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Abstract

This article proposes some higher order splitting-up techniques based on the cubic B-spline Galerkin 
finite element method in analyzing the Burgers equation model. The strong form of both conservation and 
diffusion parts of the time-split Burgers equation have been considered in building the Galerkin approach. 
To integrate the corresponding ODE system, the Crank-Nicolson time discretization scheme is used. The 
proposed schemes are shown to be unconditionally stable. Three challenging examples have been 
considered that have changing values of the kinematic viscosity constant of the medium. Moreover, 
cases of shock waves of severe gradient are solved and compared with the exact solution and the literature. The 
qualitative and quantitative results demonstrate that our numerical approach has far higher accuracy than rival methods.
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1. Introduction

Nonlinear partial differential equations arise in 
many fields of science, particularly in applied 
mathematics, physics, engineering, mathematical biology, 
chemistry, and finance. One of the most important model 
equation is the Burgers equation. It represents various 
problems in a broad range of scientific fields, such as heat 
conduction (Cole, 1951), turbulence and shock waves 
(Burgers, 1948), longitudinal elastic waves in an 
isotropic solid (Pospelov, 1966), number theory (Pol, 
1951), continuous stochastic processes (Cole, 1951), 
and so on.

Under certain conditions, and by considering the 
uniqueness and existence of solutions, the 
mathematical analysis of Burgers equation was 
discussed in the literature (Wang & Warnecke, 2003). The 
Burgers equation was exactly solved by using the Hopf-Cole 
transformation (Hopf, 1950; Cole, 1951) which 
converts the equation to a heat diffusion 
equation. In most of those cases, the solutions involve 
infinite series which may diverge or converge very 
slowly for relatively small values of the kinematic 
viscosity constant ε, which corresponds to steep wave 
fronts in the propagation of the dynamic wave forms.

Much effort has been spent in solving the Burgers 
equation over the last couple of decades. Since some 
exact solutions fail for small kinematic viscosity values 
(Miller, 1966), ε < 0.01, many researchers have 
suggested various numerical methods based on different 
approaches. These include, but are not limited to,  the least-
squares quadratic B-spline finite element method (Kutluay 

et al., 2004), hybrid numerical scheme involving wavelets 
and finite differences (Jiwari, 2015), quadratic B-spline 
collocation method (Raslan, 2003), spline in 
tension approximation (Talwar et al., 2016), boundary 
element method (Bahadir & Saglam, 2005), various 
difference schemes (Liao & Zhu, 2011), lumped Galerkin 
method (Kutluay & Esen, 2004), high-order time 
integration formulae (Verma & Verma, 2015), 
local discontinuous Galerkin method (Shao et 
al., 2011), a sixth-order CFD scheme (Sari & 
Gurarslan, 2009), higher order splitting methods 
(Seydaoglu et al., 2016), differential quadrature 
method based on B-spline functions (Bashan et al., 2015). 

This study proposes a Galerkin type finite element 
method (FEM) in which a strong form of both the 
conservation and diffusion parts of the equation is 
preferred rather than the weak form. The use of the strong 
form of the FEM in analyzing the advection-diffusion 
processes represented by the Burgers equation has some 
advantages in comparison to the latter. Note that the weak 
form and strong form are mathematically equivalent 
to each other, but computationally this is not the case. 
The weak form of the equation needs more complicated 
computers codes. Since the weak form of the model 
equation requires additional matrices for the residual term 
of the integration, this gives rise to excessive computa-
tional time and may therefore lead to loss of accuracy.

The splitting-up technique for the Burgers equation 
presented by Jain & Raja (1979) splits the Burgers 
equation into subproblems and solves each of them with 
the finite difference method. Similar strategies were 
considered in references (Jain & Holla, 1978; Jain 

Kuwait J. Sci. 46 (1) pp 1-14, 2019



et al., 1992) using the cubic spline method for 
approximate solutions of the Burgers equation. Time and 
space splitting ideas were considered in reference Saka & 
Dag (2008). Here each submodel was solved numerically 
by a quintic B-spline collocation method. High order 
splitting methods were presented for non-autonomous 
perturbed parabolic equations in a work of Seydaoglu & 
Blanes (2014). Seydaoglu et al. (2016) presented a numer-
ical solution of the Burgers equation through higher order 
splitting methods, and they observed order reductions for 
the Dirichlet, Neumann and Robin boundary conditions. 

The outline of this paper is as follows. The gov-
erning model equation is explained in Section 2. The 
considered splitting methods and their implementa-
tion to the Burgers equation will be investigated in 
Section 3. Implementation of the Galerkin approach 
to the split equations and time integration procedure 
of the corresponding ODE system are given in Section 
4. Some numerical illustrations are presented in Sec-
tion 5. Section 6 consists of some concluding remarks.

2. Governing equation

Consider the one-dimensional Burgers equation 
representing the aforementioned problems into the 
following form:
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2. Governing equation 
Consider the one-dimensional Burgers 
equation representing the aforementioned 
problems into the following form: 
 
𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢* = 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**	,				𝑎𝑎𝑎𝑎 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝑏𝑏𝑏𝑏                   (1) 
 
with the boundary conditions 
 
𝑢𝑢𝑢𝑢(𝑎𝑎𝑎𝑎, 𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓5(𝑡𝑡𝑡𝑡),			𝑡𝑡𝑡𝑡 > 0 
𝑢𝑢𝑢𝑢(𝑏𝑏𝑏𝑏, 𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓7(𝑡𝑡𝑡𝑡),			𝑡𝑡𝑡𝑡 > 0                           (2) 
 
and initial condition 
 
𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥), 𝑎𝑎𝑎𝑎 < 𝑥𝑥𝑥𝑥 < 𝑏𝑏𝑏𝑏 ,                 (3) 
 
where 𝜀𝜀𝜀𝜀 is viscosity constant for 𝜀𝜀𝜀𝜀 > 0 and 
𝑓𝑓𝑓𝑓5, 𝑓𝑓𝑓𝑓7 and 𝑔𝑔𝑔𝑔 are known functions. The 
subscripts 𝑥𝑥𝑥𝑥 and 𝑡𝑡𝑡𝑡	indicate differentiations 
with respect to space and time, respectively. 
 
3. Splitting the model 
Let us split the Burgers Equation (1) into 
subproblems as follows 
 
𝑢𝑢𝑢𝑢( = 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**,          (4) 
𝑢𝑢𝑢𝑢( = −𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*.          (5) 
 
The splitting strategy for the Burgers 
Equation (1) alternately involves solving 
the subproblems (4) and (5). Let the exact 
solutions (or a sufficiently accurate 
numerical approximation) for subproblems 
(4) and (5), respectively, be the maps 𝜙𝜙𝜙𝜙;

< 
and 𝜙𝜙𝜙𝜙;

= with time step 𝑘𝑘𝑘𝑘. Then one can 
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(4) and then subproblem (5) alternately, 
while the BAB pattern does the same in 
reverse order. To decide which pattern of 
the splitting schemes gives more efficient 
results, we apply the Strang splitting 
method with a different pattern to Example 
1 in the numerical experiments. 

However, the splitting schemes with 
real coefficients with a higher order than 
two necessarily have at least one negative 
coefficient (Blanes & Casas, 2005). Thus, 
one cannot use such schemes for the 
Burgers equation due to the Laplacian 
operator. To use the high order splitting 
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equations, and they collected some 
extensions of their results. Note that similar 
results were derived independently in 
reference (Castella et al., 2009). Formally, 
one expects the same convergence results 
by considering extensions in the literature 
(Hansen & Ostermann, 2009; Castella et al., 
2009) for the nonlinear equation by 
replacing all exponential terms to their 
corresponding nonlinear flows. 
 
4. Numerical methods 
To investigate solutions of problems (1) - 
(3) through (4) and (5), we have proposed 
the Galerkin finite element method in strong 
form with cubic B-spline basis functions for 
spatial approximation and the Crank-
Nicolson method for the time integration of 
the resulted ordinary differential equation 
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ABA pattern (7) firstly solves subproblem 
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method with a different pattern to Example 
1 in the numerical experiments. 
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two necessarily have at least one negative 
coefficient (Blanes & Casas, 2005). Thus, 
one cannot use such schemes for the 
Burgers equation due to the Laplacian 
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equations, and they collected some 
extensions of their results. Note that similar 
results were derived independently in 
reference (Castella et al., 2009). Formally, 
one expects the same convergence results 
by considering extensions in the literature 
(Hansen & Ostermann, 2009; Castella et al., 
2009) for the nonlinear equation by 
replacing all exponential terms to their 
corresponding nonlinear flows. 
 
4. Numerical methods 
To investigate solutions of problems (1) - 
(3) through (4) and (5), we have proposed 
the Galerkin finite element method in strong 
form with cubic B-spline basis functions for 
spatial approximation and the Crank-
Nicolson method for the time integration of 
the resulted ordinary differential equation 
system. 
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symmetric method reads 
 
𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

< ᴑ	𝜙𝜙𝜙𝜙;
=	ᴑ	𝜙𝜙𝜙𝜙;/7

< ,        (10) 
or 
𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;
<ᴑ	𝜙𝜙𝜙𝜙;/7

= ,                                 (11) 
 
which is referred to as the Strang splitting 
method. Notice that the scheme given with 
ABA pattern (7) firstly solves subproblem 
(4) and then subproblem (5) alternately, 
while the BAB pattern does the same in 
reverse order. To decide which pattern of 
the splitting schemes gives more efficient 
results, we apply the Strang splitting 
method with a different pattern to Example 
1 in the numerical experiments. 

However, the splitting schemes with 
real coefficients with a higher order than 
two necessarily have at least one negative 
coefficient (Blanes & Casas, 2005). Thus, 
one cannot use such schemes for the 
Burgers equation due to the Laplacian 
operator. To use the high order splitting 

method with real positive coefficients, we 
consider the extrapolation methods 
 
𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/7ᴑ	𝜙𝜙𝜙𝜙;/7	−

5
S
𝜙𝜙𝜙𝜙;,                (12) 

and 
𝜓𝜓𝜓𝜓; =

T5
RU
𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S −

5V
5W
𝜙𝜙𝜙𝜙;/7	ᴑ	𝜙𝜙𝜙𝜙;/7 +

5
7R
𝜙𝜙𝜙𝜙;.				                (13) 

 
If one uses the Strang splitting method (10) 
instead of the main method 𝜙𝜙𝜙𝜙;  considered 
in the extrapolation process, then a fourth-
order method reads 
 
𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< −

5
S
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< ,                            (14) 

 
and a sixth-order method reads  
 
𝜓𝜓𝜓𝜓; =
T5
RU
𝜙𝜙𝜙𝜙;/V
< ᴑ	𝜙𝜙𝜙𝜙;/S

= 	ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/V
< −

5V
5W
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< +

5
7R
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< .                                    (15) 

 
Hansen & Ostermann (2009) presented a 
convergence analysis of the exponential 
splitting methods for the linear evolution 
equations, and they collected some 
extensions of their results. Note that similar 
results were derived independently in 
reference (Castella et al., 2009). Formally, 
one expects the same convergence results 
by considering extensions in the literature 
(Hansen & Ostermann, 2009; Castella et al., 
2009) for the nonlinear equation by 
replacing all exponential terms to their 
corresponding nonlinear flows. 
 
4. Numerical methods 
To investigate solutions of problems (1) - 
(3) through (4) and (5), we have proposed 
the Galerkin finite element method in strong 
form with cubic B-spline basis functions for 
spatial approximation and the Crank-
Nicolson method for the time integration of 
the resulted ordinary differential equation 
system. 
 

and a sixth-order method reads 

approximate the solution of (1) for a 
sufficiently small 𝑘𝑘𝑘𝑘 as 
 
𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑘𝑘𝑘𝑘) ≈ 𝜓𝜓𝜓𝜓;𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥),         (6) 
 
where 

 
𝜓𝜓𝜓𝜓; =

𝜙𝜙𝜙𝜙;AB
< ᴑ	𝜙𝜙𝜙𝜙;DB

= ᴑ… 	ᴑ	𝜙𝜙𝜙𝜙;AF
< ᴑ	𝜙𝜙𝜙𝜙;DG

= ᴑ		𝜙𝜙𝜙𝜙;AGHB
< ,

                                (7) 
or 

𝜓𝜓𝜓𝜓; =
𝜙𝜙𝜙𝜙;DB
= ᴑ	𝜙𝜙𝜙𝜙;AB

< ᴑ…	𝜙𝜙𝜙𝜙;DF
= ᴑ		𝜙𝜙𝜙𝜙;AG

< ᴑ	𝜙𝜙𝜙𝜙;DGHB
= .

                                (8) 
The coefficients 𝑎𝑎𝑎𝑎I and 𝑏𝑏𝑏𝑏I can be defined in 
the desired order by using the Baker-
Campell- Hausdorff formula (Hairer et al., 
2006; Creutz & Gocksch, 1989; Suziki, 
1990; Yoshida, 1990). The Lie-Trotter 
splitting method is given as follows: 
 
𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

KL	ᴑ	𝜙𝜙𝜙𝜙;
KM	or	𝑇𝑇𝑇𝑇; = 	𝜙𝜙𝜙𝜙;

KM	ᴑ	𝜙𝜙𝜙𝜙;
KL,			    (9) 

 
and it is first order, i.e. 𝑇𝑇𝑇𝑇; = 𝜙𝜙𝜙𝜙;

(<N=) +
𝑂𝑂𝑂𝑂(𝑘𝑘𝑘𝑘7). The well-known second order time 
symmetric method reads 
 
𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

< ᴑ	𝜙𝜙𝜙𝜙;
=	ᴑ	𝜙𝜙𝜙𝜙;/7

< ,        (10) 
or 
𝑆𝑆𝑆𝑆; = 𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;
<ᴑ	𝜙𝜙𝜙𝜙;/7

= ,                                 (11) 
 
which is referred to as the Strang splitting 
method. Notice that the scheme given with 
ABA pattern (7) firstly solves subproblem 
(4) and then subproblem (5) alternately, 
while the BAB pattern does the same in 
reverse order. To decide which pattern of 
the splitting schemes gives more efficient 
results, we apply the Strang splitting 
method with a different pattern to Example 
1 in the numerical experiments. 

However, the splitting schemes with 
real coefficients with a higher order than 
two necessarily have at least one negative 
coefficient (Blanes & Casas, 2005). Thus, 
one cannot use such schemes for the 
Burgers equation due to the Laplacian 
operator. To use the high order splitting 

method with real positive coefficients, we 
consider the extrapolation methods 
 
𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/7ᴑ	𝜙𝜙𝜙𝜙;/7	−

5
S
𝜙𝜙𝜙𝜙;,                (12) 

and 
𝜓𝜓𝜓𝜓; =

T5
RU
𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S	ᴑ	𝜙𝜙𝜙𝜙;/S −

5V
5W
𝜙𝜙𝜙𝜙;/7	ᴑ	𝜙𝜙𝜙𝜙;/7 +

5
7R
𝜙𝜙𝜙𝜙;.				                (13) 

 
If one uses the Strang splitting method (10) 
instead of the main method 𝜙𝜙𝜙𝜙;  considered 
in the extrapolation process, then a fourth-
order method reads 
 
𝜓𝜓𝜓𝜓; =

R
S
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< −

5
S
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< ,                            (14) 

 
and a sixth-order method reads  
 
𝜓𝜓𝜓𝜓; =
T5
RU
𝜙𝜙𝜙𝜙;/V
< ᴑ	𝜙𝜙𝜙𝜙;/S

= 	ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/S
< ᴑ	𝜙𝜙𝜙𝜙;/S

= ᴑ	𝜙𝜙𝜙𝜙;/V
< −

5V
5W
𝜙𝜙𝜙𝜙;/R
< ᴑ	𝜙𝜙𝜙𝜙;/7

= 	ᴑ	𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;/7

= ᴑ	𝜙𝜙𝜙𝜙;/R
< +

5
7R
𝜙𝜙𝜙𝜙;/7
< ᴑ	𝜙𝜙𝜙𝜙;

=	ᴑ	𝜙𝜙𝜙𝜙;/7
< .                                    (15) 

 
Hansen & Ostermann (2009) presented a 
convergence analysis of the exponential 
splitting methods for the linear evolution 
equations, and they collected some 
extensions of their results. Note that similar 
results were derived independently in 
reference (Castella et al., 2009). Formally, 
one expects the same convergence results 
by considering extensions in the literature 
(Hansen & Ostermann, 2009; Castella et al., 
2009) for the nonlinear equation by 
replacing all exponential terms to their 
corresponding nonlinear flows. 
 
4. Numerical methods 
To investigate solutions of problems (1) - 
(3) through (4) and (5), we have proposed 
the Galerkin finite element method in strong 
form with cubic B-spline basis functions for 
spatial approximation and the Crank-
Nicolson method for the time integration of 
the resulted ordinary differential equation 
system. 
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where ε is viscosity constant for ε > 0 and f1, f2 and g are 
known functions. The subscripts x and t indicate differ-
entiations with respect to space and time, respectively.

where



Hansen & Ostermann (2009) presented a con-
vergence analysis of the exponential splitting 
methods for the linear evolution equations, and they 
collected some extensions of their results. Note that similar 
results were derived independently in reference (Cas-
tella et al., 2009). Formally, one expects the same con-
vergence results by considering extensions in the lit-
erature (Hansen & Ostermann, 2009; Castella et al., 
2009) for the nonlinear equation by replacing all expo-
nential terms to their corresponding nonlinear flows.

4. Numerical methods

To investigate solutions of problems (1) - (3) through 
(4) and (5), we have proposed the Galerkin finite el-
ement method in strong form with cubic B-spline 
basis functions for spatial approximation and the 
Crank-Nicolson method for the time integration of 
the resulted ordinary differential equation system.
4.1. Cubic B-spline basis functions 
The interval [a,b] is partitioned into N finite elements. 
Each element has equal length h, and element nodes are 
defined as 

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

The corresponding cubic —spline basis functions 
include the set of splines                                       and 
the global approximation function                    can be 
expressed as

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

where βm(t) are the time part of
approximation function    It will be 
determined from the time approximation.

