©00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Higher order splitting approaches in analysis of the Burgers equation

Murat Sari':*, Huseyin Tunc!, Muaz Seydaoglu?
'Dept. of Mathematics, Faculty of Arts and Science, Yildiz Technical University
Istanbul 34220, Turkey
’Dept. of Mathematics, Faculty of Arts and Science, Mus Alparslan University
Mus 49100, Turkey
*Corresponding author: sarim@yildiz.edu.tr

Abstract

This article proposes some higher order splitting-up techniques based on the cubic B-spline Galerkin
finite element method in analyzing the Burgers equation model. The strong form of both conservation and
diffusion parts of the time-split Burgers equation have been considered in building the Galerkin approach.
To integrate the corresponding ODE system, the Crank-Nicolson time discretization scheme is used. The

proposed schemes are

shown to be unconditionally

stable. Three challenging examples have been

considered that have changing values of the kinematic viscosity constant of the medium. Moreover,
cases of shock waves of severe gradient are solved and compared with the exact solution and the literature. The
qualitative and quantitative results demonstrate that our numerical approach has far higher accuracy than rival methods.
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1. Introduction

Nonlinear partial differential equations arise in
many fields of science, particularly in applied
mathematics, physics, engineering, mathematical biology,
chemistry, and finance. One of the most important model
equation is the Burgers equation. It represents various
problems in a broad range of scientific fields, such as heat
conduction (Cole, 1951), turbulence and shock waves
(Burgers, 1948), longitudinal elastic waves in an
isotropic solid (Pospelov, 1966), number theory (Pol,
1951), continuous stochastic processes (Cole, 1951),
and so on.

Under certain conditions, and by considering the
uniqueness and  existence of solutions, the
mathematical analysis of Burgers equation was
discussed in the literature (Wang & Warnecke, 2003). The
BurgersequationwasexactlysolvedbyusingtheHopf-Cole
transformation (Hopf, 1950; Cole, 1951) which
converts the equation to a heat diffusion
equation. In most of those cases, the solutions involve
infinite series which may diverge or converge very
slowly for relatively small values of the kinematic
viscosity constant g, which corresponds to steep wave
fronts in the propagation of the dynamic wave forms.

Much effort has been spent in solving the Burgers
equation over the last couple of decades. Since some
exact solutions fail for small kinematic viscosity values
(Miller, 1966), & < 0.01, many researchers have
suggested various numerical methods based on different
approaches. These include, but are not limited to, the least-
squares quadratic B-spline finite element method (Kutluay

et al., 2004), hybrid numerical scheme involving wavelets
and finite differences (Jiwari, 2015), quadratic B-spline
collocation method (Raslan, 2003), spline in
tension approximation (Talwar et al., 2016), boundary
element method (Bahadir & Saglam, 2005), various
difference schemes (Liao & Zhu, 2011), lumped Galerkin
method (Kutluay & Esen, 2004), high-order time
integration formulae (Verma & Verma, 2015),
local discontinuous Galerkin method (Shao et
al, 2011), a sixth-order CFD scheme (Sari &
Gurarslan, 2009), higher order splitting methods
(Seydaoglu et al, 2016), differential quadrature
method based on B-spline functions (Bashan et al., 2015).

This study proposes a Galerkin type finite element
method (FEM) in which a strong form of both the
conservation and diffusion parts of the equation is
preferred rather than the weak form. The use of the strong
form of the FEM in analyzing the advection-diffusion
processes represented by the Burgers equation has some
advantages in comparison to the latter. Note that the weak
form and strong form are mathematically equivalent
to each other, but computationally this is not the case.
The weak form of the equation needs more complicated
computers codes. Since the weak form of the model
equation requires additional matrices for the residual term
of the integration, this gives rise to excessive computa-
tional time and may therefore lead to loss of accuracy.

The splitting-up technique for the Burgers equation
presented by Jain & Raja (1979) splits the Burgers
equation into subproblems and solves each of them with
the finite difference method. Similar strategies were
considered in references (Jain & Holla, 1978; Jain



eeccccccccccccccscccccccccccccce D R RN scee

et al., 1992) using the cubic spline method for
approximate solutions of the Burgers equation. Time and
space splitting ideas were considered in reference Saka &
Dag (2008). Here each submodel was solved numerically
by a quintic B-spline collocation method. High order
splitting methods were presented for non-autonomous
perturbed parabolic equations in a work of Seydaoglu &
Blanes (2014). Seydaoglu et al. (2016) presented a numer-
ical solution of the Burgers equation through higher order
splitting methods, and they observed order reductions for
the Dirichlet, Neumann and Robin boundary conditions.

The outline of this paper is as follows. The gov-
erning model equation is explained in Section 2. The
considered splitting methods and their implementa-
tion to the Burgers equation will be investigated in
Section 3. Implementation of the Galerkin approach
to the split equations and time integration procedure
of the corresponding ODE system are given in Section
4. Some numerical illustrations are presented in Sec-
tion 5. Section 6 consists of some concluding remarks.

2. Governing equation

Consider the one-dimensional Burgers equation
representing the aforementioned problems into the
following form:

U F UUy = EUy,, XD

with the boundary conditions

(1)

u(a,t) = f1(t), t>0
u(b,t) = f,(t), t>0

and initial condition

2)

u(x,0) =gx), a<x<b, 3)

where ¢ is viscosity constant for € >0 and f, f, and g are
known functions. The subscripts x and ¢ indicate differ-
entiations with respect to space and time, respectively.

