝑑𝑑𝑑𝑑 > 0 (47)
𝑢𝑢𝑢𝑢(1, 𝑑𝑑𝑑𝑑) = 0, 𝑑𝑑𝑑𝑑 > 0. (48)

The exact solution of (1) under the
consideration of cases (46) - (48) is given
by Cole (1951) as in (45) but with the
Fourier coefficients
𝑎𝑎𝑎𝑎U = ∫ 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−𝑥𝑥𝑥𝑥7(3𝜀𝜀𝜀𝜀)e5(3 − 2𝑥𝑥𝑥𝑥)}𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥5

U

(47)
(48)

The exact solution of (1) under the
consideration of cases (46) - (48) is given by Cole
(1951) as in (45) but with the Fourier coefficients

Fig. 2. Comparison of CPU times for various number of spatial elements and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001

(a) (b)

Fig. 3. a) Error versus number of evaluations of 𝜙𝜙𝜙𝜙;
< for the numerical solution of Example 1 at

𝑑𝑑𝑑𝑑 = 3, 𝜀𝜀𝜀𝜀 = 0.1 and ℎ = 0.0125. b) Numerical solution of Example 2 at 𝑑𝑑𝑑𝑑 = 1 with different
kinematic viscosity constants a) 𝜀𝜀𝜀𝜀 = 0.5 b) 𝜀𝜀𝜀𝜀 = 0.1 c) 𝜀𝜀𝜀𝜀 = 0.05 d) 𝜀𝜀𝜀𝜀 = 0.01 e) 𝜀𝜀𝜀𝜀 = 0.005 f)
𝜀𝜀𝜀𝜀 = 0.003

Example 2 (Sari & Tunc, 2017) Let us now
consider the Burgers equation (1) with
initial condition

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 4𝑥𝑥𝑥𝑥(1 − 𝑥𝑥𝑥𝑥), 0 < 𝑥𝑥𝑥𝑥 < 1
 (46)
and homogeneous boundary conditions

𝑢𝑢𝑢𝑢(0, 𝑑𝑑𝑑𝑑) = 0, 𝑑𝑑𝑑𝑑 > 0 (47)
𝑢𝑢𝑢𝑢(1, 𝑑𝑑𝑑𝑑) = 0, 𝑑𝑑𝑑𝑑 > 0. (48)

The exact solution of (1) under the
consideration of cases (46) - (48) is given
by Cole (1951) as in (45) but with the
Fourier coefficients
𝑎𝑎𝑎𝑎U = ∫ 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−𝑥𝑥𝑥𝑥7(3𝜀𝜀𝜀𝜀)e5(3 − 2𝑥𝑥𝑥𝑥)}𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥5

U

𝑎𝑎𝑎𝑎ü = 2 ∫ 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−𝑥𝑥𝑥𝑥7(3𝜀𝜀𝜀𝜀)e5(3 −
5

U
	2𝑥𝑥𝑥𝑥)}cos	(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥.

Table 9 includes the comparison of
numerical solutions and with the exact
solution with kinematic viscosity 𝜀𝜀𝜀𝜀 = 1.
The calculated results in Table 9 are more
accurate than the literature (Kutluay et al.,
1999; Shao et al., 2015). To produce the
results, far fewer elements in time in
comparison to the corresponding references
have been used.

Table 10 gives a comparison of
the present results with the literature
(Kutluay et al., 2004; Kutluay & Esen,
2004) and the exact solution. The current
numerical solutions are more accurate than
the corresponding literature when the
advection is more dominant to the diffusion,
𝜀𝜀𝜀𝜀 = 0.1 and ℎ = 0.0125. The presently
calculated solutions are seen to require less
effort in time in comparison to those
references.

Table 9. Comparison of the results produced for 𝜀𝜀𝜀𝜀 = 1, ℎ = 0.0125, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.0002.

𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑
EX6 Splitting
ℎ = 0.0125,
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.0002

EX6 Splitting
ℎ = 0.0125,
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.0002

Strang
Splitting

ℎ = 0.0125,
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.0002

Kutluay et al.
(1999)

ℎ = 0.0125,
dt=0.0001

Shao et al.
(2015)

ℎ = 0.25,
dt=0.0001

Exact

x=0.25

t=0.05 0.426285622 0.426285617 0.426285616 0.42629 0.4262864 0.426285623
t=0.10 0.261479814 0.261479812 0.261479811 0.26149 0.2614801 0.261479814
t=0.15 0.161477615 0.161477610 0.161477605 0.16148 0.1614777 0.161477615
t=0.25 0.061087582 0.061087577 0.061087571 0.06109 0.0610875 0.061087582

x=0.50

t=0.05 0.628083727 0.628083724 0.628083717 0.62809 0.6280846 0.628083727
t=0.10 0.383422416 0.383422404 0.383422386 0.38343 0.3834228 0.383422416
t=0.15 0.234055329 0.234055317 0.234055300 0.23406 0.2340554 0.234055329
t=0.25 0.087232703 0.087232695 0.087232685 0.08724 0.0872327 0.087232703

x=0.75

t=0.05 0.465252624 0.465252602 0.465252556 0.46526 0.4652528 0.465252625
t=0.10 0.281572640 0.281572622 0.281572589 0.28158 0.2815727 0.281572641
t=0.15 0.169738279 0.169738265 0.169738245 0.16974 0.1697383 0.169738280
t=0.25 0.062289848 0.062289842 0.062289834 0.06229 0.0622898 0.062289849

Table 10. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.1, ℎ = 0.0125 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.001.

𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑
EX6

Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	=0.001

EX4
Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.001

Strang
Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.001

 Kutluay &
Esen (2004)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.0001

Kutluay
et al. (2004)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	=0.0001

Exact

x=0.25

t=0.4 0.3175229 0.3175229 0.3175228 0.32091 0.31749 0.3175229
t=0.6 0.2461385 0.2461385 0.2461384 0.24910 0.24612 0.2461385
t=0.8 0.1995553 0.1995553 0.1995553 0.20211 0.19954 0.1995553
t=1.0 0.1655986 0.1655986 0.1655986 0.16782 0.16559 0.1655986
t=3.0 0.0277587 0.0277587 0.0277587 0.02828 0.02776 0.0277587

x=0.50

t=0.4 0.5845373 0.5845373 0.5845374 0.58788 0.58448 0.5845373
t=0.6 0.4579764 0.4579764 0.4579765 0.46174 0.45793 0.4579764
t=0.8 0.3673982 0.3673982 0.3673982 0.37111 0.36736 0.3673982
t=1.0 0.2983431 0.2983431 0.2983431 0.30183 0.29831 0.2983431
t=3.0 0.0410650 0.0410650 0.0410650 0.04185 0.04106 0.0410650

x=0.75

t=0.4 0.6456155 0.6456156 0.6456152 0.65054 0.64547 0.6456155
t=0.6 0.5026758 0.5026758 0.5026755 0.50825 0.50255 0.5026758
t=0.8 0.3853355 0.3853355 0.3853353 0.39068 0.38523 0.3853355
t=1.0 0.2958567 0.2958567 0.2958566 0.30057 0.29578 0.2958567
t=3.0 0.0304396 0.0304396 0.0304396 0.03106 0.03044 0.0304396

Table 9 includes the comparison of numerical solutions
and with the exact solution with kinematic viscosity ε=1.
The calculated results in Table 9 are more accurate than
the literature (Kutluay et al., 1999; Shao et al., 2015). To
produce the results, far fewer elements in time in com-
parison to the corresponding references have been used.