To compute element matrices easily, the local 
coordinate system in (16) is required. As is the case in the 
literature (Soliman, 2012; Karakoc et al., 2015), letting

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

where x in 

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

(18)

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

The local approximation function on the element 
[xm,xm+1] is defined as follows:4.1. Cubic B-spline basis functions  

The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

Values of the local approximation function 
           and its first two derivatives at the end points 
of the interval [xm,xm+1] are defined in terms of the 
time dependent quantities βm (t) using both (19) and 
Table 1. The corresponding values then become:

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

Now it is time to apply the Galerkin 
method to both the diffusion part (4) and conserva-
tion part (5). By considering element [xm,xm+1], let us 
multiply Equations (4) and (5) by a test function v and 
integrate over the interval [xm,xm+1]. One can then write:

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

The test function v is selected to be equal to the 
cubic B-spline basis functions. This type of proce-
dure is known as the Galerkin approach in the fi-
nite element method. Using (19) and (18), Equa-
tions (21) and (22) yield the following relations:

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

(23)

and

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

(24)

3   Higher order splitting approaches in analysis of the Burgers equation

Each finite element                       is covered by the set 
of four cubic B-splines
Table 1 shows the value of                                        at 
the end pointsof elements

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 

4.1. Cubic B-spline basis functions  
The interval [𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏] is partitioned into 𝑁𝑁𝑁𝑁 
finite elements. Each element has equal 
length ℎ, and element nodes are defined as 
𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥U < 	𝑥𝑥𝑥𝑥5 < ⋯ < 𝑥𝑥𝑥𝑥] = 𝑏𝑏𝑏𝑏,  
where  
𝑥𝑥𝑥𝑥^N5 = 𝑥𝑥𝑥𝑥^ + ℎ				(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1).  
Let 𝜑𝜑𝜑𝜑^ be the cubic B-spline basis 
functions as given by Prenter (1975): 

 

𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥) =
1
		ℎS 

⎩
⎪
⎨

⎪
⎧ 																(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e7)S																
ℎS + 3ℎ7(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5) + 3ℎ(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)7 − 3(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^e5)S

ℎS + 3ℎ7(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥) + 3ℎ(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)7 − 3(𝑥𝑥𝑥𝑥^N5 − 𝑥𝑥𝑥𝑥)S

		(𝑥𝑥𝑥𝑥^N7 − 𝑥𝑥𝑥𝑥)S
0

	,

𝑥𝑥𝑥𝑥 ∈	

⎩
⎪
⎨

⎪
⎧
				[𝑥𝑥𝑥𝑥^e7, 𝑥𝑥𝑥𝑥^e5]
[𝑥𝑥𝑥𝑥^e5, 𝑥𝑥𝑥𝑥^]
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]

				[𝑥𝑥𝑥𝑥^N5, 𝑥𝑥𝑥𝑥^N7]
			otherwise.

                        (16) 

 
The corresponding cubic —spline basis 
functions include the set of splines 
{𝜑𝜑𝜑𝜑e5, 𝜑𝜑𝜑𝜑U,… , 𝜑𝜑𝜑𝜑]N5}, and the global 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) can be 
expressed as 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑^(𝑥𝑥𝑥𝑥)]N5

^ue5 ,             (17) 
 
where 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) are the time part of 
approximation function 𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡). It will be 
determined from the time approximation. 
 To compute element matrices 
easily, the local coordinate system in (16) is 
required. As is the case in the literature 
(Soliman, 2012; Karakoc et al., 2015), 
letting 𝜎𝜎𝜎𝜎 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥^, where 𝑥𝑥𝑥𝑥 in 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]			(𝑚𝑚𝑚𝑚 = 0,1.… , 𝑁𝑁𝑁𝑁 − 1), 0 ≤ 𝜎𝜎𝜎𝜎 ≤
ℎ, and the basis functions will be in the form 
 
 𝜑𝜑𝜑𝜑^(𝜎𝜎𝜎𝜎) =

5
wx

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7𝜎𝜎𝜎𝜎 + 3ℎ𝜎𝜎𝜎𝜎7 − 3𝜎𝜎𝜎𝜎S

ℎS + 3ℎ7(ℎ − 𝜎𝜎𝜎𝜎) + 3ℎ(ℎ − 𝜎𝜎𝜎𝜎)7 − 3(ℎ − 𝜎𝜎𝜎𝜎)S

(ℎ − 𝜎𝜎𝜎𝜎)S
0.

			 

                             (18) 
Each finite element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5] is covered 
by the set of four cubic B-splines 
{𝜑𝜑𝜑𝜑^e5, 𝜑𝜑𝜑𝜑^,𝜑𝜑𝜑𝜑^N5, 𝜑𝜑𝜑𝜑^N7}. Table 1 shows 
the values of 𝜑𝜑𝜑𝜑^	, 𝜑𝜑𝜑𝜑^

y and 𝜑𝜑𝜑𝜑^
yy at the end 

points of element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5]. The local 

approximation function on the element 
[𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] is defined as follows: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = ∑ 𝛽𝛽𝛽𝛽I(𝑡𝑡𝑡𝑡)𝜑𝜑𝜑𝜑I(𝑥𝑥𝑥𝑥)^N7

Iu^e5      (19) 
 
Values of the local approximation function 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) and its first two derivatives at the 
end points of the interval [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5] are 
defined in terms of the time dependent 
quantities 𝛽𝛽𝛽𝛽^(𝑡𝑡𝑡𝑡) using both (19) and Table 
1. The corresponding values then become: 
 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡)= 𝛽𝛽𝛽𝛽^e5+4𝛽𝛽𝛽𝛽^+𝛽𝛽𝛽𝛽^N5, 
𝑢𝑢𝑢𝑢r](𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡)=	𝛽𝛽𝛽𝛽^+4𝛽𝛽𝛽𝛽^N5+𝛽𝛽𝛽𝛽^N7, 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =

S
ℎ
(𝛽𝛽𝛽𝛽^N5 − 𝛽𝛽𝛽𝛽^e5),         (20) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
S
ℎ
(𝛽𝛽𝛽𝛽^N7 − 𝛽𝛽𝛽𝛽^), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N5 − 2𝛽𝛽𝛽𝛽^ + 𝛽𝛽𝛽𝛽^e5), 

𝑢𝑢𝑢𝑢r]yy(𝑥𝑥𝑥𝑥^N5, 𝑡𝑡𝑡𝑡) =
V
ℎ2

(𝛽𝛽𝛽𝛽^N7 − 2𝛽𝛽𝛽𝛽^N5 + 𝛽𝛽𝛽𝛽^). 
 
Now it is time to apply the Galerkin method 
to both the diffusion part (4) and 
conservation part (5). By considering 
element [𝑥𝑥𝑥𝑥^, 𝑥𝑥𝑥𝑥^N5], let us multiply 
Equations (4) and (5) by a test function 𝑣𝑣𝑣𝑣 
and integrate over the interval [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. 
One can then write: 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( − 𝜀𝜀𝜀𝜀𝑢𝑢𝑢𝑢**)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,*~HB
*~

      (21) 
 
∫ 𝑣𝑣𝑣𝑣(𝑢𝑢𝑢𝑢( + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢*)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0.*~HB
*~

      (22) 
 
The test function 𝑣𝑣𝑣𝑣 is selected to be equal to 
the cubic B-spline basis functions. This type 
of procedure is known as the Galerkin 
approach in the finite element method. 
Using (19) and (18), Equations (21) and 
(22) yield the following relations: 
 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
	-

	𝜀𝜀𝜀𝜀 ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎w

U Å^N7
Äu^e5 βáà=0               (23) 

and 

∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎
w
U Å^N7

Äu^e5
ÇÉÑ

Ö

Ç(
+

∑ ∑ �∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yw

U 𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎Å^N7
;u^e5

^N7
Äu^e5 βâàβáà=0 

         (24) 
or in a matrix notation 



or in a matrix notation
 
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
− 𝜀𝜀𝜀𝜀Ke𝛽𝛽𝛽𝛽ã = 0,          (25) 

and 
𝑀𝑀𝑀𝑀ã ÇÉÖ

Ç(
+ βâ

àå𝐿𝐿𝐿𝐿ã𝛽𝛽𝛽𝛽ã = 0,      (26) 
 
where 
 

Mèá
à = ê 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w

U
, 

Kèá
à = ∫ 𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä

yyw
U 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,       (27) 

L	èáâà = ê𝜑𝜑𝜑𝜑I𝜑𝜑𝜑𝜑Ä
yy

w

U

𝜑𝜑𝜑𝜑;𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 

𝛽𝛽𝛽𝛽ã = (𝛽𝛽𝛽𝛽ìe5, 𝛽𝛽𝛽𝛽ì, 𝛽𝛽𝛽𝛽ìN5, 𝛽𝛽𝛽𝛽ìN7)å, 
 
and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1,𝑚𝑚𝑚𝑚 + 2 for 
the element [𝑥𝑥𝑥𝑥^,𝑥𝑥𝑥𝑥^N5]. In (25) and (26); 
𝑀𝑀𝑀𝑀ã and 𝐾𝐾𝐾𝐾ã are (4 × 4) matrices and are 
independent of time. 𝐿𝐿𝐿𝐿ã is the (4 × 4 × 4) 
matrix, and 𝐿𝐿𝐿𝐿 can be transformed to a time 
dependent matrix 𝑅𝑅𝑅𝑅 by using 
 
𝑅𝑅𝑅𝑅IÄã = 	∑ 𝐿𝐿𝐿𝐿IÄ;ã 𝛽𝛽𝛽𝛽;ãIN7

;uIe5 .                            (28) 
 
After the assembling process of each 
element, the matrix form will finally be 
 
𝑀𝑀𝑀𝑀∗ ÇÉ

Ç(
− 𝜀𝜀𝜀𝜀𝐾𝐾𝐾𝐾∗𝛽𝛽𝛽𝛽 = 0,       (29) 

and  
𝑀𝑀𝑀𝑀∗	ÇÉ

Ç(
+ 𝑅𝑅𝑅𝑅∗𝛽𝛽𝛽𝛽 = 0,                                (30) 

 
for the diffusion and conservation parts, 
respectively. Here 𝑀𝑀𝑀𝑀∗, 	𝑅𝑅𝑅𝑅∗ and 𝐾𝐾𝐾𝐾∗ are (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) matrices and 𝛽𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time 
approximation vector. Consideration of 
(29) and (30) gives a system of ordinary 
differential equations, which are solved 
using the Crank-Nicolson time integration 
scheme, as discussed in the following 
section. 
 
4.2 The Crank-Nicolson scheme 
The time discretization procedure of the 
ODE system (29) and (30) can be explained 
as follows (Tunc, 2017): 

𝛽𝛽𝛽𝛽 =
1
2 ({𝛽𝛽𝛽𝛽}ú 	+

{𝛽𝛽𝛽𝛽}úN5),	 

	ÇÉ
Ç(

= 5
Ç(
(	{𝛽𝛽𝛽𝛽}úN5 − {𝛽𝛽𝛽𝛽}ú),                     (31) 

 
where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes 
Equations (29) and (30) as in following 
forms: 
 
[𝑀𝑀𝑀𝑀∗ − Ç(

7
	𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ +

	Ç(
7
𝜀𝜀𝜀𝜀	𝐾𝐾𝐾𝐾∗)]{𝛽𝛽𝛽𝛽}ú                            (32) 

and 
[𝑀𝑀𝑀𝑀∗ + Ç(

7
	𝑅𝑅𝑅𝑅úN5∗ ]{𝛽𝛽𝛽𝛽}úN5 = [𝑀𝑀𝑀𝑀∗ − Ç(

7
𝑅𝑅𝑅𝑅ú∗]{𝛽𝛽𝛽𝛽}ú,

            (33) 
 
where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent 
of time while 𝑅𝑅𝑅𝑅∗ depends on time. 

Moreover, to cope with difficulties 
in the nonlinearity in the time dependent 
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following 
correction relation: 
 
{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗),            (34) 
 
where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú. 
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU, 
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system: 
 
𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U , 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U ) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥]) 
                 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U ). 

 
By using the recursive relation in (32) - (33) 
and the corrector relation in (34), the 
diffusion and conservation parts of the 
Burgers equation is solved under the 
consideration of the splitting formulae 
given in Equations (10), (14) and (15). The 
algorithm of the proposed methods has been 
presented in Algorithm 1. Computer codes 
of the algorithm have been produced in 
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approximation vector. Consideration of 
(29) and (30) gives a system of ordinary 
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using the Crank-Nicolson time integration 
scheme, as discussed in the following 
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diffusion and conservation parts of the 
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correction relation: 
 
{𝛽𝛽𝛽𝛽}úN5 =
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∗),            (34) 
 
where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú. 
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU, 
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system: 
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By using the recursive relation in (32) - (33) 
and the corrector relation in (34), the 
diffusion and conservation parts of the 
Burgers equation is solved under the 
consideration of the splitting formulae 
given in Equations (10), (14) and (15). The 
algorithm of the proposed methods has been 
presented in Algorithm 1. Computer codes 
of the algorithm have been produced in 
MATLAB R2016a. 
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(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time 
approximation vector. Consideration of 
(29) and (30) gives a system of ordinary 
differential equations, which are solved 
using the Crank-Nicolson time integration 
scheme, as discussed in the following 
section. 
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By using the recursive relation in (32) - (33) 
and the corrector relation in (34), the 
diffusion and conservation parts of the 
Burgers equation is solved under the 
consideration of the splitting formulae 
given in Equations (10), (14) and (15). The 
algorithm of the proposed methods has been 
presented in Algorithm 1. Computer codes 
of the algorithm have been produced in 
MATLAB R2016a. 
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where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent 
of time while 𝑅𝑅𝑅𝑅∗ depends on time. 
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in the nonlinearity in the time dependent 
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correction relation: 
 
{𝛽𝛽𝛽𝛽}úN5 =
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∗),            (34) 
 
where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú. 
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU, 
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system: 
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By using the recursive relation in (32) - (33) 
and the corrector relation in (34), the 
diffusion and conservation parts of the 
Burgers equation is solved under the 
consideration of the splitting formulae 
given in Equations (10), (14) and (15). The 
algorithm of the proposed methods has been 
presented in Algorithm 1. Computer codes 
of the algorithm have been produced in 
MATLAB R2016a. 
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By using the recursive relation in (32) - (33) and the 
corrector relation in (34), the diffusion and conservation 
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eration of the splitting formulae given in Equations (10), 
(14) and (15). The algorithm of the proposed methods 
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Table 1. Values of approximate function and its 
derivatives at the end points of the element.

Table 1. Values of approximate function and its derivatives at the end points of the element. 
𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥Ie7 𝑥𝑥𝑥𝑥Ie5 𝑥𝑥𝑥𝑥I 𝑥𝑥𝑥𝑥IN5 𝑥𝑥𝑥𝑥IN7 
𝜑𝜑𝜑𝜑^ 0 1 4 1 0 

 𝜑𝜑𝜑𝜑^
y 0 -3/h 0 3/ℎ 0 

  𝜑𝜑𝜑𝜑^
yy	 0 6/h2 -12/h2 6/h2 0 

Algorithm 1. Algorithm to find numerical solutions of the Burgers equation 
by using splitting methods (7) using (6) for a time step 

Begin 
Initialize spatial interval, time interval, element numbers 
Initialize initial and boundary conditions 
Procedure 

1. Calculate local matrices given in (25)-(26).
2. Decide the type of the splitting approach (say Strang and ABA).
3. Produce a time integration loop for the discrete relations (32)-(33).
4. Evaluate the solution of the diffusion part (32) by considering the

given initial condition.
5. Evaluate the solution of the conservation part (33) by considering

the initial guess which is produced in the last step.
6. Evaluate the solution of the diffusion part (32) by considering the

initial guess which is produced in the last step.
7. The produced solution in step 6 is the final solution.
8. End of the time integration loop.

End 

5. Stability analysis
The von Neumann stability analysis is one
of the most widely used methods for
analyzing the stability of numerical
methods that are meant to approximately
solve partial differential equations (Kutluay
et al., 2004; Soliman, 2012, Sari & Tunc,
2017). As pointed out in the corresponding
literature, this stability method is more
suitable for the algebraic equation system
studied here. The stability of the current
numerical approach directly depends on the
individual stability of the diffusion and
conservation parts of the Burgers equation.
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(𝛽𝛽𝛽𝛽e5, 𝛽𝛽𝛽𝛽U, … , 𝛽𝛽𝛽𝛽]N5)õ is the unknown time 
approximation vector. Consideration of 
(29) and (30) gives a system of ordinary 
differential equations, which are solved 
using the Crank-Nicolson time integration 
scheme, as discussed in the following 
section. 
 
4.2 The Crank-Nicolson scheme 
The time discretization procedure of the 
ODE system (29) and (30) can be explained 
as follows (Tunc, 2017): 
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where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes 
Equations (29) and (30) as in following 
forms: 
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            (33) 
 
where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent 
of time while 𝑅𝑅𝑅𝑅∗ depends on time. 

Moreover, to cope with difficulties 
in the nonlinearity in the time dependent 
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following 
correction relation: 
 
{𝛽𝛽𝛽𝛽}úN5 =
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∗),            (34) 
 
where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú. 
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU, 
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system: 
 
𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5
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By using the recursive relation in (32) - (33) 
and the corrector relation in (34), the 
diffusion and conservation parts of the 
Burgers equation is solved under the 
consideration of the splitting formulae 
given in Equations (10), (14) and (15). The 
algorithm of the proposed methods has been 
presented in Algorithm 1. Computer codes 
of the algorithm have been produced in 
MATLAB R2016a. 
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The time discretization procedure of the 
ODE system (29) and (30) can be explained 
as follows (Tunc, 2017): 
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where 𝑡𝑡𝑡𝑡úN5 − 𝑡𝑡𝑡𝑡ú = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Use of (31) makes 
Equations (29) and (30) as in following 
forms: 
 
[𝑀𝑀𝑀𝑀∗ − Ç(
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            (33) 
 
where matrices 𝑀𝑀𝑀𝑀∗ and 𝐾𝐾𝐾𝐾∗ are independent 
of time while 𝑅𝑅𝑅𝑅∗ depends on time. 