3. Splitting the model

Let us split the Burgers Equation (1) into subproblems
as follows

Ut = EUyxy, 4
U = —UUy,. (5
The splitting strategy for the Burgers Equa-

tion (1) alternately involves solving the subprob-
lems (4) and (5). Let the exact solutions (or a
sufficiently  accurate  numerical  approximation)
for subproblems (4) and (5), respectively, be the
maps ¢x and ¢  with time step k. Then one can ap-
proximate the solution of (1) for a sufficiently small k as
ulx, k) = YPrg(x), (6)

where

¢I‘ftlalo qbl?blo e O d)ll?aso ¢I€bpo ¢Iéap+1>
(7)
or
Y =
¢1€b1° ¢1€a1° ({bgbso ¢f<1ap° ¢Ebp+1- (8)
The coefficients a, and b, can be defined in the desired
order by using the Baker-Campell- Hausdorff formula
(Hairer et al., 2006; Creutz & Gocksch, 1989; Suziki,
1990; Yoshida, 1990). The Lie-Trotter splitting method is
given as follows:

L L L L
T, = (pkA © ¢kB orTy = d’kB © ¢kA;

®
and it is first order, i.e. Ty = ¢£A+B) +
O (k?). The well-known second order time
symmetric method reads

Sk = ¢1‘3/2° ¢Il(? e 4)113/2' (10)

or

Sk = ¢£/2 °¢’f?°¢’1€/2’ (1D)
which is referred to as the Strang splitting

method. Notice that the scheme given with ABA
pattern (7) firstly solves subproblem (4) and then
subproblem (5) alternately, while the BAB
pattern does the same in reverse order. To decide which
pattern of the splitting schemes gives more efficient
results, we apply the Strang splitting method with a

different pattern to Example 1 in the numerical
experiments.

However, the splitting schemes with real
coefficients with a higher order than two

necessarily have at least one negative coefficient (
Blanes & Casas, 2005). Thus, one cannot use such
schemes for the Burgers equation due to the Laplacian
operator. To use the high order splitting method with real
positive coefficients, we consider the extrapolation
methods

4 1
Y = §¢k/2° ¢k/2 _§¢k, (12)
and
81
Y = 5¢k/3 © ¢‘k./3 © ¢k/3 -
16 1
15 Prs2 © Prjz + 57 i (13)

If one wuses the Strang splitting method (10)
instead of the main method @k ' considered in the
extrapolation process, then a fourth-order method reads

_ 4,4 B A B A

Vi = 3 Pieya© Picyz © Pics2° Piey2° Picsa —

1,4 B A

gfpk/zo bk Ofpk/z: (14)
and a sixth-order method reads

e =

E¢I€/6° ¢I§/3 < ¢l?/3° ¢I§/3° ¢If/3° ¢I§/3° ¢)I:l/6 -

16

1_5¢lf/4° flbilf/z o 4’1?/20 ¢’l€/2° ¢1f/4 +

1
;‘751‘?/20 P © ¢l‘?/2-

(15)
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Hansen & Ostermann (2009) presented a con-
vergence analysis of the exponential splitting
methods for the linear evolution equations, and they
collected some extensions oftheir results. Note that similar
results were derived independently in reference (Cas-
tella et al., 2009). Formally, one expects the same con-
vergence results by considering extensions in the lit-
erature (Hansen & Ostermann, 2009; Castella et al.,
2009) for the nonlinear equation by replacing all expo-
nential terms to their corresponding nonlinear flows.

4. Numerical methods

To investigate solutions of problems (1) - (3) through
(4) and (5), we have proposed the Galerkin finite el-
ement method in strong form with cubic B-spline
basis functions for spatial approximation and the
Crank-Nicolson method for the time integration of
the resulted ordinary differential equation system.
4.1. Cubic B-spline basis functions
The interval [a,b] is partitioned into N finite elements.
Each element has equal length h, and element nodes are
defined as

a = xo < x1 < .-

where

Xme1 =Xm+h (m=0,1...,

<xN=b,
N—1).

Pm(x) = ?

(x — xpp_2)?
h3 4+ 3h%(x — xX;—q1) + 3h(x — xpp_1)?% — 3(x — xX;p_1)®
h® + 3hz(xm+1 - X) + 3h(xm+1 - x)z - 3(xm+1 - X)3 ’

(xm+2 - X)3

0
[xm—Z'xm—l]
[xm—lrxm]
[xml xm+1]
[xm+1'xm+2]

otherwise. . . . .
The corresponding cubic —spline basis functions

include the set of splines {®—1, Pg, ---» Pn+1}> and
the global approximation function iy (x,t) canbe
expressed as

X €

(16)

~ — V'N+1

uN(x, t) — 4m=-1 m(t)¢m(x): (17)
where B,.1® are the time part of
approximation  function fn(x,t). It will be
determined from the time approximation.

To compute element matrices easily, the local
coordinate system in (16) is required. As is the case in the
literature (Soliman, 2012; Karakoc et al., 2015), letting

O =X—Xm.
where X in

X Xme1]l M =0,1...,N—1).,0<0 <
h, and the basis functions will be in the form

(Pm(O') =
o3
L h3 4+ 3h?%0 + 3ho? — 303 (18)
L303 4+3h2(h — 0) + 3h(h — 0)? — 3(h — 0)?
(h—0)3

0.
Each finite element [X, Xm+11is covered by the set

of four cubic B-splines {®@m—1, Pm> Pm+1, Prm+21-
Table 1 shows the value of @m > P’ and @, at

the end pointsof elements [x,,,, X,,,41]-

The local approximation function on the element
[X,.X,.,] 1s defined as follows:

m+1

aN(x' t) = m+2 1ﬁl(t)(p (x) (19)

Values of the local approximation function
iy (x, t) and its first two derivatives at the end points
of the interval [x _,x . ] are defined in terms of the
time dependent quantities B (t) using both (19) and
Table 1. The corresponding values then become:

IZLN (xm: t): ,Bm—l +4:3m +Bm+1J
Uy (Xm+1, t):?, B+ 4Bm+1+Bm+2,
ﬁllv(xm’ t) = Z(B‘m+1 - ﬁm—l):

tiy Oemr1s £) = >(Bmrz — Bm)»
iy (xmn t) - hz(ﬁm+1 - Zﬁm + ﬁm—l)r
iy (xm+1r t) hz(B‘m+2 - 2ﬁm+1 + Bm)

Now it is time to apply the Galerkin
method to both the diffusion part (4) and conserva-
tion part (5). By considering element [x x . 1, let us
multiply Equations (4) and (5) by a test function v and
integrate over the interval [x ,x . ]. One can then write:

(20)

fxm+1 U(ut _

o Uy, )dx = 0,

2D

f;m“ v(u, + uu,)dx = 0. (22)

The test function v is selected to be equal to the
cubic B-spline basis functions. This type of proce-
dure is known as the Galerkin approach in the fi-
nite element method. Using (19) and (18), Equa-
tions (21) and (22) yield the following relations:

h apy
‘T]TH;Y% 1[f0 (pl(p] dtj -
m+2 h n e (23)
€ Lj=m-1 [fo Pip; da] B;=0
and
;'n;;r%—l [f (pl§01d0- _+ (24)

m+2 1Zm+2

k=m-1 [fo Pipj ‘PkdU] BiB;=0
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or in a matrix notation