Table 10 gives a comparison of the
present results with the literature (Kutluay et al., 2004;
Kutluay & Esen, 2004) and the exact solution. The
current numerical solutions are more accurate than
the corresponding literature when the advection is
more dominant to the diffusion, ε=0.1 and h=0.0125.
The presently calculated solutions are seen to require
less effort in time in comparison to those references.

Table 11 is organized to present the numerical results
for ε=0.01, dt =0.002 and h=0.01 with various num-
bers of spatial and time nodes. The present solutions
have been compared with the exact and other numeri-
cal solutions based on various numerical methods such
as finite difference (Sari & Gurarslan, 2009) and the
boundary element methods (Bahadir & Saglam, 2005).

9 Higher order splitting approaches in analysis of the Burgers equation

(a) (b)

(b)(a)

𝑎𝑎𝑎𝑎ü = 2∫ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{−𝑒𝑒𝑒𝑒7(3𝜀𝜀𝜀𝜀)e5(3 −5
U

																																					2𝑒𝑒𝑒𝑒)}cos	(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒)𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒.

Table 9 includes the comparison of
numerical solutions and with the exact
solution with kinematic viscosity 𝜀𝜀𝜀𝜀 = 1.
The calculated results in Table 9 are more
accurate than the literature (Kutluay et al.,
1999; Shao et al., 2015). To produce the
results, far fewer elements in time in
comparison to the corresponding references
have been used.

 Table 10 gives a comparison of
the present results with the literature
(Kutluay et al., 2004; Kutluay & Esen,
2004) and the exact solution. The current
numerical solutions are more accurate than
the corresponding literature when the
advection is more dominant to the diffusion,
𝜀𝜀𝜀𝜀 = 0.1 and ℎ = 0.0125. The presently
calculated solutions are seen to require less
effort in time in comparison to those
references.

Table 9. Comparison of the results produced for 𝜀𝜀𝜀𝜀 = 1, ℎ = 0.0125, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.0002.

𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑
EX6 Splitting
ℎ = 0.0125,
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.0002

EX6 Splitting
ℎ = 0.0125,
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.0002

Strang
Splitting

ℎ = 0.0125,
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.0002

Kutluay et al.
(1999)

ℎ = 0.0125,
dt=0.0001

Shao et al.
(2015)

ℎ = 0.25,
dt=0.0001

Exact

x=0.25

t=0.05 0.426285622 0.426285617 0.426285616 0.42629 0.4262864 0.426285623
t=0.10 0.261479814 0.261479812 0.261479811 0.26149 0.2614801 0.261479814
t=0.15 0.161477615 0.161477610 0.161477605 0.16148 0.1614777 0.161477615
t=0.25 0.061087582 0.061087577 0.061087571 0.06109 0.0610875 0.061087582

x=0.50

t=0.05 0.628083727 0.628083724 0.628083717 0.62809 0.6280846 0.628083727
t=0.10 0.383422416 0.383422404 0.383422386 0.38343 0.3834228 0.383422416
t=0.15 0.234055329 0.234055317 0.234055300 0.23406 0.2340554 0.234055329
t=0.25 0.087232703 0.087232695 0.087232685 0.08724 0.0872327 0.087232703

x=0.75

t=0.05 0.465252624 0.465252602 0.465252556 0.46526 0.4652528 0.465252625
t=0.10 0.281572640 0.281572622 0.281572589 0.28158 0.2815727 0.281572641
t=0.15 0.169738279 0.169738265 0.169738245 0.16974 0.1697383 0.169738280
t=0.25 0.062289848 0.062289842 0.062289834 0.06229 0.0622898 0.062289849

Table 10. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.1, ℎ = 0.0125 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.001.

𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑
EX6

Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	=0.001

EX4
Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.001

Strang
Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.001

 Kutluay &
Esen (2004)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.0001

Kutluay
et al. (2004)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	=0.0001

Exact

x=0.25

t=0.4 0.3175229 0.3175229 0.3175228 0.32091 0.31749 0.3175229
t=0.6 0.2461385 0.2461385 0.2461384 0.24910 0.24612 0.2461385
t=0.8 0.1995553 0.1995553 0.1995553 0.20211 0.19954 0.1995553
t=1.0 0.1655986 0.1655986 0.1655986 0.16782 0.16559 0.1655986
t=3.0 0.0277587 0.0277587 0.0277587 0.02828 0.02776 0.0277587

x=0.50

t=0.4 0.5845373 0.5845373 0.5845374 0.58788 0.58448 0.5845373
t=0.6 0.4579764 0.4579764 0.4579765 0.46174 0.45793 0.4579764
t=0.8 0.3673982 0.3673982 0.3673982 0.37111 0.36736 0.3673982
t=1.0 0.2983431 0.2983431 0.2983431 0.30183 0.29831 0.2983431
t=3.0 0.0410650 0.0410650 0.0410650 0.04185 0.04106 0.0410650

x=0.75

t=0.4 0.6456155 0.6456156 0.6456152 0.65054 0.64547 0.6456155
t=0.6 0.5026758 0.5026758 0.5026755 0.50825 0.50255 0.5026758
t=0.8 0.3853355 0.3853355 0.3853353 0.39068 0.38523 0.3853355
t=1.0 0.2958567 0.2958567 0.2958566 0.30057 0.29578 0.2958567
t=3.0 0.0304396 0.0304396 0.0304396 0.03106 0.03044 0.0304396

𝑎𝑎𝑎𝑎ü = 2∫ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{−𝑒𝑒𝑒𝑒7(3𝜀𝜀𝜀𝜀)e5(3 −5
U

																																					2𝑒𝑒𝑒𝑒)}cos	(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒)𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒.

Table 9 includes the comparison of
numerical solutions and with the exact
solution with kinematic viscosity 𝜀𝜀𝜀𝜀 = 1.
The calculated results in Table 9 are more
accurate than the literature (Kutluay et al.,
1999; Shao et al., 2015). To produce the
results, far fewer elements in time in
comparison to the corresponding references
have been used.