Moreover, to cope with difficulties 
in the nonlinearity in the time dependent 
matrix 𝑅𝑅𝑅𝑅úN5∗ , we used the following 
correction relation: 
 
{𝛽𝛽𝛽𝛽}úN5 =

5
7
({𝛽𝛽𝛽𝛽}ú 	+ {𝛽𝛽𝛽𝛽}ú

∗),            (34) 
 
where {𝛽𝛽𝛽𝛽}ú

∗ is the corrected form of {𝛽𝛽𝛽𝛽}ú. 
Note that to find first approximation {𝛽𝛽𝛽𝛽}ùU, 
we need to solve the following (𝑁𝑁𝑁𝑁 +
3) × (𝑁𝑁𝑁𝑁 + 3) linear system: 
 
𝑢𝑢𝑢𝑢r(𝑥𝑥𝑥𝑥^,0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥^) = {𝛽𝛽𝛽𝛽}ìN5

U +4{𝛽𝛽𝛽𝛽}ìU +
																																					{𝛽𝛽𝛽𝛽}ìe5

U , 
𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥U, 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥U) =

S
w
({𝛽𝛽𝛽𝛽}5U − {𝛽𝛽𝛽𝛽}e5U ) 

𝑢𝑢𝑢𝑢r]y (𝑥𝑥𝑥𝑥], 0) = 𝑔𝑔𝑔𝑔y(𝑥𝑥𝑥𝑥]) 
                 = S

w
({𝛽𝛽𝛽𝛽}ûN5U − {𝛽𝛽𝛽𝛽}ûe5U ). 

 
By using the recursive relation in (32) - (33) 
and the corrector relation in (34), the 
diffusion and conservation parts of the 
Burgers equation is solved under the 
consideration of the splitting formulae 
given in Equations (10), (14) and (15). The 
algorithm of the proposed methods has been 
presented in Algorithm 1. Computer codes 
of the algorithm have been produced in 
MATLAB R2016a. 
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By using the recursive relation in (32) - (33) 
and the corrector relation in (34), the 
diffusion and conservation parts of the 
Burgers equation is solved under the 
consideration of the splitting formulae 
given in Equations (10), (14) and (15). The 
algorithm of the proposed methods has been 
presented in Algorithm 1. Computer codes 
of the algorithm have been produced in 
MATLAB R2016a. 
 
 

Table 1. Values of approximate function and its derivatives at the end points of the element. 
𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥^e7 𝑥𝑥𝑥𝑥^e5 𝑥𝑥𝑥𝑥^ 𝑥𝑥𝑥𝑥^N5 𝑥𝑥𝑥𝑥^N7 
𝜑𝜑𝜑𝜑^ 0 1 4 1 0 

 𝜑𝜑𝜑𝜑^
y  0 -3/h 0 3/ℎ 0 

  𝜑𝜑𝜑𝜑^
yy	 0  6/h2 -12/h2 6/h2 0 

 
 

Algorithm 1. Algorithm to find numerical solutions of the Burgers equation 
by using splitting methods (7) using (6) for a time step 

Begin 
Initialize spatial interval, time interval, element numbers 
Initialize initial and boundary conditions 
Procedure 

1. Calculate local matrices given in (25)-(26). 
2. Decide the type of the splitting approach (say Strang and ABA). 
3. Produce a time integration loop for the discrete relations (32)-(33). 
4. Evaluate the solution of the diffusion part (32) by considering the 

given initial condition. 
5. Evaluate the solution of the conservation part (33) by considering 

the initial guess which is produced in the last step. 
6. Evaluate the solution of the diffusion part (32) by considering the 

initial guess which is produced in the last step. 
7. The produced solution in step 6 is the final solution. 
8. End of the time integration loop. 

End 
 
 
5. Stability analysis 
The von Neumann stability analysis is one 
of the most widely used methods for 
analyzing the stability of numerical 
methods that are meant to approximately 
solve partial differential equations (Kutluay 
et al., 2004; Soliman, 2012, Sari & Tunc, 
2017). As pointed out in the corresponding 
literature, this stability method is more 
suitable for the algebraic equation system 
studied here. The stability of the current 
numerical approach directly depends on the 
individual stability of the diffusion and 
conservation parts of the Burgers equation. 
Thus, to understand stability condition of 
each subproblem, we have analyzed 
Equations (32)-(33) using the von Neumann 
theory with the Fourier growth factor 
defined by 
  𝛽𝛽𝛽𝛽úü = 𝛽𝛽𝛽𝛽†ü𝑒𝑒𝑒𝑒Iú¢w ,     (35) 
where 𝜏𝜏𝜏𝜏 and ℎ	 stand for the mode number 
and the element size, respectively, which 
are selected for recursive approximations 

(32)-(33). To evaluate a typical row of (33), 
β§N5 and β§ values in the time dependent 
matrices 𝑅𝑅𝑅𝑅úN5∗  and 𝑅𝑅𝑅𝑅ú∗ are considered to be 
locally constant and equal to	𝑝𝑝𝑝𝑝, as is the case 
in the literature (Sari & Tunc, 2017; Tunc, 
2017). The stability analysis of the diffusion 
and the conservation parts is performed, 
respectively, as in the following 
subsections. 
 
5.1 Stability of the Diffusion Part 
By considering the entries of the included 
matrices in Equation (32), a typical row of 
Equation (32) can be stated as 
 
𝑐𝑐𝑐𝑐5β§eSßN5 + 𝑐𝑐𝑐𝑐7β§e7ßN5 + 𝑐𝑐𝑐𝑐Sβ§e5ßN5 + 𝑐𝑐𝑐𝑐Rβ§ßN5 +
𝑐𝑐𝑐𝑐Wβ§N5ßN5 + 𝑐𝑐𝑐𝑐Vβ§N7ßN5 + 𝑐𝑐𝑐𝑐®β§NSßN5 	= 𝑐𝑐𝑐𝑐Tβ§eSß +
𝑐𝑐𝑐𝑐©β§e7ß + 𝑐𝑐𝑐𝑐5Uβ§e5ß + 𝑐𝑐𝑐𝑐55β§ß + 𝑐𝑐𝑐𝑐57β§N5ß +
𝑐𝑐𝑐𝑐5Sβ§N7ß + 𝑐𝑐𝑐𝑐5Rβ§NSß  ,                                         (36) 
 
where 
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,    
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diffusion and conservation parts of the Burgers 
equation. Thus, to understand stability condition of each 
subproblem, we have analyzed Equations (32)-(33)using 
the von Neumann theory with the Fourier growth factor 
defined by
 
where τ and h  stand for the mode number and the 
element size, respectively, which are selected for 
recursive approximations (32)-(33). To evaluate a 
typical row of (33), β(s+1) and βs values in the time 
dependent matrices R*

(s+1)and Rs
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locally constant and equal to p, as is the case in the 
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Algorithm 1. Algorithm to find numerical solutions of the Burgers equation 
by using splitting methods (7) using (6) for a time step 
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Initialize initial and boundary conditions 
Procedure 
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2. Decide the type of the splitting approach (say Strang and ABA).
3. Produce a time integration loop for the discrete relations (32)-(33).
4. Evaluate the solution of the diffusion part (32) by considering the
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End 
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The von Neumann stability analysis is one
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methods that are meant to approximately
solve partial differential equations (Kutluay
et al., 2004; Soliman, 2012, Sari & Tunc,
2017). As pointed out in the corresponding
literature, this stability method is more
suitable for the algebraic equation system
studied here. The stability of the current
numerical approach directly depends on the
individual stability of the diffusion and
conservation parts of the Burgers equation.
Thus, to understand stability condition of
each subproblem, we have analyzed
Equations (32)-(33) using the von Neumann
theory with the Fourier growth factor
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subsections. 

5.1 Stability of the Diffusion Part 
By considering the entries of the included 
matrices in Equation (32), a typical row of 
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wherewhere 
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,    
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,    
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 , 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 , 
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt . 

Substituting (35) into (36) and using the 
Euler expansion for exponential terms leads 
to the following relation: 

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß,   (38) 

where 

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + 
   (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + 
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5. 

Equation (38) can be rewritten as follows: 

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß,   (39) 
where 𝑧𝑧𝑧𝑧 is the amplification factor of the 
iteration (32). Iteration (32) is stable if the 
modulus of the amplification factor is less 
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By 
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following 
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1. 
 Thus, iteration (32) for the diffusion 
system is unconditionally stable. 

5.2 Stability of the conservation part 
A typical row of Equation (33) can be 
expressed as given in Equation (36) with the 
following coefficients: 

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,  
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7    
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S, 

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
.    (40) 

Writing (35) into (36) with the considered 
coefficients (40) and with the use of the 
Euler expansion leads to 

  (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,  

where 

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ). 

It is obvious that the amplification factor 
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition. 
Hence, iteration (33) for the conservation 
part of Equation (1) is unconditionally 
stable. In conclusion, the splitting iteration 
system (32)-(33) is thus unconditionally 
stable.  

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us 
consider Burgers Equation (1) with the 
initial condition 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1   (42) 
and homogeneous Dirichlet boundary 
conditions 

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	  (43) 
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0.   (44) 
The exact solution of (1) under the 
consideration of cases (42)-(44) given by 
Cole (1951) is 

(37)

Substituting (35) into (36) and using the Euler expansion 
for exponential terms leads to the following relation:

where 
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,    
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,    
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 , 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 , 
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt . 

Substituting (35) into (36) and using the 
Euler expansion for exponential terms leads 
to the following relation: 

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß,   (38) 

where 

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + 
   (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + 
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5. 

Equation (38) can be rewritten as follows: 

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß,   (39) 
where 𝑧𝑧𝑧𝑧 is the amplification factor of the 
iteration (32). Iteration (32) is stable if the 
modulus of the amplification factor is less 
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By 
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following 
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1. 
 Thus, iteration (32) for the diffusion 
system is unconditionally stable. 

5.2 Stability of the conservation part 
A typical row of Equation (33) can be 
expressed as given in Equation (36) with the 
following coefficients: 

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,  
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7    
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S, 

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
.    (40) 

Writing (35) into (36) with the considered 
coefficients (40) and with the use of the 
Euler expansion leads to 

  (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,  

where 

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ). 

It is obvious that the amplification factor 
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition. 
Hence, iteration (33) for the conservation 
part of Equation (1) is unconditionally 
stable. In conclusion, the splitting iteration 
system (32)-(33) is thus unconditionally 
stable.  

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us 
consider Burgers Equation (1) with the 
initial condition 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1   (42) 
and homogeneous Dirichlet boundary 
conditions 

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	  (43) 
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0.   (44) 
The exact solution of (1) under the 
consideration of cases (42)-(44) given by 
Cole (1951) is 

(38)

where

where 
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,    
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,    
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 , 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 , 
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt . 

Substituting (35) into (36) and using the 
Euler expansion for exponential terms leads 
to the following relation: 

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß,   (38) 

where 

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + 
   (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + 
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5. 

Equation (38) can be rewritten as follows: 

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß,   (39) 
where 𝑧𝑧𝑧𝑧 is the amplification factor of the 
iteration (32). Iteration (32) is stable if the 
modulus of the amplification factor is less 
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By 
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following 
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1. 
 Thus, iteration (32) for the diffusion 
system is unconditionally stable. 

5.2 Stability of the conservation part 
A typical row of Equation (33) can be 
expressed as given in Equation (36) with the 
following coefficients: 

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,  
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7    
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S, 

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
.    (40) 

Writing (35) into (36) with the considered 
coefficients (40) and with the use of the 
Euler expansion leads to 

  (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,  

where 

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ). 

It is obvious that the amplification factor 
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition. 
Hence, iteration (33) for the conservation 
part of Equation (1) is unconditionally 
stable. In conclusion, the splitting iteration 
system (32)-(33) is thus unconditionally 
stable.  

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us 
consider Burgers Equation (1) with the 
initial condition 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1   (42) 
and homogeneous Dirichlet boundary 
conditions 

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	  (43) 
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0.   (44) 
The exact solution of (1) under the 
consideration of cases (42)-(44) given by 
Cole (1951) is 

where 
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,    
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,    
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 , 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 , 
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt . 

Substituting (35) into (36) and using the 
Euler expansion for exponential terms leads 
to the following relation: 

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß,   (38) 

where 

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + 
   (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + 
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5. 

Equation (38) can be rewritten as follows: 

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß,   (39) 
where 𝑧𝑧𝑧𝑧 is the amplification factor of the 
iteration (32). Iteration (32) is stable if the 
modulus of the amplification factor is less 
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By 
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following 
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1. 
 Thus, iteration (32) for the diffusion 
system is unconditionally stable. 

5.2 Stability of the conservation part 
A typical row of Equation (33) can be 
expressed as given in Equation (36) with the 
following coefficients: 

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,  
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7    
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S, 

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
.    (40) 

Writing (35) into (36) with the considered 
coefficients (40) and with the use of the 
Euler expansion leads to 

  (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,  

where 

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ). 

It is obvious that the amplification factor 
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition. 
Hence, iteration (33) for the conservation 
part of Equation (1) is unconditionally 
stable. In conclusion, the splitting iteration 
system (32)-(33) is thus unconditionally 
stable.  

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us 
consider Burgers Equation (1) with the 
initial condition 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1   (42) 
and homogeneous Dirichlet boundary 
conditions 

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	  (43) 
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0.   (44) 
The exact solution of (1) under the 
consideration of cases (42)-(44) given by 
Cole (1951) is 

Equation (38) can be rewritten as follows:

where 
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,    
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,    
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 , 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 , 
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt . 

Substituting (35) into (36) and using the 
Euler expansion for exponential terms leads 
to the following relation: 

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß,   (38) 

where 

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + 
   (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + 
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5. 

Equation (38) can be rewritten as follows: 

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß,   (39) 
where 𝑧𝑧𝑧𝑧 is the amplification factor of the 
iteration (32). Iteration (32) is stable if the 
modulus of the amplification factor is less 
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By 
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following 
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1. 
 Thus, iteration (32) for the diffusion 
system is unconditionally stable. 

5.2 Stability of the conservation part 
A typical row of Equation (33) can be 
expressed as given in Equation (36) with the 
following coefficients: 

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,  
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7    
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S, 

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
.    (40) 

Writing (35) into (36) with the considered 
coefficients (40) and with the use of the 
Euler expansion leads to 

  (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,  

where 

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ). 

It is obvious that the amplification factor 
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition. 
Hence, iteration (33) for the conservation 
part of Equation (1) is unconditionally 
stable. In conclusion, the splitting iteration 
system (32)-(33) is thus unconditionally 
stable.  

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us 
consider Burgers Equation (1) with the 
initial condition 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1   (42) 
and homogeneous Dirichlet boundary 
conditions 

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	  (43) 
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0.   (44) 
The exact solution of (1) under the 
consideration of cases (42)-(44) given by 
Cole (1951) is 

(39)

where z is the amplification factor of the itera-
tion (32). Iteration (32) is stable if the modulus of 
the amplification factor is less than or equal to one, 

i.e. |z|≤1. By considering            , the following in-
equalities always hold |w*-120r2 |≤|w+120r2 | and |z|≤1.
 Thus, iteration (32) for the diffusion system is 
unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be expressed as 
given in Equation (36) with the following coefficients:

where 
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,    
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,    
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 , 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 , 
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt . 

Substituting (35) into (36) and using the 
Euler expansion for exponential terms leads 
to the following relation: 

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß,   (38) 

where 

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + 
   (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + 
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5. 

Equation (38) can be rewritten as follows: 

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß,   (39) 
where 𝑧𝑧𝑧𝑧 is the amplification factor of the 
iteration (32). Iteration (32) is stable if the 
modulus of the amplification factor is less 
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By 
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following 
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1. 
 Thus, iteration (32) for the diffusion 
system is unconditionally stable. 

5.2 Stability of the conservation part 
A typical row of Equation (33) can be 
expressed as given in Equation (36) with the 
following coefficients: 

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,  
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7    
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S, 

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
.    (40) 

Writing (35) into (36) with the considered 
coefficients (40) and with the use of the 
Euler expansion leads to 

  (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,  

where 

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ). 

It is obvious that the amplification factor 
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition. 
Hence, iteration (33) for the conservation 
part of Equation (1) is unconditionally 
stable. In conclusion, the splitting iteration 
system (32)-(33) is thus unconditionally 
stable.  

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us 
consider Burgers Equation (1) with the 
initial condition 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1   (42) 
and homogeneous Dirichlet boundary 
conditions 

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	  (43) 
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0.   (44) 
The exact solution of (1) under the 
consideration of cases (42)-(44) given by 
Cole (1951) is 

where 
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,    
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,    
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 , 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 , 
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt . 

Substituting (35) into (36) and using the 
Euler expansion for exponential terms leads 
to the following relation: 

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß,   (38) 

where 

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + 
   (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + 
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5. 

Equation (38) can be rewritten as follows: 

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß,   (39) 
where 𝑧𝑧𝑧𝑧 is the amplification factor of the 
iteration (32). Iteration (32) is stable if the 
modulus of the amplification factor is less 
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By 
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following 
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1. 
 Thus, iteration (32) for the diffusion 
system is unconditionally stable. 

5.2 Stability of the conservation part 
A typical row of Equation (33) can be 
expressed as given in Equation (36) with the 
following coefficients: 

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,  
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7    
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S, 

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
.    (40) 

Writing (35) into (36) with the considered 
coefficients (40) and with the use of the 
Euler expansion leads to 

  (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,  

where 

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ). 

It is obvious that the amplification factor 
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition. 
Hence, iteration (33) for the conservation 
part of Equation (1) is unconditionally 
stable. In conclusion, the splitting iteration 
system (32)-(33) is thus unconditionally 
stable.  

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us 
consider Burgers Equation (1) with the 
initial condition 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1   (42) 
and homogeneous Dirichlet boundary 
conditions 

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	  (43) 
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0.   (44) 
The exact solution of (1) under the 
consideration of cases (42)-(44) given by 
Cole (1951) is 

where 
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,    
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,    
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 , 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 , 
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt . 

Substituting (35) into (36) and using the 
Euler expansion for exponential terms leads 
to the following relation: 

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß,   (38) 

where 

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + 
   (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + 
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5. 

Equation (38) can be rewritten as follows: 

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß,   (39) 
where 𝑧𝑧𝑧𝑧 is the amplification factor of the 
iteration (32). Iteration (32) is stable if the 
modulus of the amplification factor is less 
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By 
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following 
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1. 
 Thus, iteration (32) for the diffusion 
system is unconditionally stable. 

5.2 Stability of the conservation part 
A typical row of Equation (33) can be 
expressed as given in Equation (36) with the 
following coefficients: 

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,  
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7    
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S, 

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
.    (40) 

Writing (35) into (36) with the considered 
coefficients (40) and with the use of the 
Euler expansion leads to 

  (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,  

where 

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ). 

It is obvious that the amplification factor 
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition. 
Hence, iteration (33) for the conservation 
part of Equation (1) is unconditionally 
stable. In conclusion, the splitting iteration 
system (32)-(33) is thus unconditionally 
stable.  