Med_ﬁe _ SKeﬁe =0 (25)
dt ’
and
e 26)
eﬂ eT epe (
M = +Bk L¢B¢ =0,
where
h
Mjj =_[ pip;do,
0
h’ n
K = [, @i9] do, (27)
h

L ik =j(Pi(P],', prdo,

0
Be = (Bm—lt Bmt Bm+1: Bm+2)Ta

and i,j,k=m-1,m,m+1,m+2 for the element [x,x, .1
In (25) and (26); M¢ and K* are (4x4) matrices and are
independent of time. L¢ is the (4x4x4) matrix, and L¢ can
be transformed to a time dependent matrix R by using

i+2 e e
k=i—-1 Lijkﬁk'

After the assembling process of each element, the
matrix form will finally be

R§ = (28)

ML — ek =0, (29)
and
M4 pep =0, (30)

for the diffusion and conservation parts, respective-
ly. Here M", R"and K" are (N+3)x(N+3) matrices and
ﬁ:(ﬂ(./)’ﬁo""’ﬂ(m I))T is the unknown time approxi-
mation vector. Consideration of (29) and (30) gives
a system of ordinary differential equations, which
are solved using the Crank-Nicolson time integra-
tion scheme, as discussed in the following section.

4.2 The Crank-Nicolson scheme
The time discretization procedure of the ODE system
(29) and (30) can be explained as follows (Tunc, 2017):

1
B = E({ﬁ}s + {IB}S+1):
L= ((Blosr — (B},

t

(31)
where ¢ -t =dt. Use of (31) makes Equations (29) and
(30) as in following forms:

[M* =% e K] (BYsra = [M" +

dt .

L e K91B)s

and

(32)
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P « dt o,

[M* + > Re 1 [{BYs+1 =[M" — 7Rs]{ﬁ}s: (33)
where matrices M~ and K° are indepen-
dent of time while R* depends on time.
Moreover, to cope with difficulties in the non-
linearity in the time dependent matrix R* 1y
we used the following correction relation:

1 *
Bls+1 =5 ({BYs +{B}:D), (34)

where {#}," is the corrected from of {#},. Note that
to find first approximation {3}, we need to solve the
following (N +3) x (N + 3) linear system:

(xm, 0) = gQm) = {BIhraH4{B}% +
{BY-1,
iy (x0, 0) = g'(x0) = 2B} — {B1°1)
tiy(xy, 0) = g'(xn)
= 2 ({(B}s1 — BBIR-0)-

By using the recursive relation in (32) - (33) and the
corrector relation in (34), the diffusion and conservation
parts of the Burgers equation is solved under the consid-
eration of the splitting formulae given in Equations (10),
(14) and (15). The algorithm of the proposed methods
has been presented in Algorithm 1. Computer codes of
the algorithm have been produced in MATLAB R2016a.

Table 1. Values of approximate function and its
derivatives at the end points of the element.

X Xm-2 Xm—1 Xm Xm+1 Xm+2
POm 0 1 4 1 0
O’ 0 -3/h 0 3/h 0
O’ 0 6/h? -12/h? 6/h? 0

Algorithm 1. Algorithm to find numerical solutions of the Burgers equation
by using splitting methods (7) using (6) for a time step

Begin
Initialize spatial interval, time interval, element numbers
Initialize initial and boundary conditions
Procedure
1. Calculate local matrices given in (25)-(26).
2. Decide the type of the splitting approach (say Strang and ABA).
3. Produce a time integration loop for the discrete relations (32)-(33).
4. Evaluate the solution of the diffusion part (32) by considering the
given initial condition.
5. Evaluate the solution of the conservation part (33) by considering
the initial guess which is produced in the last step.
6. Evaluate the solution of the diffusion part (32) by considering the
initial guess which is produced in the last step.
7. The produced solution in step 6 is the final solution.
8. End of the time integration loop.
End

5. Stability analysis

The von Neumann stability analysis is one of the most
widely used methods for analyzing the stability of nu-
merical methods that are meant to approximately solve
partial differential equations (Kutluay et al., 2004; So-
liman, 2012, Sari & Tunc, 2017). As pointed out in the
corresponding literature, this stability method is more
suitable for the algebraic equation system studied here.
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The stability of the current numerical approach
directly depends on the individual stability of the
diffusion and conservation parts of the Burgers
equation. Thus, to understand stability condition of each
subproblem, we have analyzed Equations (32)-(33)using
the von Neumann theory with the Fourier growth factor
defined by

ﬁs — B’neisrh , (35)
where t and h stand for the mode number and the
element size, respectively, which are selected for
recursive approximations (32)-(33). To evaluate a
typical row of (33), ﬂ(m) and g values in the time
dependent matrices R°, and R are considered to be
locally constant and equal to p, as is the case in the
literature (Sari & Tunc, 2017; Tunc, 2017). The
stability analysis of the diffusion and the conservation
parts is performed, respectively, as in the following
subsections.

5.1 Stability of the Diffusion Part

By considering the entries of the included matrices in
Equation (32), a typical row of Equation (32) can be
stated as

C182{31 + CzB?{zi +c3 82{11 + C4B§l+1 +
CsBey1 + ceBsiz + c7BsYs = cgBis +
CoBs—2 + C10B5-1 + €11BS + ¢12B541 +

n n
C13Bs+2 + €14B5+3
where

(36)

¢, =14 — 31y, ¢, =120y — 721, ,

c3 = 1191r; — 451y, ¢4 = 24161, + 24071y,
cs = 11911y — 451y, ¢ = 1201y — 7215,

C; =11 — 31, cg =1 + 31,

Co = 1207 + 7215, c¢q0 = 119171 + 451,
€11 = 24167 — 2401, ¢, = 11911y + 451,
Cc13 = 1201 + 7215 ,C14 =11 + 375,

&
120° 12 = Bon dt.

Substituting (35) into (36) and using the Euler expansion
for exponential terms leads to the following relation:

(37)

Tl =

(W + 1207,) B+ =(w* — 1207,)p", (38)

where

w = (r; — 3ry) cos(3th) +
(1201, — 721, )cos(2th) +
(1191r; — 457r,) cos(th) + 120871,

w* = (r; + 31y) cos(3th) + (120r; +
72r,)cos(2th) + (1191r, + 4571) cos(th) + 1208r;.