 Table 10 gives a comparison of
the present results with the literature
(Kutluay et al., 2004; Kutluay & Esen,
2004) and the exact solution. The current
numerical solutions are more accurate than
the corresponding literature when the
advection is more dominant to the diffusion,
𝜀𝜀𝜀𝜀 = 0.1 and ℎ = 0.0125. The presently
calculated solutions are seen to require less
effort in time in comparison to those
references.

Table 9. Comparison of the results produced for 𝜀𝜀𝜀𝜀 = 1, ℎ = 0.0125, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.0002.

𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑
EX6 Splitting
ℎ = 0.0125,
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.0002

EX6 Splitting
ℎ = 0.0125,
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.0002

Strang
Splitting

ℎ = 0.0125,
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.0002

Kutluay et al.
(1999)

ℎ = 0.0125,
dt=0.0001

Shao et al.
(2015)

ℎ = 0.25,
dt=0.0001

Exact

x=0.25

t=0.05 0.426285622 0.426285617 0.426285616 0.42629 0.4262864 0.426285623
t=0.10 0.261479814 0.261479812 0.261479811 0.26149 0.2614801 0.261479814
t=0.15 0.161477615 0.161477610 0.161477605 0.16148 0.1614777 0.161477615
t=0.25 0.061087582 0.061087577 0.061087571 0.06109 0.0610875 0.061087582

x=0.50

t=0.05 0.628083727 0.628083724 0.628083717 0.62809 0.6280846 0.628083727
t=0.10 0.383422416 0.383422404 0.383422386 0.38343 0.3834228 0.383422416
t=0.15 0.234055329 0.234055317 0.234055300 0.23406 0.2340554 0.234055329
t=0.25 0.087232703 0.087232695 0.087232685 0.08724 0.0872327 0.087232703

x=0.75

t=0.05 0.465252624 0.465252602 0.465252556 0.46526 0.4652528 0.465252625
t=0.10 0.281572640 0.281572622 0.281572589 0.28158 0.2815727 0.281572641
t=0.15 0.169738279 0.169738265 0.169738245 0.16974 0.1697383 0.169738280
t=0.25 0.062289848 0.062289842 0.062289834 0.06229 0.0622898 0.062289849

Table 10. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.1, ℎ = 0.0125 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.001.

𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑
EX6

Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	=0.001

EX4
Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.001

Strang
Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.001

 Kutluay &
Esen (2004)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.0001

Kutluay
et al. (2004)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	=0.0001

Exact

x=0.25

t=0.4 0.3175229 0.3175229 0.3175228 0.32091 0.31749 0.3175229
t=0.6 0.2461385 0.2461385 0.2461384 0.24910 0.24612 0.2461385
t=0.8 0.1995553 0.1995553 0.1995553 0.20211 0.19954 0.1995553
t=1.0 0.1655986 0.1655986 0.1655986 0.16782 0.16559 0.1655986
t=3.0 0.0277587 0.0277587 0.0277587 0.02828 0.02776 0.0277587

x=0.50

t=0.4 0.5845373 0.5845373 0.5845374 0.58788 0.58448 0.5845373
t=0.6 0.4579764 0.4579764 0.4579765 0.46174 0.45793 0.4579764
t=0.8 0.3673982 0.3673982 0.3673982 0.37111 0.36736 0.3673982
t=1.0 0.2983431 0.2983431 0.2983431 0.30183 0.29831 0.2983431
t=3.0 0.0410650 0.0410650 0.0410650 0.04185 0.04106 0.0410650

x=0.75

t=0.4 0.6456155 0.6456156 0.6456152 0.65054 0.64547 0.6456155
t=0.6 0.5026758 0.5026758 0.5026755 0.50825 0.50255 0.5026758
t=0.8 0.3853355 0.3853355 0.3853353 0.39068 0.38523 0.3853355
t=1.0 0.2958567 0.2958567 0.2958566 0.30057 0.29578 0.2958567
t=3.0 0.0304396 0.0304396 0.0304396 0.03106 0.03044 0.0304396

Table 11. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.01, ℎ = 0.01 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.002.

𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑
EX6

Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.002

EX4
Splitting

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.002

Strang
Splitting					𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 =

0.002

Bahadir &
Saglam
(2005)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001

Sari &
Gurarslan

(2009)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001

Exact

𝑒𝑒𝑒𝑒 = 0.10
t=0.50 0.12846216 0.12846216 0.12846158 0.12808 0.12846 0.12846216
t=2.00 0.04381385 0.04381385 0.04381376 0.04388 0.04379 0.04381385
t=4.00 0.02334500 0.02334500 0.02334497 0.02351 0.02334 0.02334500

𝑒𝑒𝑒𝑒 = 0.30
t=0.50 0.37848913 0.37848913 0.37848813 0.37956 0.37849 0.37848913
t=2.00 0.13134519 0.13134519 0.13134493 0.13129 0.13131 0.13134519
t=4.00 0.07002718 0.07002718 0.07002710 0.07009 0.07002 0.07002718

𝑒𝑒𝑒𝑒 = 0.50
t=0.50 0.60988613 0.60988613 0.60988613 0.61768 0.60991 0.60988613
t=2.00 0.21858801 0.21858801 0.21858762 0.21873 0.21858 0.21858801
t=4.00 0.11668202 0.11668202 0.11668189 0.11671 0.11667 0.11668202

𝑒𝑒𝑒𝑒 = 0.70
t=0.50 0.80978166 0.80978166 0.80978409 0.83022 0.80986 0.80978166
t=2.00 0.30534815 0.30534815 0.30534768 0.30614 0.30534 0.30534815
t=4.00 0.16287830 0.16287830 0.16287813 0.16293 0.16287 0.16287830

𝑒𝑒𝑒𝑒 = 0.90
t=0.50 0.94601337 0.94601311 0.94602125 0.98068 0.94615 0.94601416
t=2.00 0.38027320 0.38027324 0.38027364 0.38163 0.38027 0.38027365
t=4.00 0.16857741 0.16857743 0.16857701 0.16766 0.16857 0.16857741

Table 12. Comparison of the results produced with 𝜀𝜀𝜀𝜀 = 0.004	and ℎ = 0.01 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01.

𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑
EX6 Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01

EX4 Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01

Strang Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01

Jiwari (2015)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001 Exact

𝑒𝑒𝑒𝑒 = 0.25

𝑑𝑑𝑑𝑑 = 1 0.19639300 0.19639300 0.19637590 0.19636 0.19639300
𝑑𝑑𝑑𝑑 = 5 0.04743858 0.04743858 0.04743723 0.04744 0.04743858
𝑑𝑑𝑑𝑑 = 10 0.02434263 0.02434263 0.02434227 0.02434 0.02434263
𝑑𝑑𝑑𝑑 = 15 0.01637125 0.01637125 0.01637108 0.01637 0.01637125

𝑒𝑒𝑒𝑒 = 0.5

𝑑𝑑𝑑𝑑 = 1 0.38849076 0.38849076 0.38846870 0.38842 0.38849076
𝑑𝑑𝑑𝑑 = 5 0.09486089 0.09486089 0.09485824 0.09491 0.09486089
𝑑𝑑𝑑𝑑 = 10 0.04868313 0.04868313 0.04868240 0.04868 0.04868313
𝑑𝑑𝑑𝑑 = 15 0.03270700 0.03270700 0.03270667 0.03270 0.03270700

𝑒𝑒𝑒𝑒 = 0.75

𝑑𝑑𝑑𝑑 = 1 0.57319765 0.57319726 0.57318887 0.57312 0.57322509
𝑑𝑑𝑑𝑑 = 5 0.14224850 0.14224849 0.14224467 0.14224 0.14224850
𝑑𝑑𝑑𝑑 = 10 0.07258104 0.07258104 0.07257997 0.07258 0.07258104
𝑑𝑑𝑑𝑑 = 15 0.04696437 0.04696437 0.04696383 0.04696 0.04696437

The present solutions revealed that less computational
time is needed to achieve high accuracy, as compared to
the previously mentioned effective methods.

The comparison of the present numerical
results with the exact solution and the literature Jiwari
(2015) with small viscosity values ε=0.004 and ε=0.003
is demonstrated in Tables 12 and 13, respectively. As
underlined a couple of times, even a much smaller
number of time elements suffice to achieve highly
accurate solutions.

As seen in Figure 3(b), the numerical solution of
Example 2 varies with gradually decreasing values
of the viscosity constant ε, and the solutions tend to
have a steep gredient. In Figure 4(a), the computed
results in terms of the present methods are presented
in Table 10 at time t=3. To assess the accuracy of the
current methods, infinity error norm is used. Figure
4 includes the direct relation between the error norm
versus the number of evaluations of ϕk

A . As seen in
Figure 4(a), the extrapolation methods again produce

Murat Sari, Huseyin Tunc, Muaz Seydaoglu 10

more acceptable numerical results for both accuracy and
computational cost points of view,
even if order reductions have occured.

Table 11. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.01, ℎ = 0.01 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.002.

𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑
EX6

Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.002

EX4
Splitting

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.002

Strang
Splitting					𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 =

0.002

Bahadir &
Saglam
(2005)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001

Sari &
Gurarslan

(2009)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001

Exact

𝑥𝑥𝑥𝑥 = 0.10
t=0.50 0.12846216 0.12846216 0.12846158 0.12808 0.12846 0.12846216
t=2.00 0.04381385 0.04381385 0.04381376 0.04388 0.04379 0.04381385
t=4.00 0.02334500 0.02334500 0.02334497 0.02351 0.02334 0.02334500

𝑥𝑥𝑥𝑥 = 0.30
t=0.50 0.37848913 0.37848913 0.37848813 0.37956 0.37849 0.37848913
t=2.00 0.13134519 0.13134519 0.13134493 0.13129 0.13131 0.13134519
t=4.00 0.07002718 0.07002718 0.07002710 0.07009 0.07002 0.07002718

𝑥𝑥𝑥𝑥 = 0.50
t=0.50 0.60988613 0.60988613 0.60988613 0.61768 0.60991 0.60988613
t=2.00 0.21858801 0.21858801 0.21858762 0.21873 0.21858 0.21858801
t=4.00 0.11668202 0.11668202 0.11668189 0.11671 0.11667 0.11668202

𝑥𝑥𝑥𝑥 = 0.70
t=0.50 0.80978166 0.80978166 0.80978409 0.83022 0.80986 0.80978166
t=2.00 0.30534815 0.30534815 0.30534768 0.30614 0.30534 0.30534815
t=4.00 0.16287830 0.16287830 0.16287813 0.16293 0.16287 0.16287830

𝑥𝑥𝑥𝑥 = 0.90
t=0.50 0.94601337 0.94601311 0.94602125 0.98068 0.94615 0.94601416
t=2.00 0.38027320 0.38027324 0.38027364 0.38163 0.38027 0.38027365
t=4.00 0.16857741 0.16857743 0.16857701 0.16766 0.16857 0.16857741

Table 12. Comparison of the results produced with 𝜀𝜀𝜀𝜀 = 0.004	and ℎ = 0.01 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01.

𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑
EX6 Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01

EX4 Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01

Strang Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01

Jiwari (2015)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001 Exact

𝑥𝑥𝑥𝑥 = 0.25

𝑑𝑑𝑑𝑑 = 1 0.19639300 0.19639300 0.19637590 0.19636 0.19639300
𝑑𝑑𝑑𝑑 = 5 0.04743858 0.04743858 0.04743723 0.04744 0.04743858
𝑑𝑑𝑑𝑑 = 10 0.02434263 0.02434263 0.02434227 0.02434 0.02434263
𝑑𝑑𝑑𝑑 = 15 0.01637125 0.01637125 0.01637108 0.01637 0.01637125

𝑥𝑥𝑥𝑥 = 0.5

𝑑𝑑𝑑𝑑 = 1 0.38849076 0.38849076 0.38846870 0.38842 0.38849076
𝑑𝑑𝑑𝑑 = 5 0.09486089 0.09486089 0.09485824 0.09491 0.09486089
𝑑𝑑𝑑𝑑 = 10 0.04868313 0.04868313 0.04868240 0.04868 0.04868313
𝑑𝑑𝑑𝑑 = 15 0.03270700 0.03270700 0.03270667 0.03270 0.03270700

𝑥𝑥𝑥𝑥 = 0.75

𝑑𝑑𝑑𝑑 = 1 0.57319765 0.57319726 0.57318887 0.57312 0.57322509
𝑑𝑑𝑑𝑑 = 5 0.14224850 0.14224849 0.14224467 0.14224 0.14224850
𝑑𝑑𝑑𝑑 = 10 0.07258104 0.07258104 0.07257997 0.07258 0.07258104
𝑑𝑑𝑑𝑑 = 15 0.04696437 0.04696437 0.04696383 0.04696 0.04696437

Table 13. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.003, ℎ = 0.01 and dt = 0.005.

𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑
EX6 Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.005

EX4 Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.005

Strang Splitting
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.005

Jiwari (2015)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001 Exact

𝑥𝑥𝑥𝑥 = 0.25

𝑑𝑑𝑑𝑑 = 1 0.19672202 0.19672202 0.19671762 0.19668 0.19672202
𝑑𝑑𝑑𝑑 = 5 0.04746474 0.04746474 0.04746439 0.04746 0.04746474
𝑑𝑑𝑑𝑑 = 10 0.02434970 0.02434970 0.02434960 0.02434 0.02434970
𝑑𝑑𝑑𝑑 = 15 0.01637507 0.01637507 0.01637502 0.01637 0.01637507

𝑥𝑥𝑥𝑥 = 0.5

𝑑𝑑𝑑𝑑 = 1 0.38896706 0.38896706 0.38896141 0.38890 0.38896706
𝑑𝑑𝑑𝑑 = 5 0.09491170 0.09491170 0.09491101 0.09491 0.09491170
𝑑𝑑𝑑𝑑 = 10 0.04869814 0.04869814 0.04869795 0.04870 0.04869814
𝑑𝑑𝑑𝑑 = 15 0.03274752 0.03274752 0.03274743 0.03274 0.03274752

𝑥𝑥𝑥𝑥 = 0.75

𝑑𝑑𝑑𝑑 = 1 0.57382849 0.57382848 0.57382592 0.57375 0.57382849
𝑑𝑑𝑑𝑑 = 5 0.14232395 0.14232395 0.14232295 0.14232 0.14232395
𝑑𝑑𝑑𝑑 = 10 0.07298597 0.07298597 0.07298569 0.07298 0.07298597
𝑑𝑑𝑑𝑑 = 15 0.04856835 0.04856835 0.04856822 0.04857 0.04696437

Table 11 is organized to present the
numerical results for 𝜀𝜀𝜀𝜀 = 0.01, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.002
and ℎ = 0.01 with various numbers of
spatial and time nodes. The present
solutions have been compared with the
exact and other numerical solutions based
on various numerical methods such as finite
difference (Sari & Gurarslan, 2009) and the
boundary element methods (Bahadir &
Saglam, 2005). The present solutions
revealed that less computational time is
needed to achieve high accuracy, as
compared to the previously mentioned
effective methods.
 The comparison of the present
numerical results with the exact solution
and the literature Jiwari (2015) with small
viscosity values 𝜀𝜀𝜀𝜀 = 0.004 and 𝜀𝜀𝜀𝜀 = 0.003
is demonstrated in Tables 12 and 13,
respectively. As underlined a couple of
times, even a much smaller number of time

elements suffice to achieve highly accurate
solutions.

As seen in Figures 3(b), the
numerical solution of Example 2 varies with
gradually decreasing values of the viscosity
constant 𝜀𝜀𝜀𝜀, and the solutions tend to have a
steep gredient. In Figure 4(a), the computed
results in terms of the present methods are
presented in Table 10 at time 𝑑𝑑𝑑𝑑 = 3. To
assess the accuracy of the current methods,
infinity error norm is used. Figure 4
includes the direct relation between the
error norm versus the number of evaluations
of 𝜙𝜙𝜙𝜙;

<. As seen in Figure 4(a), the
extrapolation methods again produce more
acceptable numerical results for both
accuracy and computational cost points of
view, even if order reductions have occured.

Fig. 4. a) Error versus number of evaluations of ϕk
A for

the numerical solution of Example 2 at a) t=3,ε=0.1 and
h=0.0125 and Example 3 at
b) t=2,ε=0.02 and h=0.025

Example 3 (Iskandar & Mohsen, 1992) Let us
consider the Burgers equation (1) with the initial condition,

(a) (b)

Fig. 4. a) Error versus number of evaluations of 𝜙𝜙𝜙𝜙;
< for the numerical solution of Example 2

at a) 𝑑𝑑𝑑𝑑 = 3, 𝜀𝜀𝜀𝜀 = 0.1 and ℎ = 0.0125 and Example 3 at b) 𝑑𝑑𝑑𝑑 = 2, 𝜀𝜀𝜀𝜀 = 0.02 and ℎ = 0.025

Example 3 (Iskandar & Mohsen, 1992) Let
us consider the Burgers equation (1) with
the initial condition,
𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 5

Ãã
�𝑥𝑥𝑥𝑥 + tan	(*

7
)Å (49)

and the nonhomogeneous and time
dependent boundary conditions
𝑢𝑢𝑢𝑢(0.5, 𝑑𝑑𝑑𝑑) = 5

ÃãN(
�0.5 + tan	(Ãã

R(ÃN()
)Å (50)

𝑢𝑢𝑢𝑢(1.5, 𝑑𝑑𝑑𝑑) = 5

ÃãN(
�1.5 + tan	(SÃã

R(ÃN()
)Å, (51)

where 𝜀𝜀𝜀𝜀 = 1/𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. The exact solution of the
Burgers equation is
𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑑𝑑𝑑𝑑) = 5

ÃãN(
�𝑥𝑥𝑥𝑥 + tan	(*Ãã

7(ÃN()
)Å. (52)

In Figure 4(b), the capability of the current
algorithms are shown for the Burgers
equation with time-dependent
nonhomogeneus boundary conditions. In
the figure, the error norm versus the number
of evaluations of 𝜙𝜙𝜙𝜙;

< is presented for the
parameters ℎ = 0.025, 𝜀𝜀𝜀𝜀 = 0.02 and 𝑑𝑑𝑑𝑑 = 2.
It has been observed that order reductions
occurred for extrapolation methods as well
as for Strang splitting methods (see Figure
4(b)). For further information on order

reduction phenemona in diffusion-reaction
equations employing a splitting method
with nonhomogenous and time-dependent
Dirichlet boundary condition, readers are
referred to literature by Einkemmer and
Ostermann (2015). As seen in Figure 4(b),
the extrapolation methods again produce
more accurate and more economical
numerical results.

6. Conclusions and Recommendation
This article has proposed a higher order
splitting-up method based on cubic B-spline
Galerkin finite element method in
numerically analyzing the advection-
diffusion processes. The splitting method is
generated by following three approaches:
the second-order Strang approach, the
fourth-order, and the sixth-order
extrapolation approaches. The stability
analysis of the suggested method has been
studied and shown to be unconditionally
stable for both parts of the physical
processes. To illustrate the accuracy of the
present method, three challenging problems
have been considered. Qualitative and
quantitative analysis reveal that the current
method is capable of producing highly
accurate results even with a smaller number

(49)

and the nonhomogeneous and time dependent boundary
conditions

(a) (b)

Fig. 4. a) Error versus number of evaluations of 𝜙𝜙𝜙𝜙;
< for the numerical solution of Example 2

at a) 𝑑𝑑𝑑𝑑 = 3, 𝜀𝜀𝜀𝜀 = 0.1 and ℎ = 0.0125 and Example 3 at b) 𝑑𝑑𝑑𝑑 = 2, 𝜀𝜀𝜀𝜀 = 0.02 and ℎ = 0.025

Example 3 (Iskandar & Mohsen, 1992) Let
us consider the Burgers equation (1) with
the initial condition,
𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 5