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us 
consider Burgers Equation (1) with the 
initial condition 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1   (42) 
and homogeneous Dirichlet boundary 
conditions 

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	  (43) 
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0.   (44) 
The exact solution of (1) under the 
consideration of cases (42)-(44) given by 
Cole (1951) is 

(40)

Writing (35) into (36) with the considered coefficients 
(40) and with the use of the Euler expansion leads to

where 
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,    
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,    
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 , 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 , 
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt . 

Substituting (35) into (36) and using the 
Euler expansion for exponential terms leads 
to the following relation: 

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß,   (38) 

where 

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + 
   (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + 
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5. 

Equation (38) can be rewritten as follows: 

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß,   (39) 
where 𝑧𝑧𝑧𝑧 is the amplification factor of the 
iteration (32). Iteration (32) is stable if the 
modulus of the amplification factor is less 
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By 
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following 
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1. 
 Thus, iteration (32) for the diffusion 
system is unconditionally stable. 

5.2 Stability of the conservation part 
A typical row of Equation (33) can be 
expressed as given in Equation (36) with the 
following coefficients: 

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,  
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7    
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S, 

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
.    (40) 

Writing (35) into (36) with the considered 
coefficients (40) and with the use of the 
Euler expansion leads to 

  (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,  

where 

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ). 

It is obvious that the amplification factor 
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition. 
Hence, iteration (33) for the conservation 
part of Equation (1) is unconditionally 
stable. In conclusion, the splitting iteration 
system (32)-(33) is thus unconditionally 
stable.  

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us 
consider Burgers Equation (1) with the 
initial condition 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1   (42) 
and homogeneous Dirichlet boundary 
conditions 

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	  (43) 
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0.   (44) 
The exact solution of (1) under the 
consideration of cases (42)-(44) given by 
Cole (1951) is 

(41)

where

where 
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,    
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,    
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 , 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 , 
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt . 

Substituting (35) into (36) and using the 
Euler expansion for exponential terms leads 
to the following relation: 

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß,   (38) 

where 

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + 
   (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + 
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5. 

Equation (38) can be rewritten as follows: 

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß,   (39) 
where 𝑧𝑧𝑧𝑧 is the amplification factor of the 
iteration (32). Iteration (32) is stable if the 
modulus of the amplification factor is less 
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By 
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following 
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1. 
 Thus, iteration (32) for the diffusion 
system is unconditionally stable. 

5.2 Stability of the conservation part 
A typical row of Equation (33) can be 
expressed as given in Equation (36) with the 
following coefficients: 

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,  
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7    
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S, 

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
.    (40) 

Writing (35) into (36) with the considered 
coefficients (40) and with the use of the 
Euler expansion leads to 

  (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,  

where 

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ). 

It is obvious that the amplification factor 
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition. 
Hence, iteration (33) for the conservation 
part of Equation (1) is unconditionally 
stable. In conclusion, the splitting iteration 
system (32)-(33) is thus unconditionally 
stable.  

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us 
consider Burgers Equation (1) with the 
initial condition 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1   (42) 
and homogeneous Dirichlet boundary 
conditions 

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	  (43) 
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0.   (44) 
The exact solution of (1) under the 
consideration of cases (42)-(44) given by 
Cole (1951) is 

Table 1. Values of approximate function and its derivatives at the end points of the element. 
𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥Ie7 𝑥𝑥𝑥𝑥Ie5 𝑥𝑥𝑥𝑥I 𝑥𝑥𝑥𝑥IN5 𝑥𝑥𝑥𝑥IN7 
𝜑𝜑𝜑𝜑^ 0 1 4 1 0 

 𝜑𝜑𝜑𝜑^
y 0 -3/h 0 3/ℎ 0 

  𝜑𝜑𝜑𝜑^
yy	 0 6/h2 -12/h2 6/h2 0 

Algorithm 1. Algorithm to find numerical solutions of the Burgers equation 
by using splitting methods (7) using (6) for a time step 

Begin 
Initialize spatial interval, time interval, element numbers 
Initialize initial and boundary conditions 
Procedure 

1. Calculate local matrices given in (25)-(26).
2. Decide the type of the splitting approach (say Strang and ABA).
3. Produce a time integration loop for the discrete relations (32)-(33).
4. Evaluate the solution of the diffusion part (32) by considering the

given initial condition.
5. Evaluate the solution of the conservation part (33) by considering

the initial guess which is produced in the last step.
6. Evaluate the solution of the diffusion part (32) by considering the

initial guess which is produced in the last step.
7. The produced solution in step 6 is the final solution.
8. End of the time integration loop.

End 

5. Stability analysis
The von Neumann stability analysis is one
of the most widely used methods for
analyzing the stability of numerical
methods that are meant to approximately
solve partial differential equations (Kutluay
et al., 2004; Soliman, 2012, Sari & Tunc,
2017). As pointed out in the corresponding
literature, this stability method is more
suitable for the algebraic equation system
studied here. The stability of the current
numerical approach directly depends on the
individual stability of the diffusion and
conservation parts of the Burgers equation.
Thus, to understand stability condition of
each subproblem, we have analyzed
Equations (32)-(33) using the von Neumann
theory with the Fourier growth factor
defined by

 𝛽𝛽𝛽𝛽úü = 𝛽𝛽𝛽𝛽†ü𝑒𝑒𝑒𝑒Iú¢w ,     (35) 
where 𝜏𝜏𝜏𝜏 and ℎ	 stand for the mode number 
and the element size, respectively, which 

are selected for recursive approximations 
(32)-(33). To evaluate a typical row of (33), 
β§N5 and β§ values in the time dependent 
matrices 𝑅𝑅𝑅𝑅úN5∗  and 𝑅𝑅𝑅𝑅ú∗ are considered to be 
locally constant and equal to	𝑝𝑝𝑝𝑝, as is the case 
in the literature (Sari & Tunc, 2017; Tunc, 
2017). The stability analysis of the diffusion 
and the conservation parts is performed, 
respectively, as in the following 
subsections. 

5.1 Stability of the Diffusion Part 
By considering the entries of the included 
matrices in Equation (32), a typical row of 
Equation (32) can be stated as 

𝑐𝑐𝑐𝑐5β§eSßN5 + 𝑐𝑐𝑐𝑐7β§e7ßN5 + 𝑐𝑐𝑐𝑐Sβ§e5ßN5 + 𝑐𝑐𝑐𝑐Rβ§ßN5 +
𝑐𝑐𝑐𝑐Wβ§N5ßN5 + 𝑐𝑐𝑐𝑐Vβ§N7ßN5 + 𝑐𝑐𝑐𝑐®β§NSßN5 	= 𝑐𝑐𝑐𝑐Tβ§eSß +
𝑐𝑐𝑐𝑐©β§e7ß + 𝑐𝑐𝑐𝑐5Uβ§e5ß + 𝑐𝑐𝑐𝑐55β§ß + 𝑐𝑐𝑐𝑐57β§N5ß +
𝑐𝑐𝑐𝑐5Sβ§N7ß + 𝑐𝑐𝑐𝑐5Rβ§NSß  ,           

It  is  obvious  that  the  amplification  factor z=1 and 
satisfies the stability condition. Hence, iteration 
(33) for the conservation part of Equation (1) is 
unconditionally stable. In conclusion, the splitting it-
eration system (32)-(33) is thus unconditionally stable. 

6. Numerical experiments

We present the results for the following schemes with 
real coefficients:
 Strang: The second-order symmetric Strang 
splitting method (10);
 EX4: The fourth-order extrapolation method 
(14); and,
 EX6: The sixth-order extrapolation method 
(15).

Example 1 (Sari & Gurarslan, 2009) Let us 
consider Burgers Equation (1) with the initial condition

where 
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,    
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,    
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 , 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 , 
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt . 

Substituting (35) into (36) and using the 
Euler expansion for exponential terms leads 
to the following relation: 

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß,   (38) 

where 

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + 
   (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + 
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5. 

Equation (38) can be rewritten as follows: 

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß,   (39) 
where 𝑧𝑧𝑧𝑧 is the amplification factor of the 
iteration (32). Iteration (32) is stable if the 
modulus of the amplification factor is less 
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By 
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following 
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1. 
 Thus, iteration (32) for the diffusion 
system is unconditionally stable. 

5.2 Stability of the conservation part 
A typical row of Equation (33) can be 
expressed as given in Equation (36) with the 
following coefficients: 

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,  
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7    
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S, 

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
.    (40) 

Writing (35) into (36) with the considered 
coefficients (40) and with the use of the 
Euler expansion leads to 

  (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,  

where 

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ). 

It is obvious that the amplification factor 
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition. 
Hence, iteration (33) for the conservation 
part of Equation (1) is unconditionally 
stable. In conclusion, the splitting iteration 
system (32)-(33) is thus unconditionally 
stable.  

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us 
consider Burgers Equation (1) with the 
initial condition 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1   (42) 
and homogeneous Dirichlet boundary 
conditions 

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	  (43) 
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0.   (44) 
The exact solution of (1) under the 
consideration of cases (42)-(44) given by 
Cole (1951) is 

(44)
(43)

where 
𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 ,    
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5 + 240𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7, 
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,    
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 , 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7 
 𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 + 72𝑟𝑟𝑟𝑟7 , 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 , 
𝑟𝑟𝑟𝑟5 =

w
5RU

,		𝑟𝑟𝑟𝑟7 =
Ø

TUw
dt . 

Substituting (35) into (36) and using the 
Euler expansion for exponential terms leads 
to the following relation: 

(𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7)β†ßN5 =(𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7)β†ß,   (38) 

where 

𝑤𝑤𝑤𝑤 = (𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + 
   (120𝑟𝑟𝑟𝑟5 − 72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + 
		(1191𝑟𝑟𝑟𝑟5 − 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = (𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7) cos(3𝜏𝜏𝜏𝜏ℎ) + (120𝑟𝑟𝑟𝑟5 +
72𝑟𝑟𝑟𝑟7 )cos(2𝜏𝜏𝜏𝜏ℎ) + (1191𝑟𝑟𝑟𝑟5 + 45𝑟𝑟𝑟𝑟7) cos(𝜏𝜏𝜏𝜏ℎ) + 1208𝑟𝑟𝑟𝑟5. 

Equation (38) can be rewritten as follows: 

	β¥ßN5 = 	(µ∗e57U∂∑)
		(µN57U∂∑)

β†ß = 𝑧𝑧𝑧𝑧β†ß,   (39) 
where 𝑧𝑧𝑧𝑧 is the amplification factor of the 
iteration (32). Iteration (32) is stable if the 
modulus of the amplification factor is less 
than or equal to one, i.e. |𝑧𝑧𝑧𝑧| ≤ 1. By 
considering 𝑟𝑟𝑟𝑟5 ≪ 1, the following 
inequalities always hold |𝑤𝑤𝑤𝑤∗ − 120𝑟𝑟𝑟𝑟7| ≤
|𝑤𝑤𝑤𝑤 + 120𝑟𝑟𝑟𝑟7| and |𝑧𝑧𝑧𝑧| ≤ 1. 
 Thus, iteration (32) for the diffusion 
system is unconditionally stable. 

5.2 Stability of the conservation part 
A typical row of Equation (33) can be 
expressed as given in Equation (36) with the 
following coefficients: 

𝑐𝑐𝑐𝑐5 = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐7 = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7,  
𝑐𝑐𝑐𝑐S = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐R = 2416𝑟𝑟𝑟𝑟5, 
𝑐𝑐𝑐𝑐W = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐V = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7    
𝑐𝑐𝑐𝑐® = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7 − 3𝑟𝑟𝑟𝑟S, 𝑐𝑐𝑐𝑐T = 𝑟𝑟𝑟𝑟5 + 3𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐© = 120𝑟𝑟𝑟𝑟5 + 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5U = 1191𝑟𝑟𝑟𝑟5 + 735𝑟𝑟𝑟𝑟7, 
	𝑐𝑐𝑐𝑐55 = 2416𝑟𝑟𝑟𝑟5 − 240𝑟𝑟𝑟𝑟S, 

𝑐𝑐𝑐𝑐57 = 1191𝑟𝑟𝑟𝑟5 − 735𝑟𝑟𝑟𝑟7,        
𝑐𝑐𝑐𝑐5S = 120𝑟𝑟𝑟𝑟5 − 168𝑟𝑟𝑟𝑟7, 𝑐𝑐𝑐𝑐5R = 𝑟𝑟𝑟𝑟5 − 3𝑟𝑟𝑟𝑟7, 
𝑟𝑟𝑟𝑟5 =

w
5RU

,			𝑟𝑟𝑟𝑟7 =
ªÇº
TU
.    (40) 

Writing (35) into (36) with the considered 
coefficients (40) and with the use of the 
Euler expansion leads to 

  (41) (𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βßN5 =(𝑤𝑤𝑤𝑤 − 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤∗)†βß ,  

where 

𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟5 cos(3𝜏𝜏𝜏𝜏ℎ) + 120𝑟𝑟𝑟𝑟5 cos(2𝜏𝜏𝜏𝜏ℎ) +
								

	1191 𝑟𝑟𝑟𝑟5cos(𝜏𝜏𝜏𝜏ℎ) +1208𝑟𝑟𝑟𝑟5, 

𝑤𝑤𝑤𝑤∗ = 3𝑟𝑟𝑟𝑟7sin(3𝜏𝜏𝜏𝜏ℎ) + 168𝑟𝑟𝑟𝑟7 sin(2𝜏𝜏𝜏𝜏ℎ) +

										

	735𝑟𝑟𝑟𝑟7sin	(𝜏𝜏𝜏𝜏ℎ). 

It is obvious that the amplification factor 
𝑧𝑧𝑧𝑧 = 1 and satisfies the stability condition. 
Hence, iteration (33) for the conservation 
part of Equation (1) is unconditionally 
stable. In conclusion, the splitting iteration 
system (32)-(33) is thus unconditionally 
stable.  

6. Numerical experiments
We present the results for the following
schemes with real coefficients:
• Strang: The second-order symmetric

Strang splitting method (10);
• EX4: The fourth-order extrapolation

method (14); and,
• EX6: The sixth-order extrapolation

method (15).

Example 1 (Sari & Gurarslan, 2009) Let us 
consider Burgers Equation (1) with the 
initial condition 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠	𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥,	0 < 𝑥𝑥𝑥𝑥 < 1   (42) 
and homogeneous Dirichlet boundary 
conditions 

𝑢𝑢𝑢𝑢(0, 𝑡𝑡𝑡𝑡) = 0,			𝑡𝑡𝑡𝑡 > 0,	  (43) 
𝑢𝑢𝑢𝑢(1, 𝑡𝑡𝑡𝑡) = 0, 𝑡𝑡𝑡𝑡 > 0.   (44) 
The exact solution of (1) under the 
consideration of cases (42)-(44) given by 
Cole (1951) is 

(42)

and homogeneous Dirichlet boundary conditions

The exact solution of (1) under the consideration of 
cases (42)-(44) given by Cole (1951) is
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𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
∑ A¡ à¬√ƒeü∑≈∑Ø(∆üúIü(ü≈*)«
¡»B

A…N∑ A¡ à¬√(eü∑≈∑Ø() Àú(ü≈*)«
¡»B

                                                 (45) 
with the Fourier coefficients 

𝑎𝑎𝑎𝑎U = ê 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−(2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)e5[1 − cos(𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)]}𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
5

U
, 

𝑎𝑎𝑎𝑎ü = 2∫ 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−(2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)e5[1 −5
U

																																		cos(𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)]}cos	(𝑛𝑛𝑛𝑛𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥.
       

In all numerical experiments, we prefer to 
use pattern (10) instead of pattern (11). If 
one solves nonlinear advection part two 
times, then the computational cost is higher 
and the accuracy is less than pattern (10) 
because of the necessity of the correction 

relation in the nonlinear advection part. 
Table 2 shows the comparison of the 
produced results using the present approach 
with the literature (Mukundan & Awasthi, 
2015) and exact solutions for various spatial 
points at 𝑡𝑡𝑡𝑡 = 0.5. As seen in the table, the 
present study is more accurate and more 
economical, with a far smaller number of 
elements, in comparison to their results. In 
addition, it is shown that the pattern ABA 
produces more accurate results than the 
pattern BAB in Table 2. 
 
 

 
 
 

Table 2. Comparison of the produced results at 𝑡𝑡𝑡𝑡 = 0.5 for 𝜋𝜋𝜋𝜋 = 1, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001. 

 
         𝑥𝑥𝑥𝑥 

EX6 
Splitting 
Present 
N=40 

EX4 
Splitting 
Present 
N=40 

Strang 
Splitting  
Present 

(ABA)-N=40 

Strang 
Splitting 
Present 

(BAB)-N=40 

Mukundan 
& Awasthi 

(2015) 
𝑁𝑁𝑁𝑁=100 

Exact 

𝑥𝑥𝑥𝑥 = 0.1 0.00221300 0.00221299 0.00221298 0.00221292 0.002213 0.00221301 
𝑥𝑥𝑥𝑥 = 0.2 0.00421007 0.00421005 0.00421003 0.00420990 0.004209 0.00421007 
𝑥𝑥𝑥𝑥 = 0.3 0.00579612 0.00579610 0.00579606 0.00579589 0.005795 0.00579612 
𝑥𝑥𝑥𝑥 = 0.4 0.00681592 0.00681588 0.00681585 0.00681565 0.006815 0.00681592 
𝑥𝑥𝑥𝑥 = 0.5 0.00716920 0.00716917 0.00716913 0.00716892 0.007168 0.00716921 
𝑥𝑥𝑥𝑥 = 0.6 0.00682072 0.00682069 0.00682066 0.00682045 0.006820 0.00682073 
𝑥𝑥𝑥𝑥 = 0.7 0.00580390 0.00580387 0.00580384 0.00580367 0.005803 0.00580390 
𝑥𝑥𝑥𝑥 = 0.8 0.00421785 0.00421783 0.00421780 0.00421768 0.004217 0.00421785 
𝑥𝑥𝑥𝑥 = 0.9 0.00221781 0.00221780 0.00221779 0.00221772 0.002218 0.00221781 

 
 

 

 
Table 3. Comparison of the produced results at 𝑡𝑡𝑡𝑡 = 2.3 for 𝜋𝜋𝜋𝜋 = 0.1, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.01.  