Equation (38) can be rewritten as follows:

'Bn+1 _ (w*=120713) Gn _ ZGn,

(Ww+12013)

(39)

where z is the amplification factor of the itera-
tion (32). Iteration (32) is stable if the modulus of
the amplification factor is less than or equal to one,

i.e. |z|<Il. By considering 71 <1 | the following in-
equalities always hold [w"-120r, |[<[w+120r, | and |z|<1.

Thus, iteration (32) for the diffusion system is
unconditionally stable.

5.2 Stability of the conservation part
A typical row of Equation (33) can be expressed as
given in Equation (36) with the following coefficients:
cp =1 — 31y, ¢ =120y — 1681y,
c; = 1191r; — 7351, ¢, = 24161y,
cs = 11911y + 7357y, ¢4 = 1201, + 1681,
c; =1+ 3r, —313,cg =17 + 313,
Co = 1207, + 1681y, c19 = 11911y + 7351,
Cc11 = 24161, — 24013,

Cip = 11917'1 — 7357‘2,
C13 = 1207"1 - 1687‘2, C14_ = Tl - 37'2,

pdt
T, = —.
27 go

s (40)
17 140

Writing (35) into (36) with the considered coefficients
(40) and with the use of the Euler expansion leads to

(41)

W + iwH)BM =(w — iw*)B",
where

w =1, cos(3Th) + 1207, cos(2th) + 1191 rycos(th) +1208r,

w* = 3r,sin(3th) + 1687, sin(2th) + 7357r;,sin (th).

It is obvious that the amplification factor z=1 and
satisfies the stability condition. Hence, iteration
(33) for the conservation part of Equation (1) is
unconditionally stable. In conclusion, the splitting it-
eration system (32)-(33) is thus unconditionally stable.

6. Numerical experiments

We present the results for the following schemes with
real coefficients:

Strang: The second-order symmetric Strang
splitting method (10);

EX4: The fourth-order extrapolation method
(14); and,

EX6: The sixth-order extrapolation method
(15).

Example 1 (Sari & Gurarslan, 2009) Let us
consider Burgers Equation (1) with the initial condition
u(x,0) =gx)=sinmx,0<x <1 (42)
and homogeneous Dirichlet boundary conditions
u(0,t) =0, t>0,
u(1,t) =0, t > 0.

(43)
(44)

The exact solution of (1) under the consideration of
cases (42)-(44) given by Cole (1951) is



%1 ay exp(—n?m2et)nsin(nmx)

u(x,t) = 2n
(0 <C:a(,+§:,°1°:1anexp(—nznzst)cos(nnx)

with the Fourier coefficients

1
ap = f exp{—(2me) 1[1 — cos(mx)]}dx,
0

a, = 2 fol exp{—Qme) 11—
cos(mx)]}cos (nmx)dx.
In all numerical experiments, we prefer to use pattern (10)
instead of pattern (11). If one solves nonlinear advection
part two times, then the computational cost is higher
and the accuracy is less than pattern (10) because of the
necessity of the correction relation in the nonlinear
advection part. Table 2 shows the comparison of the
produced results using the present approach with the
literature  (Mukundan &  Awasthi, 2015) and
exact solutions for various spatial points at t=0.5.
As seen in the table, the present study is more
accurate and more economical, with a far smaller
number of elements, in comparison to their results.
In addition, it is shown that the pattern ABA produces
more accurate results than the pattern BAB in Table 2.

h=0.02. Even as we consider a smaller num-
ber of spatial elements, accuracy of the present
method is far higher than the literature (Mukun-
dan & Awasthi, 2015) at every spatial point.
The presented results in Table 4 are compared with
the literature (Bahadir & Saglam, 2005; Sari &
Gurarslan, 2009) and the exact solution. Even with
the use of fewer time elements, the comparison
revealed that the suggested technique is able to produce
more accurate results than the corresponding literature
(Bahadir & Saglam, 2005; Sari & Gurarslan, 2009). In
the comparison, responses of the physical system have
been observed for the elapsed times of t=0.5, t=2.0,
and t=4.0 at various positions for h=0.01 (Table 4).

Now it is time to deal with far smaller
kinematic viscosity constants. A comparison of the
currently produced solutions has been carried out
with the literature, and the exact solution for two
different viscosity values, &=0.004 and &=0.003,
respectively (Tables 5-6). The present study reveals that
even by using fewer time elements in Table 5, one can find
more accurate results than the literature (Jiwari, 2015).

Table 2. Comparison of the produced results att = 0.5 fore = 1, dt = 0.001.

EX6 EX4 Strang Strang Mukundan
Splitting Splitting Splitting Splitting & Awasthi Exact
x Present Present Present Present (2015)
N=40 N=40 (ABA)-N=40 (BAB)-N=40 N=100
x=0.1 0.00221300 0.00221299 0.00221298 0.00221292 0.002213 0.00221301
x=0.2 0.00421007 0.00421005 0.00421003 0.00420990 0.004209 0.00421007
x=0.3 0.00579612 0.00579610 0.00579606 0.00579589 0.005795 0.00579612
x =04 0.00681592 0.00681588 0.00681585 0.00681565 0.006815 0.00681592
x=0.5 0.00716920 0.00716917 0.00716913 0.00716892 0.007168 0.00716921
x=0.6 0.00682072 0.00682069 0.00682066 0.00682045 0.006820 0.00682073
x =0.7 0.00580390 0.00580387 0.00580384 0.00580367 0.005803 0.00580390
x=0.38 0.00421785 0.00421783 0.00421780 0.00421768 0.004217 0.00421785
x=0.9 0.00221781 0.00221780 0.00221779 0.00221772 0.002218 0.00221781

Table 3. Comparison of the produced results at t = 2.3 for ¢ = 0.1,dt = 0.01.