Ãã
�𝑥𝑥𝑥𝑥 + tan	(*

7
)Å (49)

and the nonhomogeneous and time
dependent boundary conditions
𝑢𝑢𝑢𝑢(0.5, 𝑑𝑑𝑑𝑑) = 5

ÃãN(
�0.5 + tan	(Ãã

R(ÃN()
)Å (50)

𝑢𝑢𝑢𝑢(1.5, 𝑑𝑑𝑑𝑑) = 5

ÃãN(
�1.5 + tan	(SÃã

R(ÃN()
)Å, (51)

where 𝜀𝜀𝜀𝜀 = 1/𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. The exact solution of the
Burgers equation is
𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑑𝑑𝑑𝑑) = 5

ÃãN(
�𝑥𝑥𝑥𝑥 + tan	(*Ãã

7(ÃN()
)Å. (52)

In Figure 4(b), the capability of the current
algorithms are shown for the Burgers
equation with time-dependent
nonhomogeneus boundary conditions. In
the figure, the error norm versus the number
of evaluations of 𝜙𝜙𝜙𝜙;

< is presented for the
parameters ℎ = 0.025, 𝜀𝜀𝜀𝜀 = 0.02 and 𝑑𝑑𝑑𝑑 = 2.
It has been observed that order reductions
occurred for extrapolation methods as well
as for Strang splitting methods (see Figure
4(b)). For further information on order

reduction phenemona in diffusion-reaction
equations employing a splitting method
with nonhomogenous and time-dependent
Dirichlet boundary condition, readers are
referred to literature by Einkemmer and
Ostermann (2015). As seen in Figure 4(b),
the extrapolation methods again produce
more accurate and more economical
numerical results.

6. Conclusions and Recommendation
This article has proposed a higher order
splitting-up method based on cubic B-spline
Galerkin finite element method in
numerically analyzing the advection-
diffusion processes. The splitting method is
generated by following three approaches:
the second-order Strang approach, the
fourth-order, and the sixth-order
extrapolation approaches. The stability
analysis of the suggested method has been
studied and shown to be unconditionally
stable for both parts of the physical
processes. To illustrate the accuracy of the
present method, three challenging problems
have been considered. Qualitative and
quantitative analysis reveal that the current
method is capable of producing highly
accurate results even with a smaller number

(50)

(a) (b)

Fig. 4. a) Error versus number of evaluations of 𝜙𝜙𝜙𝜙;
< for the numerical solution of Example 2

at a) 𝑑𝑑𝑑𝑑 = 3, 𝜀𝜀𝜀𝜀 = 0.1 and ℎ = 0.0125 and Example 3 at b) 𝑑𝑑𝑑𝑑 = 2, 𝜀𝜀𝜀𝜀 = 0.02 and ℎ = 0.025

Example 3 (Iskandar & Mohsen, 1992) Let
us consider the Burgers equation (1) with
the initial condition,
𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 5

Ãã
�𝑥𝑥𝑥𝑥 + tan	(*

7
)Å (49)

and the nonhomogeneous and time
dependent boundary conditions
𝑢𝑢𝑢𝑢(0.5, 𝑑𝑑𝑑𝑑) = 5

ÃãN(
�0.5 + tan	(Ãã

R(ÃN()
)Å (50)

𝑢𝑢𝑢𝑢(1.5, 𝑑𝑑𝑑𝑑) = 5

ÃãN(
�1.5 + tan	(SÃã

R(ÃN()
)Å, (51)

where 𝜀𝜀𝜀𝜀 = 1/𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. The exact solution of the
Burgers equation is
𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑑𝑑𝑑𝑑) = 5

ÃãN(
�𝑥𝑥𝑥𝑥 + tan	(*Ãã

7(ÃN()
)Å. (52)

In Figure 4(b), the capability of the current
algorithms are shown for the Burgers
equation with time-dependent
nonhomogeneus boundary conditions. In
the figure, the error norm versus the number
of evaluations of 𝜙𝜙𝜙𝜙;

< is presented for the
parameters ℎ = 0.025, 𝜀𝜀𝜀𝜀 = 0.02 and 𝑑𝑑𝑑𝑑 = 2.
It has been observed that order reductions
occurred for extrapolation methods as well
as for Strang splitting methods (see Figure
4(b)). For further information on order

reduction phenemona in diffusion-reaction
equations employing a splitting method
with nonhomogenous and time-dependent
Dirichlet boundary condition, readers are
referred to literature by Einkemmer and
Ostermann (2015). As seen in Figure 4(b),
the extrapolation methods again produce
more accurate and more economical
numerical results.

6. Conclusions and Recommendation
This article has proposed a higher order
splitting-up method based on cubic B-spline
Galerkin finite element method in
numerically analyzing the advection-
diffusion processes. The splitting method is
generated by following three approaches:
the second-order Strang approach, the
fourth-order, and the sixth-order
extrapolation approaches. The stability
analysis of the suggested method has been
studied and shown to be unconditionally
stable for both parts of the physical
processes. To illustrate the accuracy of the
present method, three challenging problems
have been considered. Qualitative and
quantitative analysis reveal that the current
method is capable of producing highly
accurate results even with a smaller number

(51)

where ε=1/Re. The exact solution of the Burgers
equation is

(a) (b)

Fig. 4. a) Error versus number of evaluations of 𝜙𝜙𝜙𝜙;
< for the numerical solution of Example 2

at a) 𝑑𝑑𝑑𝑑 = 3, 𝜀𝜀𝜀𝜀 = 0.1 and ℎ = 0.0125 and Example 3 at b) 𝑑𝑑𝑑𝑑 = 2, 𝜀𝜀𝜀𝜀 = 0.02 and ℎ = 0.025

Example 3 (Iskandar & Mohsen, 1992) Let
us consider the Burgers equation (1) with
the initial condition,
𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 5

Ãã
�𝑥𝑥𝑥𝑥 + tan	(*

7
)Å (49)

and the nonhomogeneous and time
dependent boundary conditions
𝑢𝑢𝑢𝑢(0.5, 𝑑𝑑𝑑𝑑) = 5

ÃãN(
�0.5 + tan	(Ãã

R(ÃN()
)Å (50)

𝑢𝑢𝑢𝑢(1.5, 𝑑𝑑𝑑𝑑) = 5

ÃãN(
�1.5 + tan	(SÃã

R(ÃN()
)Å, (51)

where 𝜀𝜀𝜀𝜀 = 1/𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. The exact solution of the
Burgers equation is
𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑑𝑑𝑑𝑑) = 5

ÃãN(
�𝑥𝑥𝑥𝑥 + tan	(*Ãã

7(ÃN()
)Å. (52)

In Figure 4(b), the capability of the current
algorithms are shown for the Burgers
equation with time-dependent
nonhomogeneus boundary conditions. In
the figure, the error norm versus the number
of evaluations of 𝜙𝜙𝜙𝜙;

< is presented for the
parameters ℎ = 0.025, 𝜀𝜀𝜀𝜀 = 0.02 and 𝑑𝑑𝑑𝑑 = 2.
It has been observed that order reductions
occurred for extrapolation methods as well
as for Strang splitting methods (see Figure
4(b)). For further information on order

reduction phenemona in diffusion-reaction
equations employing a splitting method
with nonhomogenous and time-dependent
Dirichlet boundary condition, readers are
referred to literature by Einkemmer and
Ostermann (2015). As seen in Figure 4(b),
the extrapolation methods again produce
more accurate and more economical
numerical results.

