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ABSTRACT

The open vehicle routing problem (OVRP) is a variant of vehicle routing problem (VRP)
in which the vehicles are not required to return to the depot after completing a service.
Since this problem belongs to NP-hard Problems, many metaheuristic approaches like
ant colony optimization (ACO) have been used to solve it in recent years. The ACO has
some shortcomings like its slow computing speed and local-convergence. Therefore, in
this paper a hybrid ant colony optimization called HACO is proposed in which a new
state transition rule, an efficient candidate list, several effective local search techniques
and a new pheromone updating rule are used in order to achieve better solutions.
Experimentation shows that the algorithm is successful in finding solutions within
almost 3% of known optimal solutions on classical thirty one benchmark instances.
Additionally, it shows that the proposed algorithm HACO finds twenty one best
solutions of classical instances and is competitive with eight existing algorithms for
solving OVRP. Furthermore, the size of the candidate lists used within the algorithm is a
major factor in finding improved solutions and the computational times for the
algorithm compare satisfactorily with other solution methods.

Keywords: Ant colony optimization; candidate list; local search techniques; np-
hard Problems; open vehicle routing problem.

INTRODUCTION

The open vehicle routing problem (OVRP) is an important variant of vehicle
routing problem (VRP) which has many applications in industrial and service
firms. This problem has a unique character in that the vehicles are not required
to return to the depot after completing a service. Although the OVRP has just
recently attracted the attention of scientists and researchers, the description of
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this important variant of the VRP appeared in the literature over 30 years ago.
The OVRP is utilized in practice in delivering packages and newspapers to
homes. Therefore, it is one of the many extensions of the VRP used in industrial
and service applications. In this problem, contractors who are not employees of
the delivery company use their own vehicles and do not return to the depot.
Furthermore, companies which use contractors to deliver newspapers to
residential customers do not require the contractors and their vehicles to return
to the depot. As a result, researcher interest in the OVRP has increased
dramatically and a wide variety of new algorithms have been developed over the
last ten years to solve the problem.

This problem similar to VRP involves routing a homogeneous fleet of vehicles
that start to move simultaneously from the depot, but do not come back to the
depot after visiting customers (Saadati & Yousefikhoshbakht, 2012). In other
words, each route in the OVRP is a Hamiltonian path over the subset of
customers visited on the route. Each vehicle has a fixed capacity and perhaps a
route-length restriction which limits the maximum distance it can travel. Each
customer has a known demand and is serviced by only one visit of a single
vehicle. The objective is to design a set of minimum cost routes to serve all
customers, so that the load on a vehicle is below vehicle capacity at each point
on the route. In addition, we need to find the minimum number of vehicles
which are required to service all customers. From the point of view of graph
theory, the difference between the OVRP and the VRP is that a solution of the
former consists of a set of Hamiltonian paths rather than Hamiltonian cycles.
The problem of finding the best Hamiltonian path for each set of customers
assigned to a vehicle is NP-hard (Syslo et al., 1983). Hence OVRP is also NP-
hard.

At first sight, having open routes instead of closed ones looks like a minor
modification. Indeed, if travel costs are asymmetric, there is essentially no
difference between the open and closed versions. To transform the open version
into the closed one, it suffices to set the cost to zero for traveling from any
customer to the depot. Indeed, somewhat surprisingly, it has been proved that
the open version turns out to be more general than the closed one, in the sense
that any closed VRP on 7 customers can be transformed into an open VRP on n
customers, but there is no transformation in the reverse direction.