EX6 EX4

Strang

Splitting Splitting Splitting Al\\/}vil;gﬂ(g% f;) Exact
X Present Present Present N=100
N=50 N=50 N=50
x =0.1 0.0221396 0.0221397 0.0221395 0.02253 0.0221396
x=0.2 0.0427956 0.0427957 0.0427954 0.04357 0.0427956
x =03 0.0604313 0.0604314 0.0604310 0.06155 0.0604313
x =04 0.0734431 0.0734432 0.0734426 0.07485 0.0734431
x=0.5 0.0802310 0.0802311 0.0802302 0.08182 0.0802310
x = 0.6 0.0793988 0.0793988 0.0793977 0.08104 0.0793988
x=0.7 0.0701068 0.0701067 0.0701055 0.07161 0.0701068
x=0.8 0.0525198 0.0525196 0.0525186 0.05368 0.0525198
x =09 0.0281740 0.0281739 0.0281733 0.02881 0.0281740
) In the work of Aksan (2006), the model
Table 3 shows the comparison of the present

numerical solution with the exact solution and the
literature (Mukundan & Awasthi, 2015). The kinematic
viscosity constant is chosen to be €=0.1. The results are
produced for the parameters taken to be dt=0.01 and

equation with conditions (23)-(25) is solved using the
quadratic B-spline FEM in the weak form with the Newton
iteration for nonlinear systems. In another work (Dag
et al., 2005), the researchers used the weak form of the
governing equation, the cubic B-spline basis approach
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and the first-order splitting approach. The computed
results in Table 7 show that the present method is more
accurate for a far smaller number of time elements than
the results of references (Aksan, 2006; Dag et al., 2005).

Table 8 is another comparison which was
completed with various schemes given in the
literature (Kutluay et al., 1999; Tsai et al., 2017) with
the currently proposed schemes in terms of maximum
error norms. The compared results are taken from Table
4 of the reference Tsai et al. (2017). As realized from
Table 8, the current results are far more accurate than
the literature (Tsai et al., 2017; Kutluay et al., 1999).
The numerical method is seen to have a high capacity
in capturing gradual nonlinear steep behaviour, £ < 1 .
Figures 1 (a) and (b) show the splitting-up solutions
of Example 1 with small parameter values, £€=0.001,
€=0.0005, respectively. In Figure 2, the present
numerical methods are also compared in terms of com-
putational costs, i.e. CPU times of the iterations are

©00000000060000000000000000000000000000000000000000000000000000000

demonstrated for various number of spatial elements N.
Among those methods, the Strang approach is the most
economical. If one prescribes boundary conditions, error
terms are generally not uniformly bounded on the interval
[0,T] in the infinite dimensional space, so it is no longer
possible to establish a guarantee of convergence order
(Hansen & Ostermann, 2009; Seydaoglu et al., 2016).
Thus, order reductions occured for higher order splitting
methods when the Dirichlet boundary conditions were
impossed.

In Figure 3(a), we compare the efficiency of the
present methods given in Table 2 at the final
time t=3. We demonstrate the infinity error norm
versus the number of evaluations of ¢, *, which usually
requires the more costly computation for
several step sizes. As seen in Figure 3(a), in spite of the
correct convergence orders not being obtained, the high
order extrapolation methods produce more reliable
results in terms of both accuracy and computational cost.

Table 4. Comparison of the produced results for € = 0.01.

EX6 EX4 Strang Bahadir & Sari &
Splitting Splitting Splitting Saglam, Gurarslan,
Present Present Present (2005) (2009)
x t dt=0.004 dt=0.004 dt=0.004 dt = 0.001 dt =0.001 Exact

t =050 0.1211435314 0.1211435314 0.1211416234 0.12079 0.12114 0.1211435315
x=01 ¢t=2.00 0.0429637769 0.0429637769 0.0429634430 0.04300 0.04295 0.0429637769
t =4.00 0.0231042327 0.0231042327 0.0231041297 0.02324 0.02310 0.0231042327
t =0.50 0.3602710556 0.3602710556 0.3602669996 0.36113 0.36027 0.3602710559
x=03 t=2.00 0.1288398903 0.1288398903 0.1288389190 0.12887 0.12882 0.1288398903
t =4.00 0.0693082904 0.0693082904 0.0693079840 0.06935 0.06930 0.0693082904
t=0.50 0.5886957730 0.5886957729 0.5886945639 0.59559 0.58870 0.5886957735
x=05 t=200 0.2145580542 0.2145580542 0.2145565380 0.21468 0.21455 0.2145580543
t =4.00 0.1154947563 0.1154947560 0.1154942553 0.11550 0.11549 0.1154947563
t =0.50 0.7934934046 0.7934934039 0.7935031783 0.81257 0.79354 0.7934934058
x=0.7 t=2.00 0.2999977673 0.2999977659 0.2999958750 0.30075 0.29999 0.2999977677
t=4.00 0.1612146519 0.1612146463 0.1612140083 0.16125 0.16121 0.1612146543
t =0.50 0.9381067387 0.9381059346 0.9381462298 0.97184 0.93822 0.9381083431
x=09 t=200 03732772096 0.3732774294 0.3732786012 0.37452 0.37328 0.3732776288
t =4.00 0.1660587273 0.1660588088 0.1660571831 0.16515 0.16605 0.1660587216

Table 5. Comparison of the produced results for the parameter values € = 0.004,h = 0.01.

EXG6 Splitting EX4 Splitting Strang Splitting
Present Present Present Jiwari (2015) Exact
N =100, dt = N =100, N =100, dt =0.001
x t 0.0125 dt = 0.0125 dt = 0.0125
t=1 0.18890403 0.18890403 0.18888074 0.18891 0.18890403
X = 0.25 t=5 0.04697225 0.04697225 0.04697036 0.04697 0.04697225
t=10 0.02421935 0.02421935 0.02421883 0.02422 0.02421935
t=15 0.01631540 0.01631540 0.01631517 0.01632 0.01631540
t=1 0.37597616 0.37597617 0.37594050 0.37598 0.37597616
x =05 t=5 0.09393781 0.09393781 0.09393407 0.09394 0.09393781
t=10 0.04843716 0.04843716 0.04843613 0.04843 0.04843716
t=15 0.03259459 0.03259459 0.03259412 0.03259 0.03259459
t=1 0.55883376 0.55882869 0.55882287 0.55883 0.55883764
X =075 t= 0.14088686 0.14088685 0.14088137 0.14089 0.14088686
t=10 0.07220247 0.07220246 0.07220095 0.07221 0.07220247
t=15 0.04677529 0.04677529 0.04677452 0.04678 0.04677529
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Table 6. Comparison of the produced results for ¢ = 0.003 and h = 0.01.