6. Conclusions and Recommendation
This article has proposed a higher order
splitting-up method based on cubic B-spline
Galerkin finite element method in
numerically analyzing the advection-
diffusion processes. The splitting method is
generated by following three approaches:
the second-order Strang approach, the
fourth-order, and the sixth-order
extrapolation approaches. The stability
analysis of the suggested method has been
studied and shown to be unconditionally
stable for both parts of the physical
processes. To illustrate the accuracy of the
present method, three challenging problems
have been considered. Qualitative and
quantitative analysis reveal that the current
method is capable of producing highly
accurate results even with a smaller number

(52)

In Figure 4(b), the capability of the current algorithms
are shown for the Burgers equation with time-dependent
nonhomogeneus boundary conditions. In the figure, the

error norm versus the number of evaluations of ϕk
A is

presented for the parameters h=0.025,ε=0.02 and t=2.
It has been observed that order reductions occurred for
extrapolation methods as well as for Strang
splitting methods (see Figure 4(b)). For further
information on order reduction phenemona in diffu-
sion-reaction equations employing a splitting method with
nonhomogenous and time-dependent Dirichlet
boundary condition, readers are referred to
literature by Einkemmer and Ostermann (2015). As seen
in Figure 4(b), the extrapolation methods again produce
more accurate and more economical numerical results.

6. Conclusions and Recommendation

This article has proposed a higher order splitting-up
method based on cubic B-spline Galerkin finite element
method in numerically analyzing the advection-diffu-
sion processes. The splitting method is generated by
following three approaches: the second-order Strang ap-
proach, the fourth-order, and the sixth-order extrapolation
approaches. The stability analysis of the
suggested method has been studied and shown to be
unconditionally stable for both parts of the physical
processes. To illustrate the accuracy of the present
method, three challenging problems have been
considered. Qualitative and quantitative analysis reveal
that the current method is capable of producing highly

11 Higher order splitting approaches in analysis of the Burgers equation

(a) (b)

accurate results even with a smaller number of temporal
and spatial elements. The computed solutions agree
with the literature and the exact solution. Notice that
the present method can capture the steep behavior of the
Burgers equation when the advection is dominant.
The current numerical study has been carried out for the
deterministic advection-diffusion processes. Any further
research should involve stochastic advection-diffusion
processes.

ACKNOWLEDGEMENTS
The authors would like to thank the anonymous
referees of the Kuwait Journal of Science for their
valuable comments and suggestions to improve the paper.

References

Aksan, E.N. (2006). Quadratic B-spline finite element
method for numerical solution of the Burgers equation.
Applied Mathematics and Computation, 174: 884-896.

Bahadir, A.R. & Saglam, M. (2005). A mixed
finite difference and boundary element approach
to one-dimensional Burgers’ equation. Applied
Mathematics and Computation, 160: 663-673
.
Bashan, A., Karakoc, S.B.G. & Geyik-
li, T. (2015). Approximation of the KdVB
equation by the quintic B-spline differential
quadrature method. Kuwait Journal of Science, 42: 67-92.

Blanes, S. & Casas, F. (2005). On the ne-
cessity of negative coefficients for
operator splitting schemes of order higher than
two. Applied Numerical Mathematics, 54: 23-37.

Burgers, J. M. (1948). A mathematical
model illustrating the theory of turbulence,.
turbulence, Advances in Applied Mechanics, 1: 171-199.

Castella, F., Chartier, P., Descombes, S. & Vilmart, G.
(2009). Splitting methods with complex times for parabol-
ic equations. BIT Numerical Mathematics, 49: 487-508.

Cole, J. D. (1951). On a quasi-linear
parabolic equation in aerodynamics. Quar-
terly of Applied Mathematics, 9: 225-236.

Creutz, M. & Gocksch, A. (1989). Higher-order hybrids
Monte Carlo algorithms. Physics Letters A, 63: 9-12.

Dag, I., Saka, B. & Boz, A. (2005). B-spline Galerkin
methods for numerical solutions of Burgers’ equation.
Applied Mathematics and Computation, 166: 506-522.

Einkemmer, L. & Ostermann, A. (2015).

Overcoming order reduction in diffusion-reac-
tion splitting. Part 1: Dirichlet boundary conditions.
SIAM Journal of Scientific Computing, 37: 1-15.

Hairer, E., Lubich, C. & Wanner, G. (2006). Geometric
numerical integration. Structure-preserving algorithms
for ordinary differential equations. Second Edition.
Springer Series in Computational Mathematics 31,
Springer: Berlin.

Hansen, E. & Ostermann, A. (2009). High
order splitting methods for analytic semigroups
exist. BIT Numerical Mathematics, 49: 527-542.

Hansen, E. & Ostermann, A. (2009).
Exponential splitting for unbounded operators.
Mathematics of Computation, 78: 1485-1496.

Hopf, E. (1950). The partial differential
equation ut+uux=εuxx . Communications on
Pure and Applied Mathematics, 9: 201-230.

Iskandar, L. & Mohsen, A. (1992). Some numerical
experiments on the splitting of burgers’ equation.
Numerical Methods for Par-
tial Differential Equations, 8: 267-276.

Jain, P.C. & Raja, M. (1979). Splitting-up
 technique for Burgers equation. Indian Journal of
Pure and Applied Mathematics, 10: 1543-1551.

Jain, P.C. & Holla, D.N. (1978). Numerical
 solution of coupled Burgers’ equations. Internation-
al Journal of Non-linear Mechanics, 13: 213-222.

Jain, P.C., Shankar, R. & Singh, V. (1992). Cubic spline
technique for solution of Burgers’ equation with a semi-
linear boundary conditions, International Journal for
Numerical Methods in Biomedical Engineering, 8: 235-
242.

Jiwari, R. (2015). A hybrid numerical scheme for
the numerical solution of the Burgers’ equation,
Computer Physics Communications, 188: 50-67.