 
𝑥𝑥𝑥𝑥 

EX6 
Splitting 
Present 
N=50 

EX4 
Splitting 
Present 
N=50 

Strang 
Splitting 
Present 
N=50 

Mukundan & 
Awasthi (2015) 

𝑁𝑁𝑁𝑁=100 
Exact 

𝑥𝑥𝑥𝑥 = 0.1 0.0221396 0.0221397 0.0221395 0.02253 0.0221396 
𝑥𝑥𝑥𝑥 = 0.2 0.0427956 0.0427957 0.0427954 0.04357 0.0427956 
𝑥𝑥𝑥𝑥 = 0.3 0.0604313 0.0604314 0.0604310 0.06155 0.0604313 
𝑥𝑥𝑥𝑥 = 0.4 0.0734431 0.0734432 0.0734426 0.07485 0.0734431 
𝑥𝑥𝑥𝑥 = 0.5 0.0802310 0.0802311 0.0802302 0.08182 0.0802310 
𝑥𝑥𝑥𝑥 = 0.6 0.0793988 0.0793988 0.0793977 0.08104 0.0793988 
𝑥𝑥𝑥𝑥 = 0.7 0.0701068 0.0701067 0.0701055 0.07161 0.0701068 
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In all numerical experiments, we prefer to 
use pattern (10) instead of pattern (11). If 
one solves nonlinear advection part two 
times, then the computational cost is higher 
and the accuracy is less than pattern (10) 
because of the necessity of the correction 

relation in the nonlinear advection part. 
Table 2 shows the comparison of the 
produced results using the present approach 
with the literature (Mukundan & Awasthi, 
2015) and exact solutions for various spatial 
points at 𝑡𝑡𝑡𝑡 = 0.5. As seen in the table, the 
present study is more accurate and more 
economical, with a far smaller number of 
elements, in comparison to their results. In 
addition, it is shown that the pattern ABA 
produces more accurate results than the 
pattern BAB in Table 2. 
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part two times, then the computational cost is higher 
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As seen in the table, the present study is more 
accurate and more economical, with a far smaller 
number of elements, in comparison to their results. 
In addition, it is shown that the pattern ABA produces 
more accurate results than the pattern BAB in Table 2.
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Table 3 shows the comparison of the present 
numerical solution with the exact solution and the 
literature (Mukundan & Awasthi, 2015). The kinematic 
viscosity constant is chosen to be ε=0.1. The results are 
produced for the parameters taken to be dt=0.01 and

h=0.02. Even as we consider a smaller num-
ber of spatial elements, accuracy of the present 
method is far higher than the literature (Mukun-
dan & Awasthi, 2015) at every spatial point.
The presented results in Table 4 are compared with 
the literature (Bahadir & Saglam, 2005; Sari & 
Gurarslan, 2009) and the exact solution. Even with 
the use of fewer time elements, the comparison 
revealed that the suggested technique is able to produce 
more accurate results than the corresponding literature 
(Bahadir & Saglam, 2005; Sari & Gurarslan, 2009). In 
the comparison, responses of the physical system have 
been observed for the elapsed times of t=0.5, t=2.0, 
and t=4.0 at various positions for h=0.01 (Table 4).

Now it is time to deal with far smaller 
kinematic viscosity constants. A comparison of the 
currently produced solutions has been carried out 
with the literature, and the exact solution for two 
different viscosity values, ε=0.004 and ε=0.003, 
respectively (Tables 5-6). The present study reveals that 
even by using fewer time elements in Table 5, one can find 
more accurate results than the literature (Jiwari, 2015).

In the work of Aksan (2006), the model 
equation with conditions (23)-(25) is solved using the 
quadratic B-spline FEM in the weak form with the Newton 
iteration for nonlinear systems. In another work (Dag 
et al., 2005), the researchers used the weak form of the 
governing equation, the cubic B-spline basis approach 
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and the first-order splitting approach. The computed 
results in Table 7 show that the present method is more 
accurate for a far smaller number of time elements than 
the results of references (Aksan, 2006; Dag et al., 2005).

Table 8 is another comparison which was 
completed with various schemes given in the 
literature (Kutluay et al., 1999; Tsai et al., 2017) with 
the currently proposed schemes in terms of maximum 
error norms. The compared results are taken from Table 
4 of the reference Tsai et al. (2017). As realized from 
Table 8, the current results are far more accurate than 
the literature (Tsai et al., 2017; Kutluay et al., 1999).
The numerical method is seen to have a high capacity 
in capturing gradual nonlinear steep behaviour,            . 
Figures 1 (a) and (b) show the splitting-up solutions 
of Example 1 with small parameter values, ε=0.001, 
ε=0.0005, respectively. In Figure 2, the present 
numerical methods are also compared in terms of com-
putational costs, i.e. CPU times of the iterations are 

from Table 4 of the reference Tsai et al. 
(2017). As realized from Table 8, the 
current results are far more accurate than the 
literature (Tsai et al., 2017; Kutluay et al., 
1999). 

The numerical method is seen to 
have a high capacity in capturing gradual 
nonlinear steep behaviour, 𝜀𝜀𝜀𝜀 ≪ 1. Figures 1 
(a) and (b) show the splitting-up solutions 
of Example 1 with small parameter values, 
𝜀𝜀𝜀𝜀 = 0.001, 𝜀𝜀𝜀𝜀 = 0.0005, respectively. In 
Figure 2, the present numerical methods are 
also compared in terms of computational 
costs, i.e. CPU times of the iterations are 
demonstrated for various number of spatial 
elements 𝑁𝑁𝑁𝑁. Among those methods, the 
Strang approach is the most economical. If 
one prescribes boundary conditions, error 
terms are generally not uniformly bounded 
on the interval [0 ,T] in the infinite 
dimensional space, so it is no longer 
possible to establish a guarantee of 
convergence order (Hansen & Ostermann, 
2009; Seydaoglu et al., 2016). Thus, order 

reductions occured for higher order splitting 
methods when the Dirichlet boundary 
conditions were impossed.  

In Figure 3(a), we compare the 
efficiency of the present methods given in 
Table 2 at the final time 𝑡𝑡𝑡𝑡 = 3. We 
demonstrate the infinity error norm versus 
the number of evaluations of 𝜙𝜙𝜙𝜙;

<, which 
usually requires the more costly 
computation for several step sizes. As seen 
in Figure 3(a), in spite of the correct 
convergence orders not being obtained, the 
high order extrapolation methods produce 
more reliable results in terms of both 
accuracy and computational cost. 
 
 
 
 
 
 
 
 
 

 
 
 

Table 5. Comparison of the produced results for the parameter values 𝜀𝜀𝜀𝜀 = 0.004, ℎ = 0.01. 

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡 

EX6 Splitting 
Present  

𝑁𝑁𝑁𝑁 = 100, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 =
0.0125 

EX4 Splitting 
Present 

𝑁𝑁𝑁𝑁 = 100, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 =
0.0125 

Strang Splitting 
Present 

𝑁𝑁𝑁𝑁 = 100, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 =
0.0125 

Jiwari (2015) 
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡	 = 0.001 Exact 

𝑥𝑥𝑥𝑥 = 0.25 

𝑡𝑡𝑡𝑡 = 1 0.18890403 0.18890403 0.18888074 0.18891 0.18890403 
𝑡𝑡𝑡𝑡 = 5 0.04697225 0.04697225 0.04697036 0.04697 0.04697225 
𝑡𝑡𝑡𝑡 = 10 0.02421935 0.02421935 0.02421883 0.02422 0.02421935 
𝑡𝑡𝑡𝑡 = 15 0.01631540 0.01631540 0.01631517 0.01632 0.01631540 

       

𝑥𝑥𝑥𝑥 = 0.5 

𝑡𝑡𝑡𝑡 = 1 0.37597616 0.37597617 0.37594050 0.37598 0.37597616 
𝑡𝑡𝑡𝑡 = 5 0.09393781 0.09393781 0.09393407 0.09394 0.09393781 
𝑡𝑡𝑡𝑡 = 10 0.04843716 0.04843716 0.04843613 0.04843 0.04843716 
𝑡𝑡𝑡𝑡 = 15 0.03259459 0.03259459 0.03259412 0.03259 0.03259459 

       

𝑥𝑥𝑥𝑥 = 0.75 

𝑡𝑡𝑡𝑡 = 1 0.55883376 0.55882869 0.55882287 0.55883 0.55883764 
𝑡𝑡𝑡𝑡 = 5 0.14088686 0.14088685 0.14088137 0.14089 0.14088686 
𝑡𝑡𝑡𝑡 = 10 0.07220247 0.07220246 0.07220095 0.07221 0.07220247 
𝑡𝑡𝑡𝑡 = 15 0.04677529 0.04677529 0.04677452 0.04678 0.04677529 

 
 
 
 
 
 

 

demonstrated for various number of spatial elements N. 
Among those methods, the Strang approach is the most 
economical. If one prescribes boundary conditions, error 
terms are generally not uniformly bounded on the interval 
[0 ,T] in the infinite dimensional space, so it is no longer 
possible to establish a guarantee of convergence order 
(Hansen & Ostermann, 2009; Seydaoglu et al., 2016). 
Thus, order reductions occured for higher order splitting 
methods when the Dirichlet boundary conditions were 
impossed. 

In Figure 3(a), we compare the efficiency of the 
present methods given in Table 2 at the final 
time t=3. We demonstrate the infinity error norm 
versus the number of evaluations of ϕk

A, which usually 
requires the more costly computation for 
several step sizes. As seen in Figure 3(a), in spite of the 
correct convergence orders not being obtained, the high 
order extrapolation methods produce more reliable 
results in terms of both accuracy and computational cost.

Table 4. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.01. 

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡 

EX6  
Splitting 
Present 
dt=0.004	

EX4 
Splitting 
Present 
dt=0.004	

Strang 
Splitting 
Present 
dt=0.004	

Bahadir & 
Saglam, 
(2005) 

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡	 = 0.001	

Sari & 
Gurarslan, 

(2009) 
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡	 = 0.001 Exact 

𝑥𝑥𝑥𝑥 = 0.1 
𝑡𝑡𝑡𝑡 = 0.50 0.1211435314 0.1211435314 0.1211416234 0.12079 0.12114 0.1211435315 
𝑡𝑡𝑡𝑡 = 2.00 0.0429637769 0.0429637769 0.0429634430 0.04300 0.04295 0.0429637769 
𝑡𝑡𝑡𝑡 = 4.00 0.0231042327 0.0231042327 0.0231041297 0.02324 0.02310 0.0231042327 

        

𝑥𝑥𝑥𝑥 = 0.3 
𝑡𝑡𝑡𝑡 = 0.50 0.3602710556 0.3602710556 0.3602669996 0.36113 0.36027 0.3602710559 
𝑡𝑡𝑡𝑡 = 2.00 0.1288398903 0.1288398903 0.1288389190 0.12887 0.12882 0.1288398903 
𝑡𝑡𝑡𝑡 = 4.00 0.0693082904 0.0693082904 0.0693079840 0.06935 0.06930 0.0693082904 

        

𝑥𝑥𝑥𝑥 = 0.5 
𝑡𝑡𝑡𝑡 = 0.50 0.5886957730 0.5886957729 0.5886945639 0.59559 0.58870 0.5886957735 
𝑡𝑡𝑡𝑡 = 2.00 0.2145580542 0.2145580542 0.2145565380 0.21468 0.21455 0.2145580543 
𝑡𝑡𝑡𝑡 = 4.00 0.1154947563 0.1154947560 0.1154942553 0.11550 0.11549 0.1154947563 

        

𝑥𝑥𝑥𝑥 = 0.7 
𝑡𝑡𝑡𝑡 = 0.50 0.7934934046 0.7934934039 0.7935031783 0.81257 0.79354 0.7934934058 
𝑡𝑡𝑡𝑡 = 2.00 0.2999977673 0.2999977659 0.2999958750 0.30075 0.29999 0.2999977677 
𝑡𝑡𝑡𝑡 = 4.00 0.1612146519 0.1612146463 0.1612140083 0.16125 0.16121 0.1612146543 

        

𝑥𝑥𝑥𝑥 = 0.9 
𝑡𝑡𝑡𝑡 = 0.50 0.9381067387 0.9381059346 0.9381462298 0.97184 0.93822 0.9381083431 
𝑡𝑡𝑡𝑡 = 2.00 0.3732772096 0.3732774294 0.3732786012 0.37452 0.37328 0.3732776288 
𝑡𝑡𝑡𝑡 = 4.00 0.1660587273 0.1660588088 0.1660571831 0.16515 0.16605 0.1660587216 

 
 
 
Table 3 shows the comparison of the present 
numerical solution with the exact solution 
and the literature (Mukundan & Awasthi, 
2015). The kinematic viscosity constant is 
chosen to be	𝜀𝜀𝜀𝜀 = 0.1. The results are 
produced for the parameters taken to be 
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.01 and ℎ = 0.02. Even as we 
consider a smaller number of spatial 
elements, accuracy of the present method is 
far higher than the literature (Mukundan & 
Awasthi, 2015) at every spatial point. 
 The presented results in Table 4 are 
compared with the literature (Bahadir & 
Saglam, 2005; Sari & Gurarslan, 2009) and 
the exact solution. Even with the use of 
fewer time elements, the comparison 
revealed that the suggested technique is able 
to produce more accurate results than the 
corresponding literature (Bahadir & 
Saglam, 2005; Sari & Gurarslan, 2009). In 
the comparison, responses of the physical 
system have been observed for the elapsed 
times of 𝑡𝑡𝑡𝑡 = 0.5, 𝑡𝑡𝑡𝑡 = 2.0, and 𝑡𝑡𝑡𝑡 = 4.0 at 
various positions for ℎ = 0.01 (Table 4). 
 Now it is time to deal with far 
smaller kinematic viscosity constants. A 
comparison of the currently produced 

solutions has been carried out with the 
literature, and the exact solution for two 
different viscosity values, 𝜀𝜀𝜀𝜀 = 0.004 and 
𝜀𝜀𝜀𝜀 = 0.003, respectively (Tables 5-6). The 
present study reveals that even by using 
fewer time elements in Table 5, one can find 
more accurate results than the literature 
(Jiwari, 2015). 

In the work of Aksan (2006), the 
model equation with conditions (23)-(25) is 
solved using the quadratic B-spline FEM in 
the weak form with the Newton iteration for 
nonlinear systems. In another work (Dag et 
al., 2005), the researchers used the weak 
form of the governing equation, the cubic 
B-spline basis approach and the first-order 
splitting approach. The computed results in 
Table 7 show that the present method is 
more accurate for a far smaller number of 
time elements than the results of references 
(Aksan, 2006; Dag et al., 2005). 
 Table 8 is another comparison 
which was completed with various schemes 
given in the literature (Kutluay et al., 1999; 
Tsai et al., 2017) with the currently 
proposed schemes in terms of maximum 
error norms. The compared results are taken 
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from Table 4 of the reference Tsai et al. 
(2017). As realized from Table 8, the 
current results are far more accurate than the 
literature (Tsai et al., 2017; Kutluay et al., 
1999). 

The numerical method is seen to 
have a high capacity in capturing gradual 
nonlinear steep behaviour, 𝜀𝜀𝜀𝜀 ≪ 1. Figures 1 
(a) and (b) show the splitting-up solutions 
of Example 1 with small parameter values, 
𝜀𝜀𝜀𝜀 = 0.001, 𝜀𝜀𝜀𝜀 = 0.0005, respectively. In 
Figure 2, the present numerical methods are 
also compared in terms of computational 
costs, i.e. CPU times of the iterations are 
demonstrated for various number of spatial 
elements 𝑁𝑁𝑁𝑁. Among those methods, the 
Strang approach is the most economical. If 
one prescribes boundary conditions, error 
terms are generally not uniformly bounded 
on the interval [0 ,T] in the infinite 
dimensional space, so it is no longer 
possible to establish a guarantee of 
convergence order (Hansen & Ostermann, 
2009; Seydaoglu et al., 2016). Thus, order 

reductions occured for higher order splitting 
methods when the Dirichlet boundary 
conditions were impossed.  

In Figure 3(a), we compare the 
efficiency of the present methods given in 
Table 2 at the final time 𝑡𝑡𝑡𝑡 = 3. We 
demonstrate the infinity error norm versus 
the number of evaluations of 𝜙𝜙𝜙𝜙;

<, which 
usually requires the more costly 
computation for several step sizes. As seen 
in Figure 3(a), in spite of the correct 
convergence orders not being obtained, the 
high order extrapolation methods produce 
more reliable results in terms of both 
accuracy and computational cost. 
 
 
 
 
 
 
 
 
 

 
 
 

Table 5. Comparison of the produced results for the parameter values 𝜀𝜀𝜀𝜀 = 0.004, ℎ = 0.01. 

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡 

EX6 Splitting 
Present  

𝑁𝑁𝑁𝑁 = 100, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 =
0.0125 

EX4 Splitting 
Present 
𝑁𝑁𝑁𝑁 = 100, 

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125 

Strang Splitting 
Present 
𝑁𝑁𝑁𝑁 = 100, 

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125 

Jiwari (2015) 
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡	 = 0.001 Exact 

𝑥𝑥𝑥𝑥 = 0.25 

𝑡𝑡𝑡𝑡 = 1 0.18890403 0.18890403 0.18888074 0.18891 0.18890403 
𝑡𝑡𝑡𝑡 = 5 0.04697225 0.04697225 0.04697036 0.04697 0.04697225 
𝑡𝑡𝑡𝑡 = 10 0.02421935 0.02421935 0.02421883 0.02422 0.02421935 
𝑡𝑡𝑡𝑡 = 15 0.01631540 0.01631540 0.01631517 0.01632 0.01631540 

       

𝑥𝑥𝑥𝑥 = 0.5 

𝑡𝑡𝑡𝑡 = 1 0.37597616 0.37597617 0.37594050 0.37598 0.37597616 
𝑡𝑡𝑡𝑡 = 5 0.09393781 0.09393781 0.09393407 0.09394 0.09393781 
𝑡𝑡𝑡𝑡 = 10 0.04843716 0.04843716 0.04843613 0.04843 0.04843716 
𝑡𝑡𝑡𝑡 = 15 0.03259459 0.03259459 0.03259412 0.03259 0.03259459 

       

𝑥𝑥𝑥𝑥 = 0.75 

𝑡𝑡𝑡𝑡 = 1 0.55883376 0.55882869 0.55882287 0.55883 0.55883764 
𝑡𝑡𝑡𝑡 = 5 0.14088686 0.14088685 0.14088137 0.14089 0.14088686 
𝑡𝑡𝑡𝑡 = 10 0.07220247 0.07220246 0.07220095 0.07221 0.07220247 
𝑡𝑡𝑡𝑡 = 15 0.04677529 0.04677529 0.04677452 0.04678 0.04677529 

 
 
 
 
 
 

 



 
 
 
Table 8. Comparison of maximum error norms of various schemes for 𝜀𝜀𝜀𝜀 = 0.01, ℎ = 0.0125. 