EX6 Splitting

EX4 Splitting

Strang Splitting

Present Present Present Jiwari (2015) Exact
N =100, N =100, N =100, dt = 0.001
x dt = 0.0125 dt = 0.0125 dt = 0.0125

t 0.18901910 0.18901910 0.18899538 0.18902 0.18901910

X = 0.25 t=5 0.04698094 0.04698094 0.04697901 0.04698 0.04698094
t= 0.02422174 0.02422174 0.02422121 0.02422 0.02422174

t 0.01631712 0.01631712 0.01631688 0.01631 0.01631712

t=1 0.37622719 0.37622719 0.37619067 0.37623 0.37622719

x =05 t=5 0.09395531 0.09395531 0.09395150 0.09396 0.09395531

’ t= 0.04844299 0.04844299 0.04844194 0.04844 0.04844299

t 0.03263170 0.03263170 0.03263122 0.03263 0.03263170

t 0.55927734 0.55927597 0.55925619 0.55928 0.55927734

X =075 t 0.14091634 0.14091634 0.14091072 0.14092 0.14091634

’ t= 0.07260297 0.07260297 0.07260142 0.07261 0.07260298

t 0.04838641 0.04838641 0.04838568 0.04839 0.04838642

Table 7. Comparison of the produced results for ¢ = 0.1 and h = 0.0125.
EX6 Splitting EX4 Splitting Strang Splitting Dag et al. Aksan
x t Present Present Present (2005) (2006) Exact
dt = 0.001 dt = 0.001 dt = 0.001 dt = 0.0001 dt = 0.0001

t=0.4 0.3088942 0.3088942 0.3088942 0.30890 0.30891 0.3088942
t=0.6 0.2407390 0.2407390 0.2407390 0.24074 0.24075 0.2407390
x=0.25 t=0.8 0.1956756 0.1956756 0.1956756 0.19568 0.19568 0.1956756
t=1.0 0.1625648 0.1625648 0.1625648 0.16257 0.16257 0.1625649

t=3.0 0.0272023 0.0272023 0.0272023 0.02720 0.02721 0.0272023

t=0.4 0.5696324 0.5696324 0.5696325 0.56964 0.56969 0.5696325

t=0.6 0.4472055 0.4472055 0.4472055 0.44721 0.44723 0.4472055
x=0.50 t=0.8 0.3592360 0.3592360 0.3592360 0.35924 0.35926 0.3592361
t=1.0 0.2919159 0.2919159 0.2919159 0.29191 0.29193 0.2919160
t=3.0 0.0402049 0.0402049 0.0402049 0.04020 0.04021 0.0402049
t=0.4 0.6254379 0.6254379 0.6254376 0.62541 0.62543 0.6254379
t=0.6 0.4872150 0.4872150 0.4872148 0.48719 0.48723 0.4872150
x=0.75 t=0.8 0.3739218 0.3739218 0.3739217 0.37390 0.37394 0.3739218
t=1.0 0.2874745 0.2874745 0.2874744 0.28746 0.28750 0.2874744

t=3.0 0.0297721 0.0297721 0.0297721 0.02977 0.02978 0.0297721

Table 8. Comparison of maximum error norms of various schemes for ¢ = 0.01,h = 0.0125.

EFDM EEFDM TFPM Strang Splitting  EX4 Splitting  EX6 Splitting
Kutluay et al. Kutluay et al. Tsai et al.

X t (1999) (1999) 2017) Present Present Present

dt = 0.0001  dt=00001 dt—00001  ¢4t=0.001 dt=0001 ~ dt=0.001
t=04 5.54E-4 1.60E-5 9.28E-6 3.40E-08 2.22E-09 1 24E-09
t=06 3.49E-4 1.10E-5 1.05E-5 1.41E-08 2.21E-09 1.05E-09
x=025 t=08 2.46E-4 4.40E-6 8.46E-6 4.27E-09 1.06E-09 8.65E-10
t=1.0 1.85E-4 5.10E-6 5.12E-6 111E-10 5.67E-10 6.27E-10
t=3.0 2.23E-4 2.30E-6 6.35E-6 2.33E-09 3.53E-10 2.16E-11
t=04 5.20F-4 7.50E-6 | 44E-5 1.40E-07 4.55E-10 4.54B-09
t=06 4.46E-4 4.50E-6 7.61E-6 7.06E-08 4.53E-09 3.28E-09
x=050 t=08 3.56E-4 3.90E-6 2.57E-6 3.58E-08 8.39E-09 1.96E-09
t=1.0 2.96E-4 4.00E-6 1.14E-5 1.55E-08 9.08E-09 9.75E-10
t=30 3.49E-5 5.10E-6 1.09E-5 4.74E-09 1.49E-10 5.66E-11
t=04 1.12E-4 1.80E-5 441E-5 2.92E-07 3.83E-08 2.59E-09
t=06 2.05E-4 5.00E-6 7.80E-5 2.02E-07 2.52E-08 4.60E-09
x=075 t=08 2.62E-4 1.80E-6 8.28E-5 1.55E-07 8.42E-09 4.69E-09
t=1.0 2.44F-4 5.60E-6 731E-5 1.13E-07 1.95E-10 3.65E-09
£ =30 3.21E-5 2.10E-6 9.26E-6 4.87E-09 2.87E-10 7.14E-11
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. 1. Numerical solution of Example 1with the Strang splitting approach at different times for the parameters (a)

€=0.001, h=0.0025 and dt=0.002 and (b) € =0.0005, h=0.002 and dt=0.0013
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Fig. 2. Co;nparison of CPU times for various number
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Fig. 3. a) Error versus number of evaluations of ¢, * for
the numerical solution of Example 1 at t=3,e=0.1 and
h=0.0125. b) Numerical solution of Example 2 at t=1
with different kinematic viscosity constants a) £=0.5
b) e=0.1 ¢) €=0.05 d) &=0.01 e) £=0.005 f) £=0.003

Example 2 (Sari & Tunc, 2017) Let us now consider the
Burgers equation (1) with initial condition
u(x,0) = gx) =4x(1—x), 0<x<1 (46)

and homogeneous boundary conditions

u(0,6) =0, t >0 (47)
u(1,t) =0, t > 0. (48)
The exact solution of (1) under the
consideration of cases (46) - (48) is given by Cole

(1951) as in (45) but with the Fourier coefficients

a, = f01 exp{—x?(3&)71(3 — 2x)}dx

a, =2 fol exp{—x2(3&)~1(3 — 2x)}cos (nmx)dx.