Karakoc, S.B.G., Ucar, Y. & Yagmurlu, N.
(2015). Numerical solutions of the MRLW
equation by cubic B-spline Galerkin finite element
method. Kuwait Journal of Science, 42(2): 141-159.

Kutluay, S. & Esen, A. (2004). A lumped Galerkin
method for solving the Burgers equation. Internation-
al Journal of Computer Mathematics, 81: 1433-1444.

Kutluay, S., Esen, A. & Dag, I. (2004). Numerical
solutions of the Burgers’ equation by the least-squares

Murat Sari, Huseyin Tunc, Muaz Seydaoglu 12

quadratic B-spline finite element method. Journal of
Computational and Applied Mathematics, 167: 21-33.

Kutluay, S., Bahadir, A.R. & Ozdes, A. (1999).
Numerical solution of one-dimensional Burg-
ers’ equation: Explicit and exact-explicit finite
difference methods. Journal of Computation-
al and Applied Mathematics, 103: 251–261.

Liao, W. & Zhu, J. (2011). Efficient and accu-
rate finite difference schemes for solving one-di-
mensional Burgers’ equation. International Jour-
nal of Computer Mathematics, 88: 2575-2590.

Miller, E.L. (1966). Predictor–corrector studies of
Burger’s model of turbulent flow. M.S. thesis.
University of Delaware, Newark-Delaware, USA.
Mukundan, V. & Awasthi, A. (2015). Efficient
numerical techniques for Burgers’ equation.
Applied Mathematics and Computation, 262: 282-297.

Prenter, P.M. (1975). Splines and Variation-
al Methods. John Wiley & Sons: New York.

Pospelov, L.A. (1966). Propagation of finite amplitude
elastic waves. Soviet Physics Acoustics, 11: 302-304.

Raslan, K.R. (2003). A collocation solution for Burg-
ers equation using quadratic B-spline finite elements.
International Journal of Computer Mathematics, 80:
931-938.

Saka, B. & Dag, I. (2008). A numerical study of the
Burgers’ equation. Journal of the Franklin Institute, 345:
328-348.

Sari, M. & Gurarslan, G. (2009). A sixth-or-
der compact finite difference scheme to the
numerical solutions of Burgers’ equation.
Applied Mathematics and Computation, 208: 475-483.

Sari, M. & Tunc, H. (2017). An optimization tech-
nique in analysing the Burgers equation. Sigma Jour-
nal of Engineering and Natural Sciences, 35: 369-386.

Seydaoglu, M. & Blanes, S. (2014). High order split-
ting methods for separable non-autonomous parabolic
equations. Applied Numerical Mathematics, 84: 22-32.

Seydaoglu, M., Erdogan, U. & Ozis, T.
(2016). Numerical solution of Burgers’
equation with higher order splitting methods. Journal of
Computational and Applied Mathematics, 291: 410-421.

Shao, L., Feng, X. & He, Y. (2011). The local discontinu-
ous Galerkin finite element method for Burgers equation.

Mathematical and Computer Modelling, 54: 2943-2954.

Soliman, A.A. (2012). A Galerkin solution for
Burgers equation using cubic B-spline finite
elements. Abstract and Applied Analysis, 2012: 1-15.

Suziki, M. (1990). Fractal decomposition of exponential
operators with applications to many-body theories and
Monte Carlo simulations, Physics Letters A, 146: 319-323.

Talwar, J., Mohanty, R.K. & Singh, S. (2016). A new
algorithm based on spline in tension approximation for
1D parabolic quasi-linear equations on a variable mesh.
International Journal of Comput-
er Mathematics, 93: 1771-1786.

Tsai, C., Shih, Y., Lin, Y. & Wang, H. (2017). Tai-
lored finite point method for solving one-dimension-
al Burgers’ equation. International Journal of Com-
putational and Applied Mathematics, 94: 8000-8012.

Tunc, H. (2017). Various finite element techniques
for advection-diffusion-reaction processes. MSc the-
sis. Yildiz Technical University, Istanbul, Turkey.

Van der Pol, B. (1951). On a non-linear partial dif-
ferential equation satisfied by the logarithm of
the Jacobian theta-functions with arithmetical ap-
plications. Proceedings of the National Acade-
my of Sciences of the Amsterdam, 13: 261-271.

Verma, A.K. & Verma, L. (2015). Higher order time in-
tegration formula with application on Burgers’ equation.
International Journal of Computer Mathematics, 92:756-
771.

Wang, J. & Warnecke, G. (2003). Existence and
uniqueness of solutions for a non-uniformly parabolic
equation. Journal of Differential Equations, 189: 1–16.

Yoshida, H. (1990). Construction of higher order sym-
plectic integrators. Physics Letters A, 150:262-268.

Submitted: 13-07-2017
Revised: 18-10-2017
Accepted: 02-01-2018

13 Higher order splitting approaches in analysis of the Burgers equation

Murat Sari, Huseyin Tunc, Muaz Seydaoglu 14

طرق التقسيم ذات الترتيب الأعلى عند التحليل باستخدام معادلة بيرجرز

1،* مراد سري ، 1 حسين تونك ، 2 معاذ سيدأوغلو

1 قسم الرياضيات، كلية الآداب والعلوم، جامعة يلدز التقنية، اسطنبول 34220، تركيا

 2 قسم الرياضيات، كلية الآداب والعلوم، جامعة موس ارباسلان، موس 49100، تركيا

*sarim@yildiz.edu.tr

الملخص

تقتــرح هــذه المقالــة بعــض تقنيــات التقســيم ذات الترتيــب الأعلــى علــى أســاس طريقــة جالركــن بالشــريحة التكعيبيــة B للعنصــر
المنتهــي عنــد التحليــل باســتخدام نمــوذج معادلــة بيرجــرز. تمــت دراســة الصيغــة القويــة لــكل مــن أجــزاء البقــاء والانتشــار مــن
Crank-Nic- ــات ــتخدام مخطط ــم اس ــل، ت ODE المماث ــام ــج نظ ــن. ولدم ــة جالرك ــاء طريق ــد إنش ــت عن ــيم الوق ــرز لتقس ــة بيرج معادل
olson لتقســيم الوقــت. وكانــت المخططــات المقترحــة مســتقرة بــدون شــروط أو قيــود. وتمــت دراســة ثلاثــة أمثلــة صعبــة مــع
ــح ــل الصحي ــع الح ــا م ــدار ومقارنته ــل الانح ــادم لمعام ــات التص ــالات موج ــل ح ــم ح ــط. وت ــة للوس ــة الحركي ــت اللزوج ــم ثاب ــر قي تغيي
المُنافســة. النتائــج النوعيــة والكميــة أن طريقتنــا العدديــة لديهــا دقــة أعلــى بكثيــر مــن الطــرق والأبحــاث المنشــورة. وأظهــرت