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡 

EFDM 
Kutluay et al. 

(1999) 
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0001 

EEFDM 
Kutluay et al. 

(1999) 
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0001 

TFPM  
Tsai et al. 

(2017) 
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0001 

Strang Splitting 
Present 

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001 

EX4 Splitting 
Present 

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001 

EX6 Splitting 
Present 

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001 

 
 
𝑥𝑥𝑥𝑥 = 0.25 

𝑡𝑡𝑡𝑡 = 0.4 5.54E-4 1.60E-5 9.28E-6 3.40E-08 2.22E-09 1.24E-09 
𝑡𝑡𝑡𝑡 = 0.6 3.49E-4 1.10E-5 1.05E-5 1.41E-08 2.21E-09 1.05E-09 
𝑡𝑡𝑡𝑡 = 0.8 2.46E-4 4.40E-6 8.46E-6 4.27E-09 1.06E-09 8.65E-10 
𝑡𝑡𝑡𝑡 = 1.0 1.85E-4 5.10E-6 5.12E-6 1.11E-10 5.67E-10 6.27E-10 
𝑡𝑡𝑡𝑡 = 3.0 2.23E-4 2.30E-6 6.35E-6 2.33E-09 3.53E-10 2.16E-11 

        
 
 
𝑥𝑥𝑥𝑥 = 0.50 

𝑡𝑡𝑡𝑡 = 0.4 5.22E-4 7.50E-6 1.44E-5 1.40E-07 4.55E-10 4.54E-09 
𝑡𝑡𝑡𝑡 = 0.6 4.46E-4 4.50E-6 7.61E-6 7.06E-08 4.53E-09 3.28E-09 
𝑡𝑡𝑡𝑡 = 0.8 3.56E-4 3.90E-6 2.57E-6 3.58E-08 8.39E-09 1.96E-09 
𝑡𝑡𝑡𝑡 = 1.0 2.96E-4 4.00E-6 1.14E-5 1.55E-08 9.08E-09 9.75E-10 
𝑡𝑡𝑡𝑡 = 3.0 3.49E-5 5.10E-6 1.09E-5 4.74E-09 1.49E-10 5.66E-11 

        
 
 
𝑥𝑥𝑥𝑥 = 0.75 

𝑡𝑡𝑡𝑡 = 0.4 1.12E-4 1.80E-5 4.41E-5 2.92E-07 3.83E-08 2.59E-09 
𝑡𝑡𝑡𝑡 = 0.6 2.05E-4 5.00E-6 7.80E-5 2.02E-07 2.52E-08 4.60E-09 
𝑡𝑡𝑡𝑡 = 0.8 2.62E-4 1.80E-6 8.28E-5 1.55E-07 8.42E-09 4.69E-09 
𝑡𝑡𝑡𝑡 = 1.0 2.44E-4 5.60E-6 7.31E-5 1.13E-07 1.95E-10 3.65E-09 
𝑡𝑡𝑡𝑡 = 3.0 3.21E-5 2.10E-6 9.26E-6 4.87E-09 2.87E-10 7.14E-11 

 
 
 
 
 

 
             (a)           (b) 

Fig. 1. Numerical solution of Example 1with the Strang splitting approach at different times for 
the parameters (a) 	𝜀𝜀𝜀𝜀 = 0.001, ℎ = 0.0025 and 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.002 and (b) 𝜀𝜀𝜀𝜀 = 0.0005, ℎ = 0.002 
and 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0013
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Table 6. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.003 and ℎ = 0.01. 

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡 

EX6 Splitting 
Present 
𝑁𝑁𝑁𝑁 = 100, 

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125 

EX4 Splitting 
Present 
𝑁𝑁𝑁𝑁 = 100, 

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125 

Strang Splitting 
Present 
𝑁𝑁𝑁𝑁 = 100, 

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125 

Jiwari (2015) 
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡	 = 0.001 Exact 

𝑥𝑥𝑥𝑥 = 0.25 

𝑡𝑡𝑡𝑡 = 1 0.18901910 0.18901910 0.18899538 0.18902 0.18901910 
𝑡𝑡𝑡𝑡 = 5 0.04698094 0.04698094 0.04697901 0.04698 0.04698094 
𝑡𝑡𝑡𝑡 = 10 0.02422174 0.02422174 0.02422121 0.02422 0.02422174 
𝑡𝑡𝑡𝑡 = 15 0.01631712 0.01631712 0.01631688 0.01631 0.01631712 

       

𝑥𝑥𝑥𝑥 = 0.5 

𝑡𝑡𝑡𝑡 = 1 0.37622719 0.37622719 0.37619067 0.37623 0.37622719 
𝑡𝑡𝑡𝑡 = 5 0.09395531 0.09395531 0.09395150 0.09396 0.09395531 
𝑡𝑡𝑡𝑡 = 10 0.04844299 0.04844299 0.04844194 0.04844 0.04844299 
𝑡𝑡𝑡𝑡 = 15 0.03263170 0.03263170 0.03263122 0.03263 0.03263170 

       

𝑥𝑥𝑥𝑥 = 0.75 

𝑡𝑡𝑡𝑡 = 1 0.55927734 0.55927597 0.55925619 0.55928 0.55927734 
𝑡𝑡𝑡𝑡 = 5 0.14091634 0.14091634 0.14091072 0.14092 0.14091634 
𝑡𝑡𝑡𝑡 = 10 0.07260297 0.07260297 0.07260142 0.07261 0.07260298 
𝑡𝑡𝑡𝑡 = 15 0.04838641 0.04838641 0.04838568 0.04839 0.04838642 

 
Table 7. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.1	and ℎ = 0.0125. 

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡 
EX6 Splitting 

Present 
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001 

EX4 Splitting 
Present 

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001 

Strang Splitting 
Present 

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001 

Dag et al. 
(2005)       

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0001 

Aksan    
(2006) 

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0001    
Exact 

 
 

x=0.25 
 
 

t=0.4 0.3088942 0.3088942 0.3088942 0.30890 0.30891 0.3088942 
t=0.6 0.2407390 0.2407390 0.2407390 0.24074 0.24075 0.2407390 
t=0.8 0.1956756 0.1956756 0.1956756 0.19568 0.19568 0.1956756 
t=1.0 0.1625648 0.1625648 0.1625648 0.16257 0.16257 0.1625649 
t=3.0 0.0272023 0.0272023 0.0272023 0.02720 0.02721 0.0272023 

        
 
 

x=0.50 
 
 

t=0.4 0.5696324 0.5696324 0.5696325 0.56964 0.56969 0.5696325 
t=0.6 0.4472055 0.4472055 0.4472055 0.44721 0.44723 0.4472055 
t=0.8 0.3592360 0.3592360 0.3592360 0.35924 0.35926 0.3592361 
t=1.0 0.2919159 0.2919159 0.2919159 0.29191 0.29193 0.2919160 
t=3.0 0.0402049 0.0402049 0.0402049 0.04020 0.04021 0.0402049 

        
 
 

x=0.75 
 
 

t=0.4 0.6254379 0.6254379 0.6254376 0.62541 0.62543 0.6254379 
t=0.6 0.4872150 0.4872150 0.4872148 0.48719 0.48723 0.4872150 
t=0.8 0.3739218 0.3739218 0.3739217 0.37390 0.37394 0.3739218 
t=1.0 0.2874745 0.2874745 0.2874744 0.28746 0.28750 0.2874744 
t=3.0 0.0297721 0.0297721 0.0297721 0.02977 0.02978 0.0297721 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.003 and ℎ = 0.01. 

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡 

EX6 Splitting 
Present 
𝑁𝑁𝑁𝑁 = 100, 

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125 

EX4 Splitting 
Present 
𝑁𝑁𝑁𝑁 = 100, 

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125 

Strang Splitting 
Present 
𝑁𝑁𝑁𝑁 = 100, 

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0125 

Jiwari (2015) 
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡	 = 0.001 Exact 

𝑥𝑥𝑥𝑥 = 0.25 

𝑡𝑡𝑡𝑡 = 1 0.18901910 0.18901910 0.18899538 0.18902 0.18901910 
𝑡𝑡𝑡𝑡 = 5 0.04698094 0.04698094 0.04697901 0.04698 0.04698094 
𝑡𝑡𝑡𝑡 = 10 0.02422174 0.02422174 0.02422121 0.02422 0.02422174 
𝑡𝑡𝑡𝑡 = 15 0.01631712 0.01631712 0.01631688 0.01631 0.01631712 

       

𝑥𝑥𝑥𝑥 = 0.5 

𝑡𝑡𝑡𝑡 = 1 0.37622719 0.37622719 0.37619067 0.37623 0.37622719 
𝑡𝑡𝑡𝑡 = 5 0.09395531 0.09395531 0.09395150 0.09396 0.09395531 
𝑡𝑡𝑡𝑡 = 10 0.04844299 0.04844299 0.04844194 0.04844 0.04844299 
𝑡𝑡𝑡𝑡 = 15 0.03263170 0.03263170 0.03263122 0.03263 0.03263170 

       

𝑥𝑥𝑥𝑥 = 0.75 

𝑡𝑡𝑡𝑡 = 1 0.55927734 0.55927597 0.55925619 0.55928 0.55927734 
𝑡𝑡𝑡𝑡 = 5 0.14091634 0.14091634 0.14091072 0.14092 0.14091634 
𝑡𝑡𝑡𝑡 = 10 0.07260297 0.07260297 0.07260142 0.07261 0.07260298 
𝑡𝑡𝑡𝑡 = 15 0.04838641 0.04838641 0.04838568 0.04839 0.04838642 

 
Table 7. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.1	and ℎ = 0.0125. 

𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡 
EX6 Splitting 

Present 
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001 

EX4 Splitting 
Present 

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001 

Strang Splitting 
Present 

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.001 

Dag et al. 
(2005)       

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0001 

Aksan    
(2006) 

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 0.0001    
Exact 

 
 

x=0.25 
 
 

t=0.4 0.3088942 0.3088942 0.3088942 0.30890 0.30891 0.3088942 
t=0.6 0.2407390 0.2407390 0.2407390 0.24074 0.24075 0.2407390 
t=0.8 0.1956756 0.1956756 0.1956756 0.19568 0.19568 0.1956756 
t=1.0 0.1625648 0.1625648 0.1625648 0.16257 0.16257 0.1625649 
t=3.0 0.0272023 0.0272023 0.0272023 0.02720 0.02721 0.0272023 

        
 
 

x=0.50 
 
 

t=0.4 0.5696324 0.5696324 0.5696325 0.56964 0.56969 0.5696325 
t=0.6 0.4472055 0.4472055 0.4472055 0.44721 0.44723 0.4472055 
t=0.8 0.3592360 0.3592360 0.3592360 0.35924 0.35926 0.3592361 
t=1.0 0.2919159 0.2919159 0.2919159 0.29191 0.29193 0.2919160 
t=3.0 0.0402049 0.0402049 0.0402049 0.04020 0.04021 0.0402049 

        
 
 

x=0.75 
 
 

t=0.4 0.6254379 0.6254379 0.6254376 0.62541 0.62543 0.6254379 
t=0.6 0.4872150 0.4872150 0.4872148 0.48719 0.48723 0.4872150 
t=0.8 0.3739218 0.3739218 0.3739217 0.37390 0.37394 0.3739218 
t=1.0 0.2874745 0.2874745 0.2874744 0.28746 0.28750 0.2874744 
t=3.0 0.0297721 0.0297721 0.0297721 0.02977 0.02978 0.0297721 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 1. Numerical solution of Example 1with the Strang splitting approach at different times for the parameters (a)  
ε =0.001, h=0.0025 and dt=0.002 and (b) ε =0.0005, h=0.002 and dt=0.0013 

Fig. 2. Comparison of CPU times for various number 
of spatial elements and dt=0.001

Fig. 3. a) Error versus number of evaluations of ϕk
A for 

the numerical solution of Example 1 at t=3,ε=0.1 and 
h=0.0125. b) Numerical solution of Example 2 at t=1 
with different kinematic viscosity constants a) ε=0.5 
b) ε=0.1 c) ε=0.05 d) ε=0.01 e) ε=0.005 f) ε=0.003

Example 2 (Sari & Tunc, 2017) Let us now consider the 
Burgers equation (1) with initial condition
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Fig. 3. a) Error versus number of evaluations of 𝜙𝜙𝜙𝜙;
< for the numerical solution of Example 1 at 

𝑑𝑑𝑑𝑑 = 3, 𝜀𝜀𝜀𝜀 = 0.1 and ℎ = 0.0125. b) Numerical solution of Example 2 at 𝑑𝑑𝑑𝑑 = 1 with different 
kinematic viscosity constants a) 𝜀𝜀𝜀𝜀 = 0.5 b) 𝜀𝜀𝜀𝜀 = 0.1 c) 𝜀𝜀𝜀𝜀 = 0.05 d) 𝜀𝜀𝜀𝜀 = 0.01 e) 𝜀𝜀𝜀𝜀 = 0.005 f) 
𝜀𝜀𝜀𝜀 = 0.003 

 
 

Example 2 (Sari & Tunc, 2017) Let us now 
consider the Burgers equation (1) with 
initial condition 
 
𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 4𝑥𝑥𝑥𝑥(1 − 𝑥𝑥𝑥𝑥), 0 < 𝑥𝑥𝑥𝑥 < 1 
                    (46) 
and homogeneous boundary conditions 
 

𝑢𝑢𝑢𝑢(0, 𝑑𝑑𝑑𝑑) = 0, 𝑑𝑑𝑑𝑑 > 0       (47) 
𝑢𝑢𝑢𝑢(1, 𝑑𝑑𝑑𝑑) = 0, 𝑑𝑑𝑑𝑑 > 0.       (48) 
 
The exact solution of (1) under the 
consideration of cases (46) - (48) is given 
by Cole (1951) as in (45) but with the 
Fourier coefficients 
𝑎𝑎𝑎𝑎U = ∫ 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−𝑥𝑥𝑥𝑥7(3𝜀𝜀𝜀𝜀)e5(3 − 2𝑥𝑥𝑥𝑥)}𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥5
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kinematic viscosity constants a) 𝜀𝜀𝜀𝜀 = 0.5 b) 𝜀𝜀𝜀𝜀 = 0.1 c) 𝜀𝜀𝜀𝜀 = 0.05 d) 𝜀𝜀𝜀𝜀 = 0.01 e) 𝜀𝜀𝜀𝜀 = 0.005 f) 
𝜀𝜀𝜀𝜀 = 0.003 
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𝑢𝑢𝑢𝑢(1, 𝑑𝑑𝑑𝑑) = 0, 𝑑𝑑𝑑𝑑 > 0.       (48) 
 
The exact solution of (1) under the 
consideration of cases (46) - (48) is given 
by Cole (1951) as in (45) but with the 
Fourier coefficients 
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U        

𝑎𝑎𝑎𝑎ü = 2 ∫ 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒{−𝑥𝑥𝑥𝑥7(3𝜀𝜀𝜀𝜀)e5(3 −
5

U
	2𝑥𝑥𝑥𝑥)}cos	(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥. 

Table 9 includes the comparison of 
numerical solutions and with the exact 
solution with kinematic viscosity 𝜀𝜀𝜀𝜀 = 1. 
The calculated results in Table 9 are more 
accurate than the literature (Kutluay et al., 
1999; Shao et al., 2015). To produce the 
results, far fewer elements in time in 
comparison to the corresponding references 
have been used. 

Table 10 gives a comparison of 
the present results with the literature 
(Kutluay et al., 2004; Kutluay & Esen, 
2004) and the exact solution. The current 
numerical solutions are more accurate than 
the corresponding literature when the 
advection is more dominant to the diffusion, 
𝜀𝜀𝜀𝜀 = 0.1 and ℎ = 0.0125. The presently 
calculated solutions are seen to require less 
effort in time in comparison to those 
references. 

Table 9. Comparison of the results produced for 𝜀𝜀𝜀𝜀 = 1, ℎ = 0.0125, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.0002. 

𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑 
EX6 Splitting  
ℎ = 0.0125, 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.0002 

EX6 Splitting  
ℎ = 0.0125, 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.0002 

Strang 
Splitting  

ℎ = 0.0125,  
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.0002 

Kutluay et al. 
(1999) 

ℎ = 0.0125, 
dt=0.0001 

Shao et al. 
(2015) 

ℎ = 0.25, 
dt=0.0001 

Exact 

x=0.25 

t=0.05 0.426285622 0.426285617 0.426285616 0.42629 0.4262864 0.426285623 
t=0.10 0.261479814 0.261479812 0.261479811 0.26149 0.2614801 0.261479814 
t=0.15 0.161477615 0.161477610 0.161477605 0.16148 0.1614777 0.161477615 
t=0.25 0.061087582 0.061087577 0.061087571 0.06109 0.0610875 0.061087582 

x=0.50 

t=0.05 0.628083727 0.628083724 0.628083717 0.62809 0.6280846 0.628083727 
t=0.10 0.383422416 0.383422404 0.383422386 0.38343 0.3834228 0.383422416 
t=0.15 0.234055329 0.234055317 0.234055300 0.23406 0.2340554 0.234055329 
t=0.25 0.087232703 0.087232695 0.087232685 0.08724 0.0872327 0.087232703 

x=0.75 

t=0.05 0.465252624 0.465252602 0.465252556 0.46526 0.4652528 0.465252625 
t=0.10 0.281572640 0.281572622 0.281572589 0.28158 0.2815727 0.281572641 
t=0.15 0.169738279 0.169738265 0.169738245 0.16974 0.1697383 0.169738280 
t=0.25 0.062289848 0.062289842 0.062289834 0.06229 0.0622898 0.062289849 

Table 10. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.1, ℎ = 0.0125 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.001.

𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑 
EX6 

Splitting 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	=0.001 

EX4 
Splitting 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.001 

Strang 
Splitting  
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.001 

 Kutluay & 
Esen (2004) 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.0001 

Kutluay  
et al. (2004) 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	=0.0001 

Exact 

x=0.25 

t=0.4 0.3175229 0.3175229 0.3175228 0.32091 0.31749 0.3175229 
t=0.6 0.2461385 0.2461385 0.2461384 0.24910 0.24612 0.2461385 
t=0.8 0.1995553 0.1995553 0.1995553 0.20211 0.19954 0.1995553 
t=1.0 0.1655986 0.1655986 0.1655986 0.16782 0.16559 0.1655986 
t=3.0 0.0277587 0.0277587 0.0277587 0.02828 0.02776 0.0277587 

x=0.50 

t=0.4 0.5845373 0.5845373 0.5845374 0.58788 0.58448 0.5845373 
t=0.6 0.4579764 0.4579764 0.4579765 0.46174 0.45793 0.4579764 
t=0.8 0.3673982 0.3673982 0.3673982 0.37111 0.36736 0.3673982 
t=1.0 0.2983431 0.2983431 0.2983431 0.30183 0.29831 0.2983431 
t=3.0 0.0410650 0.0410650 0.0410650 0.04185 0.04106 0.0410650 

x=0.75 

t=0.4 0.6456155 0.6456156 0.6456152 0.65054 0.64547 0.6456155 
t=0.6 0.5026758 0.5026758 0.5026755 0.50825 0.50255 0.5026758 
t=0.8 0.3853355 0.3853355 0.3853353 0.39068 0.38523 0.3853355 
t=1.0 0.2958567 0.2958567 0.2958566 0.30057 0.29578 0.2958567 
t=3.0 0.0304396 0.0304396 0.0304396 0.03106 0.03044 0.0304396 

Table 9 includes the comparison of numerical solutions 
and with the exact solution with kinematic viscosity ε=1. 
The calculated results in Table 9 are more accurate than 
the literature (Kutluay et al., 1999; Shao et al., 2015). To 
produce the results, far fewer elements in time in com-
parison to the corresponding references have been used.

Table 10 gives a comparison of the 
present results with the literature (Kutluay et al., 2004; 
Kutluay & Esen, 2004) and the exact solution. The 
current numerical solutions are more accurate than 
the corresponding literature when the advection is 
more dominant to the diffusion, ε=0.1 and h=0.0125. 
The presently calculated solutions are seen to require 
less effort in time in comparison to those references.

Table 11 is organized to present the numerical results 
for ε=0.01, dt =0.002 and h=0.01 with various num-
bers of spatial and time nodes. The present solutions 
have been compared with the exact and other numeri-
cal solutions based on various numerical methods such 
as finite difference (Sari & Gurarslan, 2009) and the 
boundary element methods (Bahadir & Saglam, 2005). 

9   Higher order splitting approaches in analysis of the Burgers equation

(a) (b)

(b)(a)



𝑎𝑎𝑎𝑎ü = 2∫ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{−𝑒𝑒𝑒𝑒7(3𝜀𝜀𝜀𝜀)e5(3 −5
U

																																					2𝑒𝑒𝑒𝑒)}cos	(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒)𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒. 
 

Table 9 includes the comparison of 
numerical solutions and with the exact 
solution with kinematic viscosity 𝜀𝜀𝜀𝜀 = 1. 
The calculated results in Table 9 are more 
accurate than the literature (Kutluay et al., 
1999; Shao et al., 2015). To produce the 
results, far fewer elements in time in 
comparison to the corresponding references 
have been used. 

 Table 10 gives a comparison of 
the present results with the literature 
(Kutluay et al., 2004; Kutluay & Esen, 
2004) and the exact solution. The current 
numerical solutions are more accurate than 
the corresponding literature when the 
advection is more dominant to the diffusion, 
𝜀𝜀𝜀𝜀 = 0.1 and ℎ = 0.0125. The presently 
calculated solutions are seen to require less 
effort in time in comparison to those 
references. 

 
 
 

Table 9. Comparison of the results produced for 𝜀𝜀𝜀𝜀 = 1, ℎ = 0.0125, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.0002. 

𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑 
EX6 Splitting          
ℎ = 0.0125, 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.0002 

EX6 Splitting            
ℎ = 0.0125, 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.0002 

Strang 
Splitting            

ℎ = 0.0125,            
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.0002 

Kutluay et al. 
(1999) 

ℎ = 0.0125, 
dt=0.0001 

Shao et al. 
(2015) 

ℎ = 0.25, 
dt=0.0001 

Exact 

x=0.25 

t=0.05 0.426285622 0.426285617 0.426285616 0.42629 0.4262864 0.426285623 
t=0.10 0.261479814 0.261479812 0.261479811 0.26149 0.2614801 0.261479814 
t=0.15 0.161477615 0.161477610 0.161477605 0.16148 0.1614777 0.161477615 
t=0.25 0.061087582 0.061087577 0.061087571 0.06109 0.0610875 0.061087582 

        

x=0.50 

t=0.05 0.628083727 0.628083724 0.628083717 0.62809 0.6280846 0.628083727 
t=0.10 0.383422416 0.383422404 0.383422386 0.38343 0.3834228 0.383422416 
t=0.15 0.234055329 0.234055317 0.234055300 0.23406 0.2340554 0.234055329 
t=0.25 0.087232703 0.087232695 0.087232685 0.08724 0.0872327 0.087232703 

        

x=0.75 

t=0.05 0.465252624 0.465252602 0.465252556 0.46526 0.4652528 0.465252625 
t=0.10 0.281572640 0.281572622 0.281572589 0.28158 0.2815727 0.281572641 
t=0.15 0.169738279 0.169738265 0.169738245 0.16974 0.1697383 0.169738280 
t=0.25 0.062289848 0.062289842 0.062289834 0.06229 0.0622898 0.062289849 

 
 

Table 10. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.1, ℎ = 0.0125 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.001. 

𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑 
EX6 

Splitting 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	=0.001 

EX4 
Splitting 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.001 

Strang 
Splitting  
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.001 

 Kutluay & 
Esen (2004) 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.0001 

Kutluay  
et al. (2004) 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	=0.0001 

Exact 

x=0.25 

t=0.4 0.3175229 0.3175229 0.3175228 0.32091 0.31749 0.3175229 
t=0.6 0.2461385 0.2461385 0.2461384 0.24910 0.24612 0.2461385 
t=0.8 0.1995553 0.1995553 0.1995553 0.20211 0.19954 0.1995553 
t=1.0 0.1655986 0.1655986 0.1655986 0.16782 0.16559 0.1655986 
t=3.0 0.0277587 0.0277587 0.0277587 0.02828 0.02776 0.0277587 

        

x=0.50 

t=0.4 0.5845373 0.5845373 0.5845374 0.58788 0.58448 0.5845373 
t=0.6 0.4579764 0.4579764 0.4579765 0.46174 0.45793 0.4579764 
t=0.8 0.3673982 0.3673982 0.3673982 0.37111 0.36736 0.3673982 
t=1.0 0.2983431 0.2983431 0.2983431 0.30183 0.29831 0.2983431 
t=3.0 0.0410650 0.0410650 0.0410650 0.04185 0.04106 0.0410650 

        

x=0.75 

t=0.4 0.6456155 0.6456156 0.6456152 0.65054 0.64547 0.6456155 
t=0.6 0.5026758 0.5026758 0.5026755 0.50825 0.50255 0.5026758 
t=0.8 0.3853355 0.3853355 0.3853353 0.39068 0.38523 0.3853355 
t=1.0 0.2958567 0.2958567 0.2958566 0.30057 0.29578 0.2958567 
t=3.0 0.0304396 0.0304396 0.0304396 0.03106 0.03044 0.0304396 

𝑎𝑎𝑎𝑎ü = 2∫ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{−𝑒𝑒𝑒𝑒7(3𝜀𝜀𝜀𝜀)e5(3 −5
U

																																					2𝑒𝑒𝑒𝑒)}cos	(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒)𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒. 
 

Table 9 includes the comparison of 
numerical solutions and with the exact 
solution with kinematic viscosity 𝜀𝜀𝜀𝜀 = 1. 
The calculated results in Table 9 are more 
accurate than the literature (Kutluay et al., 
1999; Shao et al., 2015). To produce the 
results, far fewer elements in time in 
comparison to the corresponding references 
have been used. 

 Table 10 gives a comparison of 
the present results with the literature 
(Kutluay et al., 2004; Kutluay & Esen, 
2004) and the exact solution. The current 
numerical solutions are more accurate than 
the corresponding literature when the 
advection is more dominant to the diffusion, 
𝜀𝜀𝜀𝜀 = 0.1 and ℎ = 0.0125. The presently 
calculated solutions are seen to require less 
effort in time in comparison to those 
references. 

 
 
 

Table 9. Comparison of the results produced for 𝜀𝜀𝜀𝜀 = 1, ℎ = 0.0125, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.0002. 

𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑 
EX6 Splitting          
ℎ = 0.0125, 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.0002 

EX6 Splitting            
ℎ = 0.0125, 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.0002 

Strang 
Splitting            

ℎ = 0.0125,            
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.0002 

Kutluay et al. 
(1999) 

ℎ = 0.0125, 
dt=0.0001 

Shao et al. 
(2015) 

ℎ = 0.25, 
dt=0.0001 

Exact 

x=0.25 

t=0.05 0.426285622 0.426285617 0.426285616 0.42629 0.4262864 0.426285623 
t=0.10 0.261479814 0.261479812 0.261479811 0.26149 0.2614801 0.261479814 
t=0.15 0.161477615 0.161477610 0.161477605 0.16148 0.1614777 0.161477615 
t=0.25 0.061087582 0.061087577 0.061087571 0.06109 0.0610875 0.061087582 

        

x=0.50 

t=0.05 0.628083727 0.628083724 0.628083717 0.62809 0.6280846 0.628083727 
t=0.10 0.383422416 0.383422404 0.383422386 0.38343 0.3834228 0.383422416 
t=0.15 0.234055329 0.234055317 0.234055300 0.23406 0.2340554 0.234055329 
t=0.25 0.087232703 0.087232695 0.087232685 0.08724 0.0872327 0.087232703 

        

x=0.75 

t=0.05 0.465252624 0.465252602 0.465252556 0.46526 0.4652528 0.465252625 
t=0.10 0.281572640 0.281572622 0.281572589 0.28158 0.2815727 0.281572641 
t=0.15 0.169738279 0.169738265 0.169738245 0.16974 0.1697383 0.169738280 
t=0.25 0.062289848 0.062289842 0.062289834 0.06229 0.0622898 0.062289849 

 
 

Table 10. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.1, ℎ = 0.0125 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.001. 

𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑 
EX6 

Splitting 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	=0.001 

EX4 
Splitting 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.001 

Strang 
Splitting  
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.001 

 Kutluay & 
Esen (2004) 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =0.0001 

Kutluay  
et al. (2004) 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	=0.0001 

Exact 

x=0.25 

t=0.4 0.3175229 0.3175229 0.3175228 0.32091 0.31749 0.3175229 
t=0.6 0.2461385 0.2461385 0.2461384 0.24910 0.24612 0.2461385 
t=0.8 0.1995553 0.1995553 0.1995553 0.20211 0.19954 0.1995553 
t=1.0 0.1655986 0.1655986 0.1655986 0.16782 0.16559 0.1655986 
t=3.0 0.0277587 0.0277587 0.0277587 0.02828 0.02776 0.0277587 

        

x=0.50 

t=0.4 0.5845373 0.5845373 0.5845374 0.58788 0.58448 0.5845373 
t=0.6 0.4579764 0.4579764 0.4579765 0.46174 0.45793 0.4579764 
t=0.8 0.3673982 0.3673982 0.3673982 0.37111 0.36736 0.3673982 
t=1.0 0.2983431 0.2983431 0.2983431 0.30183 0.29831 0.2983431 
t=3.0 0.0410650 0.0410650 0.0410650 0.04185 0.04106 0.0410650 

        

x=0.75 

t=0.4 0.6456155 0.6456156 0.6456152 0.65054 0.64547 0.6456155 
t=0.6 0.5026758 0.5026758 0.5026755 0.50825 0.50255 0.5026758 
t=0.8 0.3853355 0.3853355 0.3853353 0.39068 0.38523 0.3853355 
t=1.0 0.2958567 0.2958567 0.2958566 0.30057 0.29578 0.2958567 
t=3.0 0.0304396 0.0304396 0.0304396 0.03106 0.03044 0.0304396 

 
 

Table 11. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.01, ℎ = 0.01 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.002. 

𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑 
EX6 

Splitting 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.002 

EX4 
Splitting 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.002 

Strang 
Splitting					𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 =

0.002 

Bahadir & 
Saglam 
(2005) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001 

Sari & 
Gurarslan 

(2009) 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001 

Exact 

𝑒𝑒𝑒𝑒 = 0.10 
t=0.50 0.12846216 0.12846216 0.12846158 0.12808 0.12846 0.12846216 
t=2.00 0.04381385 0.04381385 0.04381376 0.04388 0.04379 0.04381385 
t=4.00 0.02334500 0.02334500 0.02334497 0.02351 0.02334 0.02334500 

        

𝑒𝑒𝑒𝑒 = 0.30 
t=0.50 0.37848913 0.37848913 0.37848813 0.37956 0.37849 0.37848913 
t=2.00 0.13134519 0.13134519 0.13134493 0.13129 0.13131 0.13134519 
t=4.00 0.07002718 0.07002718 0.07002710 0.07009 0.07002 0.07002718 

        

𝑒𝑒𝑒𝑒 = 0.50 
t=0.50 0.60988613 0.60988613 0.60988613 0.61768 0.60991 0.60988613 
t=2.00 0.21858801 0.21858801 0.21858762 0.21873 0.21858 0.21858801 
t=4.00 0.11668202 0.11668202 0.11668189 0.11671 0.11667 0.11668202 

        

𝑒𝑒𝑒𝑒 = 0.70 
t=0.50 0.80978166 0.80978166 0.80978409 0.83022 0.80986 0.80978166 
t=2.00 0.30534815 0.30534815 0.30534768 0.30614 0.30534 0.30534815 
t=4.00 0.16287830 0.16287830 0.16287813 0.16293 0.16287 0.16287830 

        

𝑒𝑒𝑒𝑒 = 0.90 
t=0.50 0.94601337 0.94601311 0.94602125 0.98068 0.94615 0.94601416 
t=2.00 0.38027320 0.38027324 0.38027364 0.38163 0.38027 0.38027365 
t=4.00 0.16857741 0.16857743 0.16857701 0.16766 0.16857 0.16857741 

 
 

Table 12. Comparison of the results produced with 𝜀𝜀𝜀𝜀 = 0.004	and ℎ = 0.01 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01. 

𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑 
EX6 Splitting     
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01 

EX4 Splitting     
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01 

Strang Splitting     
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01 

Jiwari (2015)                 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001 Exact 

𝑒𝑒𝑒𝑒 = 0.25 

𝑑𝑑𝑑𝑑 = 1 0.19639300 0.19639300 0.19637590 0.19636 0.19639300 
𝑑𝑑𝑑𝑑 = 5 0.04743858 0.04743858 0.04743723 0.04744 0.04743858 
𝑑𝑑𝑑𝑑 = 10 0.02434263 0.02434263 0.02434227 0.02434 0.02434263 
𝑑𝑑𝑑𝑑 = 15 0.01637125 0.01637125 0.01637108 0.01637 0.01637125 

       

𝑒𝑒𝑒𝑒 = 0.5 

𝑑𝑑𝑑𝑑 = 1 0.38849076 0.38849076 0.38846870 0.38842 0.38849076 
𝑑𝑑𝑑𝑑 = 5 0.09486089 0.09486089 0.09485824 0.09491 0.09486089 
𝑑𝑑𝑑𝑑 = 10 0.04868313 0.04868313 0.04868240 0.04868 0.04868313 
𝑑𝑑𝑑𝑑 = 15 0.03270700 0.03270700 0.03270667 0.03270 0.03270700 

       

𝑒𝑒𝑒𝑒 = 0.75 

𝑑𝑑𝑑𝑑 = 1 0.57319765 0.57319726 0.57318887 0.57312 0.57322509 
𝑑𝑑𝑑𝑑 = 5 0.14224850 0.14224849 0.14224467 0.14224 0.14224850 
𝑑𝑑𝑑𝑑 = 10 0.07258104 0.07258104 0.07257997 0.07258 0.07258104 
𝑑𝑑𝑑𝑑 = 15 0.04696437 0.04696437 0.04696383 0.04696 0.04696437 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

The present solutions revealed that less computational 
time is needed to achieve high accuracy, as compared to 
the previously mentioned effective methods. 

The comparison of the present numerical 
results with the exact solution and the literature Jiwari 
(2015) with small viscosity values ε=0.004 and ε=0.003 
is demonstrated in Tables 12 and 13, respectively. As 
underlined a couple of times, even a much smaller 
number of time elements suffice to achieve highly 
accurate solutions. 

As seen in Figure 3(b), the numerical solution of 
Example 2 varies with gradually decreasing values 
of the viscosity constant ε, and the solutions tend to 
have a steep gredient. In Figure 4(a), the computed 
results in terms of the present methods are presented 
in Table 10 at time t=3. To assess the accuracy of the 
current methods, infinity error norm is used. Figure 
4 includes the direct relation between the error norm 
versus the number of evaluations of ϕk

A . As seen in 
Figure 4(a), the extrapolation methods again produce 
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more acceptable numerical results for both accuracy and 
computational cost points of view, 
even if order reductions have occured.

 
 

Table 11. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.01, ℎ = 0.01 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.002. 

𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑 
EX6 

Splitting 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.002 

EX4 
Splitting 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.002 

Strang 
Splitting					𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 =

0.002 

Bahadir & 
Saglam 
(2005) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001 

Sari & 
Gurarslan 

(2009) 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001 

Exact 

𝑥𝑥𝑥𝑥 = 0.10 
t=0.50 0.12846216 0.12846216 0.12846158 0.12808 0.12846 0.12846216 
t=2.00 0.04381385 0.04381385 0.04381376 0.04388 0.04379 0.04381385 
t=4.00 0.02334500 0.02334500 0.02334497 0.02351 0.02334 0.02334500 

        

𝑥𝑥𝑥𝑥 = 0.30 
t=0.50 0.37848913 0.37848913 0.37848813 0.37956 0.37849 0.37848913 
t=2.00 0.13134519 0.13134519 0.13134493 0.13129 0.13131 0.13134519 
t=4.00 0.07002718 0.07002718 0.07002710 0.07009 0.07002 0.07002718 

        

𝑥𝑥𝑥𝑥 = 0.50 
t=0.50 0.60988613 0.60988613 0.60988613 0.61768 0.60991 0.60988613 
t=2.00 0.21858801 0.21858801 0.21858762 0.21873 0.21858 0.21858801 
t=4.00 0.11668202 0.11668202 0.11668189 0.11671 0.11667 0.11668202 

        

𝑥𝑥𝑥𝑥 = 0.70 
t=0.50 0.80978166 0.80978166 0.80978409 0.83022 0.80986 0.80978166 
t=2.00 0.30534815 0.30534815 0.30534768 0.30614 0.30534 0.30534815 
t=4.00 0.16287830 0.16287830 0.16287813 0.16293 0.16287 0.16287830 

        

𝑥𝑥𝑥𝑥 = 0.90 
t=0.50 0.94601337 0.94601311 0.94602125 0.98068 0.94615 0.94601416 
t=2.00 0.38027320 0.38027324 0.38027364 0.38163 0.38027 0.38027365 
t=4.00 0.16857741 0.16857743 0.16857701 0.16766 0.16857 0.16857741 

 
 

Table 12. Comparison of the results produced with 𝜀𝜀𝜀𝜀 = 0.004	and ℎ = 0.01 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01. 

𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑 
EX6 Splitting     
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01 

EX4 Splitting     
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01 

Strang Splitting     
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.01 

Jiwari (2015)                 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001 Exact 

𝑥𝑥𝑥𝑥 = 0.25 

𝑑𝑑𝑑𝑑 = 1 0.19639300 0.19639300 0.19637590 0.19636 0.19639300 
𝑑𝑑𝑑𝑑 = 5 0.04743858 0.04743858 0.04743723 0.04744 0.04743858 
𝑑𝑑𝑑𝑑 = 10 0.02434263 0.02434263 0.02434227 0.02434 0.02434263 
𝑑𝑑𝑑𝑑 = 15 0.01637125 0.01637125 0.01637108 0.01637 0.01637125 

       

𝑥𝑥𝑥𝑥 = 0.5 

𝑑𝑑𝑑𝑑 = 1 0.38849076 0.38849076 0.38846870 0.38842 0.38849076 
𝑑𝑑𝑑𝑑 = 5 0.09486089 0.09486089 0.09485824 0.09491 0.09486089 
𝑑𝑑𝑑𝑑 = 10 0.04868313 0.04868313 0.04868240 0.04868 0.04868313 
𝑑𝑑𝑑𝑑 = 15 0.03270700 0.03270700 0.03270667 0.03270 0.03270700 

       

𝑥𝑥𝑥𝑥 = 0.75 

𝑑𝑑𝑑𝑑 = 1 0.57319765 0.57319726 0.57318887 0.57312 0.57322509 
𝑑𝑑𝑑𝑑 = 5 0.14224850 0.14224849 0.14224467 0.14224 0.14224850 
𝑑𝑑𝑑𝑑 = 10 0.07258104 0.07258104 0.07257997 0.07258 0.07258104 
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Table 13. Comparison of the produced results for 𝜀𝜀𝜀𝜀 = 0.003, ℎ = 0.01 and dt = 0.005. 

𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑 
EX6 Splitting   
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.005 

EX4 Splitting 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.005 

Strang Splitting     
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.005 

Jiwari (2015) 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.001 Exact 
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𝑑𝑑𝑑𝑑 = 1 0.19672202 0.19672202 0.19671762 0.19668 0.19672202 
𝑑𝑑𝑑𝑑 = 5 0.04746474 0.04746474 0.04746439 0.04746 0.04746474 
𝑑𝑑𝑑𝑑 = 10 0.02434970 0.02434970 0.02434960 0.02434 0.02434970 
𝑑𝑑𝑑𝑑 = 15 0.01637507 0.01637507 0.01637502 0.01637 0.01637507 

       

𝑥𝑥𝑥𝑥 = 0.5 

𝑑𝑑𝑑𝑑 = 1 0.38896706 0.38896706 0.38896141 0.38890 0.38896706 
𝑑𝑑𝑑𝑑 = 5 0.09491170 0.09491170 0.09491101 0.09491 0.09491170 
𝑑𝑑𝑑𝑑 = 10 0.04869814 0.04869814 0.04869795 0.04870 0.04869814 
𝑑𝑑𝑑𝑑 = 15 0.03274752 0.03274752 0.03274743 0.03274 0.03274752 

       

𝑥𝑥𝑥𝑥 = 0.75 

𝑑𝑑𝑑𝑑 = 1 0.57382849 0.57382848 0.57382592 0.57375 0.57382849 
𝑑𝑑𝑑𝑑 = 5 0.14232395 0.14232395 0.14232295 0.14232 0.14232395 
𝑑𝑑𝑑𝑑 = 10 0.07298597 0.07298597 0.07298569 0.07298 0.07298597 
𝑑𝑑𝑑𝑑 = 15 0.04856835 0.04856835 0.04856822 0.04857 0.04696437 

 
 
 
Table 11 is organized to present the 
numerical results for 𝜀𝜀𝜀𝜀 = 0.01, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 = 0.002 
and ℎ = 0.01 with various numbers of 
spatial and time nodes. The present 
solutions have been compared with the 
exact and other numerical solutions based 
on various numerical methods such as finite 
difference (Sari & Gurarslan, 2009) and the 
boundary element methods (Bahadir & 
Saglam, 2005). The present solutions 
revealed that less computational time is 
needed to achieve high accuracy, as 
compared to the previously mentioned 
effective methods.  
 The comparison of the present 
numerical results with the exact solution 
and the literature Jiwari (2015) with small 
viscosity values 𝜀𝜀𝜀𝜀 = 0.004 and 𝜀𝜀𝜀𝜀 = 0.003 
is demonstrated in Tables 12 and 13, 
respectively. As underlined a couple of 
times, even a much smaller number of time 

elements suffice to achieve highly accurate 
solutions.  

As seen in Figures 3(b), the 
numerical solution of Example 2 varies with 
gradually decreasing values of the viscosity 
constant 𝜀𝜀𝜀𝜀, and the solutions tend to have a 
steep gredient. In Figure 4(a), the computed 
results in terms of the present methods are 
presented in Table 10 at time 𝑑𝑑𝑑𝑑 = 3. To 
assess the accuracy of the current methods, 
infinity error norm is used. Figure 4 
includes the direct relation between the 
error norm versus the number of evaluations 
of 𝜙𝜙𝜙𝜙;

<. As seen in Figure 4(a), the 
extrapolation methods again produce more 
acceptable numerical results for both 
accuracy and computational cost points of 
view, even if order reductions have occured. 
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In Figure 4(b), the capability of the current 
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In Figure 4(b), the capability of the current algorithms 
are shown for the Burgers equation with time-dependent 
nonhomogeneus boundary conditions. In the figure, the 

error norm versus the number of evaluations of ϕk
A is 

presented for the parameters h=0.025,ε=0.02 and t=2. 
It has been observed that order reductions occurred for 
extrapolation methods as well as for Strang 
splitting methods (see Figure 4(b)). For further
information on order reduction phenemona in diffu-
sion-reaction equations employing a splitting method with 
nonhomogenous and time-dependent Dirichlet 
boundary condition, readers are referred to 
literature by Einkemmer and Ostermann (2015). As seen 
in Figure 4(b), the extrapolation methods again produce 
more accurate and more economical numerical results.

6. Conclusions and Recommendation

This article has proposed a higher order splitting-up 
method based on cubic B-spline Galerkin finite element 
method in numerically analyzing the advection-diffu-
sion processes. The splitting method is generated by 
following three approaches: the second-order Strang ap-
proach, the fourth-order, and the sixth-order extrapolation 
approaches. The stability analysis of the 
suggested method has been studied and shown to be 
unconditionally stable for both parts of the physical 
processes. To illustrate the accuracy of the present 
method, three challenging problems have been 
considered. Qualitative and quantitative analysis reveal 
that the current method is capable of producing highly 

11   Higher order splitting approaches in analysis of the Burgers equation

(a) (b)



accurate results even with a smaller number of temporal 
and spatial elements. The computed solutions agree 
with the literature and the exact solution. Notice that 
the present method can capture the steep behavior of the 
Burgers equation when the advection is dominant. 
The current numerical study has been carried out for the 
deterministic advection-diffusion processes. Any further 
research should involve stochastic advection-diffusion 
processes.

ACKNOWLEDGEMENTS
The authors would like to thank the anonymous 
referees of the Kuwait Journal of Science for their 
valuable comments and suggestions to improve the paper.

References

Aksan, E.N. (2006). Quadratic B-spline finite element 
method for numerical solution of the Burgers equation. 
Applied Mathematics and Computation, 174: 884-896.

Bahadir, A.R. & Saglam, M. (2005). A mixed 
finite difference and boundary element approach 
to one-dimensional Burgers’ equation. Applied 
Mathematics and Computation, 160: 663-673
.
Bashan, A., Karakoc, S.B.G. & Geyik-
li, T. (2015). Approximation of the KdVB 
equation by the quintic B-spline differential 
quadrature method. Kuwait Journal of Science, 42: 67-92.

Blanes, S. & Casas, F. (2005). On the ne-
cessity of negative coefficients for
operator splitting schemes of order higher than 
two. Applied Numerical Mathematics, 54: 23-37.

Burgers, J. M. (1948). A mathematical 
model illustrating the theory of turbulence,.
turbulence, Advances in Applied Mechanics, 1: 171-199.
 
Castella, F., Chartier, P., Descombes, S. & Vilmart, G. 
(2009). Splitting methods with complex times for parabol-
ic equations. BIT Numerical Mathematics, 49: 487-508.

Cole, J. D. (1951). On a quasi-linear 
parabolic equation in aerodynamics. Quar-
terly of Applied Mathematics, 9: 225-236.

Creutz, M. & Gocksch, A. (1989). Higher-order hybrids 
Monte Carlo algorithms. Physics Letters A, 63: 9-12.

Dag, I., Saka, B. & Boz, A. (2005). B-spline Galerkin 
methods for numerical solutions of Burgers’ equation. 
Applied Mathematics and Computation, 166: 506-522.

Einkemmer, L. & Ostermann, A. (2015). 

Overcoming order reduction in diffusion-reac-
tion splitting. Part 1: Dirichlet boundary conditions. 
SIAM Journal of Scientific Computing, 37: 1-15.

Hairer, E., Lubich, C. & Wanner, G. (2006). Geometric 
numerical integration. Structure-preserving algorithms 
for ordinary differential equations. Second Edition. 
Springer Series in Computational Mathematics 31, 
Springer: Berlin.

Hansen, E. & Ostermann, A. (2009). High 
order splitting methods for analytic semigroups 
exist. BIT Numerical Mathematics, 49: 527-542.

Hansen, E. & Ostermann, A. (2009). 
Exponential splitting for unbounded operators. 
Mathematics of Computation, 78: 1485-1496.

Hopf, E. (1950). The partial differential 
equation ut+uux=εuxx  . Communications on 
Pure and Applied Mathematics, 9: 201-230.

Iskandar, L. & Mohsen, A. (1992). Some numerical 
experiments on the splitting of burgers’ equation. 
Numerical Methods for Par-
tial Differential Equations, 8: 267-276. 

Jain, P.C. & Raja, M. (1979). Splitting-up
 technique for Burgers equation. Indian Journal of 
Pure and Applied Mathematics, 10: 1543-1551.

Jain, P.C. & Holla, D.N. (1978). Numerical
 solution of coupled Burgers’ equations. Internation-
al Journal of Non-linear Mechanics, 13: 213-222.

Jain, P.C., Shankar, R. & Singh, V. (1992). Cubic spline 
technique for solution of Burgers’ equation with a semi-
linear boundary conditions, International Journal for 
Numerical Methods in Biomedical Engineering, 8: 235-
242.

Jiwari, R. (2015). A hybrid numerical scheme for 
the numerical solution of the Burgers’ equation, 
Computer Physics Communications, 188: 50-67.

Karakoc, S.B.G., Ucar, Y. & Yagmurlu, N. 
(2015). Numerical solutions of the MRLW 
equation by cubic B-spline Galerkin finite element 
method. Kuwait Journal of Science, 42(2): 141-159.

Kutluay, S. & Esen, A. (2004). A lumped Galerkin 
method for solving the Burgers equation. Internation-
al Journal of Computer Mathematics, 81: 1433-1444.

Kutluay, S., Esen, A. & Dag, I. (2004). Numerical 
solutions of the Burgers’ equation by the least-squares 

Murat Sari, Huseyin Tunc, Muaz Seydaoglu   12



quadratic B-spline finite element method. Journal of 
Computational and Applied Mathematics, 167: 21-33.

Kutluay, S., Bahadir, A.R. & Ozdes, A. (1999). 
Numerical solution of one-dimensional Burg-
ers’ equation: Explicit and exact-explicit finite 
difference methods. Journal of Computation-
al and Applied Mathematics, 103: 251–261.

Liao, W. & Zhu, J. (2011). Efficient and accu-
rate finite difference schemes for solving one-di-
mensional Burgers’ equation. International Jour-
nal of Computer Mathematics, 88: 2575-2590.

Miller, E.L. (1966). Predictor–corrector studies of 
Burger’s model of turbulent flow. M.S. thesis. 
University of Delaware, Newark-Delaware, USA. 
Mukundan, V. & Awasthi, A. (2015). Efficient
numerical techniques for Burgers’ equation. 
Applied Mathematics and Computation, 262: 282-297.

Prenter, P.M. (1975). Splines and Variation-
al Methods. John Wiley & Sons: New York. 

Pospelov, L.A. (1966). Propagation of finite amplitude 
elastic waves. Soviet Physics Acoustics, 11: 302-304.

Raslan, K.R. (2003). A collocation solution for Burg-
ers equation using quadratic B-spline finite elements. 
International Journal of Computer Mathematics, 80: 
931-938. 

Saka, B. & Dag, I. (2008). A numerical study of the 
Burgers’ equation. Journal of the Franklin Institute, 345: 
328-348.

Sari, M. & Gurarslan, G. (2009). A sixth-or-
der compact finite difference scheme to the 
numerical solutions of Burgers’ equation.
Applied Mathematics and Computation, 208: 475-483. 

Sari, M. & Tunc, H. (2017). An optimization tech-
nique in analysing the Burgers equation. Sigma Jour-
nal of Engineering and Natural Sciences, 35: 369-386. 

Seydaoglu, M. & Blanes, S. (2014). High order split-
ting methods for separable non-autonomous parabolic 
equations. Applied Numerical Mathematics, 84: 22-32. 

Seydaoglu, M., Erdogan, U. & Ozis, T. 
(2016). Numerical solution of Burgers’ 
equation with higher order splitting methods. Journal of 
Computational and Applied Mathematics, 291: 410-421.

Shao, L., Feng, X. & He, Y. (2011). The local discontinu-
ous Galerkin finite element method for Burgers equation. 

Mathematical and Computer Modelling, 54: 2943-2954.

Soliman, A.A. (2012). A Galerkin solution for 
Burgers equation using cubic B-spline finite 
elements. Abstract and Applied Analysis, 2012: 1-15.

Suziki, M. (1990). Fractal decomposition of exponential 
operators with applications to many-body theories and 
Monte Carlo simulations, Physics Letters A, 146: 319-323.

Talwar, J., Mohanty, R.K. & Singh, S. (2016). A new 
algorithm based on spline in tension approximation for 
1D parabolic quasi-linear equations on a variable mesh. 
International Journal of Comput-
er Mathematics, 93: 1771-1786.

Tsai, C., Shih, Y., Lin, Y. & Wang, H. (2017). Tai-
lored finite point method for solving one-dimension-
al Burgers’ equation. International Journal of Com-
putational and Applied Mathematics, 94: 8000-8012.

Tunc, H. (2017). Various finite element techniques 
for advection-diffusion-reaction processes. MSc the-
sis. Yildiz Technical University, Istanbul, Turkey. 

Van der Pol, B. (1951). On a non-linear partial dif-
ferential equation satisfied by the logarithm of 
the Jacobian theta-functions with arithmetical ap-
plications. Proceedings of the National Acade-
my of Sciences of the Amsterdam, 13: 261-271.

Verma, A.K. & Verma, L. (2015). Higher order time in-
tegration formula with application on Burgers’ equation. 
International Journal of Computer Mathematics, 92:756-
771.

Wang, J. & Warnecke, G. (2003). Existence and 
uniqueness of solutions for a non-uniformly parabolic 
equation. Journal of Differential Equations, 189: 1–16.

Yoshida, H. (1990). Construction of higher order sym-
plectic integrators. Physics Letters A, 150:262-268.

Submitted: 13-07-2017
Revised:     18-10-2017
Accepted:   02-01-2018

13   Higher order splitting approaches in analysis of the Burgers equation



Murat Sari, Huseyin Tunc, Muaz Seydaoglu   14

طرق التقسيم ذات الترتيب الأعلى عند التحليل باستخدام معادلة بيرجرز

1،* مراد سري ، 1 حسين تونك ، 2 معاذ سيدأوغلو 

1 قسم الرياضيات، كلية الآداب والعلوم، جامعة يلدز التقنية، اسطنبول 34220، تركيا

        2 قسم الرياضيات، كلية الآداب والعلوم، جامعة موس ارباسلان، موس 49100، تركيا

*sarim@yildiz.edu.tr 

الملخص

تقتــرح هــذه المقالــة بعــض تقنيــات التقســيم ذات الترتيــب الأعلــى علــى أســاس طريقــة  جالركــن بالشــريحة التكعيبيــة B للعنصــر 
المنتهــي عنــد التحليــل باســتخدام نمــوذج معادلــة بيرجــرز. تمــت دراســة الصيغــة القويــة لــكل مــن أجــزاء البقــاء والانتشــار مــن 
Crank-Nic- ــات ــتخدام مخطط ــم اس ــل، ت ODE المماث ــام ــج نظ ــن. ولدم ــة جالرك ــاء طريق ــد إنش ــت عن ــيم الوق ــرز لتقس ــة بيرج  معادل
olson لتقســيم الوقــت. وكانــت المخططــات المقترحــة مســتقرة بــدون شــروط أو قيــود. وتمــت دراســة ثلاثــة أمثلــة صعبــة مــع 
ــح  ــل الصحي ــع الح ــا م ــدار ومقارنته ــل الانح ــادم لمعام ــات التص ــالات موج ــل ح ــم ح ــط. وت ــة للوس ــة الحركي ــت اللزوج ــم ثاب ــر قي تغيي
المُنافســة. النتائــج النوعيــة والكميــة أن طريقتنــا العدديــة لديهــا دقــة أعلــى بكثيــر مــن الطــرق  والأبحــاث المنشــورة. وأظهــرت 