Table 9 includes the comparison of numerical solutions
and with the exact solution with kinematic viscosity e=1.
The calculated results in Table 9 are more accurate than
the literature (Kutluay et al., 1999; Shao et al., 2015). To
produce the results, far fewer elements in time in com-
parison to the corresponding references have been used.

Table 10 gives a comparison of the
present results with the literature (Kutluay et al., 2004;
Kutluay & Esen, 2004) and the exact solution. The
current numerical solutions are more accurate than
the corresponding literature when the advection is
more dominant to the diffusion, e=0.1 and h=0.0125.
The presently calculated solutions are seen to require
less effort in time in comparison to those references.

Table 11 is organized to present the numerical results
for €=0.01, dt =0.002 and h=0.01 with various num-
bers of spatial and time nodes. The present solutions
have been compared with the exact and other numeri-
cal solutions based on various numerical methods such
as finite difference (Sari & Gurarslan, 2009) and the
boundary element methods (Bahadir & Saglam, 2005).
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Table 9. Comparison of the results produced for e = 1, h = 0.0125, and dt = 0.0002.

EX6 Splitting ~ EX6 Splitting SS‘lTaI?g K“‘l‘fgg;’ al. Sh;% “ al
x ¢ h=00125,  h=00125 Pl ( o 01)25 h(_ ) 2)5 Exact
dt =0.0002  dt = 0.0002 = 00125, = 0.0125, =025,
dt =0.0002 dt=0.0001 dt=0.0001
=005 0426285622 0426285617  0.426285616 0.42629 04262864 0.426285623
%=0.25 t=0.10 0.261479814 0.261479812 0.261479811 0.26149 0.2614801 0.261479814
t=0.15 0.161477615  0.161477610  0.161477605 0.16148 0.1614777  0.161477615
t=0.25 0061087582  0.061087577  0.061087571 0.06109 0.0610875  0.061087582
t=0.05  0.628083727  0.628083724  0.628083717 0.62809 0.6280846  0.628083727
oo [F0.10 038342416 0383422404 0383422386 0.38343 03834228  0.383422416
t=0.15 0234055329  0.234055317  0.234055300 0.23406 02340554  0.234055329
=025 0.087232703  0.087232695  0.087232685 0.08724 0.0872327  0.087232703
t=0.05 0.465252624  0.465252602  0.465252556 0.46526 0.4652528  0.465252625
\coys 1010 0281572640 0281572622  0.281572589 0.28158 02815727  0.281572641
t=0.15 0.169738279  0.169738265  0.169738245 0.16974 0.1697383  0.169738280
t=0.25 0.062289848  0.062289842  0.062289834 0.06229 0.0622898  0.062289849

Table 10. Comparison of the produced results for ¢ = 0.1, h = 0.0125 and dt = 0.001.

EX6 EX4 Strang Kutluay & Kutluay
x t Splitting Splitting Splitting Esen (2004) et al. (2004) Exact
dt =0.001 dt =0.001 dt =0.001 dt =0.0001 dt =0.0001
t=0.4 0.3175229 0.3175229 0.3175228 0.32091 0.31749 0.3175229
t=0.6 0.2461385 0.2461385 0.2461384 0.24910 0.24612 0.2461385
x=0.25 t=0.8 0.1995553 0.1995553 0.1995553 0.20211 0.19954 0.1995553
t=1.0 0.1655986 0.1655986 0.1655986 0.16782 0.16559 0.1655986
t=3.0 0.0277587 0.0277587 0.0277587 0.02828 0.02776 0.0277587
t=0.4 0.5845373 0.5845373 0.5845374 0.58788 0.58448 0.5845373
t=0.6 0.4579764 0.4579764 0.4579765 0.46174 0.45793 0.4579764
x=0.50 t=0.8 0.3673982 0.3673982 0.3673982 0.37111 0.36736 0.3673982
t=1.0 0.2983431 0.2983431 0.2983431 0.30183 0.29831 0.2983431
t=3.0 0.0410650 0.0410650 0.0410650 0.04185 0.04106 0.0410650
t=0.4 0.6456155 0.6456156 0.6456152 0.65054 0.64547 0.6456155
t=0.6 0.5026758 0.5026758 0.5026755 0.50825 0.50255 0.5026758
x=0.75 t=0.8 0.3853355 0.3853355 0.3853353 0.39068 0.38523 0.3853355
t=1.0 0.2958567 0.2958567 0.2958566 0.30057 0.29578 0.2958567
t=3.0 0.0304396 0.0304396 0.0304396 0.03106 0.03044 0.0304396

Table 11. Comparison of the produced results for ¢ = 0.01,h = 0.01 and dt = 0.002.

EX6 EX4 Strang Bgzaign& GSarl ‘fL
x t Splitting Splitting Splitting dt = g urars an Exact
dt =0.002 dt = 0.002 0.002 (2005) (2009)
) ) ) dt =0.001 dt =0.001

t=0.50 0.12846216 0.12846216 0.12846158 0.12808 0.12846 0.12846216
x =0.10 t=2.00 0.04381385  0.04381385 0.04381376 0.04388 0.04379 0.04381385
t=4.00 0.02334500  0.02334500 0.02334497 0.02351 0.02334 0.02334500
t=0.50 0.37848913  0.37848913 0.37848813 0.37956 0.37849 0.37848913
x=0.30 t=2.00 0.13134519  0.13134519 0.13134493 0.13129 0.13131 0.13134519
t=4.00 0.07002718  0.07002718 0.07002710 0.07009 0.07002 0.07002718
t=0.50 0.60988613  0.60988613 0.60988613 0.61768 0.60991 0.60988613
x = 0.50 t=2.00 0.21858801  0.21858801 0.21858762 0.21873 0.21858 0.21858801
t=4.00 0.11668202  0.11668202 0.11668189 0.11671 0.11667 0.11668202
t=0.50 0.80978166  0.80978166 0.80978409 0.83022 0.80986 0.80978166
x=0.70 t=2.00 0.30534815  0.30534815 0.30534768 0.30614 0.30534 0.30534815
t=4.00 0.16287830  0.16287830 0.16287813 0.16293 0.16287 0.16287830
t=0.50 0.94601337  0.94601311 0.94602125 0.98068 0.94615 0.94601416
x=0.90 t=2.00 0.38027320  0.38027324 0.38027364 0.38163 0.38027 0.38027365
t=4.00 0.16857741  0.16857743 0.16857701 0.16766 0.16857 0.16857741

The present solutions revealed that less computational

time is needed to achieve high accuracy, as compared to
the previously mentioned effective methods.

The comparison of the present numerical
results with the exact solution and the literature Jiwari
(2015) with small viscosity values €=0.004 and £=0.003
is demonstrated in Tables 12 and 13, respectively. As
underlined a couple of times, even a much smaller
number of time elements suffice to achieve highly
accurate solutions.

As seen in Figure 3(b), the numerical solution of
Example 2 varies with gradually decreasing values
of the viscosity constant €, and the solutions tend to
have a steep gredient. In Figure 4(a), the computed
results in terms of the present methods are presented
in Table 10 at time t=3. To assess the accuracy of the
current methods, infinity error norm is used. Figure
4 includes the direct relation between the error norm
versus the number of evaluations of ¢,* . As seen in
Figure 4(a), the extrapolation methods again produce
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more acceptable numerical results for both accuracy and
computational cost points of view,

even if order reductions have occured.

In Figure 4(b), the capability of the current algorithms
are shown for the Burgers equation with time-dependent
nonhomogeneus boundary conditions. In the figure, the

Table 12. Comparison of the results produced with € = 0.004 and h = 0.01 and dt = 0.01.

EX6 Splitting EX4 Splitting Strang Splitting Jiwari (2015)
x t dt =0.01 dt =0.01 dt = 0.01 dt = 0.001 Exact

t=1 0.19639300 0.19639300 0.19637590 0.19636 0.19639300

x = 0.25 t=5 0.04743858 0.04743858 0.04743723 0.04744 0.04743858
t=10 0.02434263 0.02434263 0.02434227 0.02434 0.02434263

t=15 0.01637125 0.01637125 0.01637108 0.01637 0.01637125

t=1 0.38849076 0.38849076 0.38846870 0.38842 0.38849076

x =05 t=5 0.09486089 0.09486089 0.09485824 0.09491 0.09486089
’ t=10 0.04868313 0.04868313 0.04868240 0.04868 0.04868313
t=15 0.03270700 0.03270700 0.03270667 0.03270 0.03270700

t=1 0.57319765 0.57319726 0.57318887 0.57312 0.57322509

x = 0.75 t=5 0.14224850 0.14224849 0.14224467 0.14224 0.14224850
’ t=10 0.07258104 0.07258104 0.07257997 0.07258 0.07258104
t=15 0.04696437 0.04696437 0.04696383 0.04696 0.04696437

Table 13. Comparison of the produced results for e = 0.003, h = 0.01 and dt = 0.005.

EX6 Splitting EX4 Splitting

Strang Splitting

Jiwari (2015)

x t dt = 0.005 dt = 0.005 dt = 0.005 dt = 0.001 Exact

t=1 0.19672202 0.19672202 0.19671762 0.19668 0.19672202

X =025 t=5 0.04746474 0.04746474 0.04746439 0.04746 0.04746474
’ t=10 0.02434970 0.02434970 0.02434960 0.02434 0.02434970
t=15 0.01637507 0.01637507 0.01637502 0.01637 0.01637507

t=1 0.38896706 0.38896706 0.38896141 0.38890 0.38896706

x =05 t=5 0.09491170 0.09491170 0.09491101 0.09491 0.09491170
! t=10 0.04869814 0.04869814 0.04869795 0.04870 0.04869814
t=15 0.03274752 0.03274752 0.03274743 0.03274 0.03274752

t=1 0.57382849 0.57382848 0.57382592 0.57375 0.57382849

% = 0.75 t=5 0.14232395 0.14232395 0.14232295 0.14232 0.14232395
’ =10 0.07298597 0.07298597 0.07298569 0.07298 0.07298597
t=15 0.04856835 0.04856835 0.04856822 0.04857 0.04696437
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Fig. 4. a) Error versus number of evaluations of ¢, * for
the numerical solution of Example 2 at a) t=3,e=0.1 and
h=0.0125 and Example 3 at

b) t=2,6=0.02 and h=0.025

Example 3 (Iskandar & Mohsen, 1992) Let us
considerthe Burgers equation (1) with the initial condition,
1 X
=— = 49
u(x,0) = [x + tan (2)] (49)

and the nonhomogeneous and time dependent boundary
conditions

u(0.5,£) = ——[0.5 + tan (4(R+t))] (50)
3Re
u(1.5,t) = —[1 5+ tan (—a— (RH))] 51)
where e=1/Re. The exact solution of the Burgers
equation is
_ XRe
u(x, t) =— [x + tan (z(R+t))]' (52)

error norm versus the number of evaluations of ¢, * is
presented for the parameters h=0.025,6=0.02 and t=2.
It has been observed that order reductions occurred for
extrapolation methods as well as for Strang
splitting methods (see Figure 4(b)). For further
information on order reduction phenemona in diffu-
sion-reaction equations employing a splitting method with
nonhomogenous and  time-dependent  Dirichlet
boundary condition, readers are referred to
literature by Einkemmer and Ostermann (2015). As seen
in Figure 4(b), the extrapolation methods again produce
more accurate and more economical numerical results.

6. Conclusions and Recommendation

This article has proposed a higher order splitting-up
method based on cubic B-spline Galerkin finite element
method in numerically analyzing the advection-diffu-
sion processes. The splitting method is generated by
following three approaches: the second-order Strang ap-
proach, the fourth-order, and the sixth-order extrapolation
approaches.  The  stability analysis of the
suggested method has been studied and shown to be
unconditionally stable for both parts of the physical
processes. To illustrate the accuracy of the present
method, three challenging problems have been
considered. Qualitative and quantitative analysis reveal
that the current method is capable of producing highly



accurate results even with a smaller number of temporal
and spatial elements. The computed solutions agree
with the literature and the exact solution. Notice that
the present method can capture the steep behavior of the
Burgers equation when the advection is dominant.
The current numerical study has been carried out for the
deterministic advection-diffusion processes. Any further
research should involve stochastic advection-diffusion
processes.
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