As it was mentioned before, the OVRP is a major problem faced by many
distribution systems. In OVRP, like third-party logistics, when companies lease
vehicles, the school bus and so on, the vehicles do not need to return to the
depot in many cases. Therefore, it has attracted significant research attention
and a number of algorithms have been proposed for its solution. Since there is
no known polynomial algorithm that will find the optimal solution in every
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instance, the OVRP is considered NP-hard. For such problems, the use of
heuristics such as ant colony optimization (ACO) is considered a reasonable
approach in finding solutions. Moreover, although ACO has been successfully
applied to several combinatorial optimization problems, it has some
shortcomings like its slow computing speed and local-convergence
(Yousefikhoshbakht & Sedighpour, 2012). Furthermore, because the OVRP is
really difficult, the basic ACO algorithms cannot be directly applied to the
problem with acceptable performance and few researchers have proposed new
methods to improve the original ACO. Besides, although the development of
modern metaheuristics has led to considerable progress, each metaheuristic has
its own strengths and weaknesses. Therefore, many research studies have tried
to develop hybrid algorithms, expecting to achieve the effectiveness and
efficiency. In this paper, we have proposed an efficient hybrid ant colony
optimization called HACO in order to improve both the performance of the
algorithm and the quality of the solutions. The proposed algorithm took
advantage of various versions of ant colony optimization algorithms for solving
OVRP and then improved the global ability of the algorithm through importing
new probability function of movement for constructing solutions, using new
candidate list and updating pheromone method and several effective local
searches. Therefore, the hybrid algorithm explores different parts of the solution
space, and the search method is not trapped at the local optimum. The
experimental results have shown that the HACO algorithm is to be very efficient
and competitive in terms of solution quality.

The structure of the remainder of the paper is as follows. In the next sections,
related works on OVRP are presented and then the proposed idea based on
ACO called HACO is explained in great detail. In addition, using a new
candidate list, building the solution simultaneously by a new transition rule,
applying four powerful local search techniques to improve the solution, and
proposing a new method for updating global pheromone information which are
four main steps of HACO are also described in more detail in the same section.
In computational experiments section, the proposed algorithm is compared with
some of the other algorithms on standard problems belonging to OVRP library.
Finally, some concluding remarks are given.

RELATED WORKS

In contrast to the VRP, the OVRP has only been considered by a very limited
number of researchers. From the early 1980s to the late 1990s, the OVRP
received very little attention in the operations research literature. However,
several researchers have used some algorithms especially metaheuristic ones
since 2000. As far as we know, the first author to declare the OVRP was Schrage
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(1981) who raised for the first time the problem dedicated to the description of
realistic routing problems, bringing attention to some of its applications.

The OVRP is used to find the best Hamiltonian path for each set of
customers assigned to a vehicle. Therefore, this sub-problem is NP-hard because
it can be converted into an equivalent Hamiltonian cycle. As a result, the whole
problem (e.g. OVRP) belongs to NP-hard problems. Therefore, most of the
practical examples of this problem cannot be solved by exact algorithms to
optimality within reasonable time and the algorithms used in practice are the
heuristic and metaheuristic algorithms. Therefore, research on open vehicle
routing problems (VRPs) has recently concentrated on devising effective
heuristic and especially metaheuristic algorithms for solving VRPs using a
permissible solution instead of the optimal solution. These approaches can
obtain feasible solutions within a reasonable computing time and the best of
these algorithms can find the optimal or near optimal solutions in an acceptable
computing time. In other words, heuristic methods cannot guarantee any
specified solution quality. Many of them, however, are known to provide good
results in a short time even for large instances.

For example, an efficient tabu search is proposed for OVRP by Brandao
(2004) in which the neighborhood structure is introduced by insertions and
swaps between different routes. Infeasibilities in middle solutions are managed
through penalizing the objective function by two penalty terms including
capacity violation and route length violation. In this problem a more general
variant involving both capacity and route-length constraints are considered.
Sariklis and Powells (2004) presented a novel algorithm which comprises two
phases for symmetric OVRP without considering a maximum route length. This
problem is a real problem of express airmail distribution in the USA and
contains many applied features such as delivery or pickup time windows and
total route length and capacity of the plane. In this paper, the customers are
assigned to studied clusters, taking into account the capacity constraint and
trying to make the minimum number of clusters in phase I. Then, reassignments
of customers to different clusters are done with the aim of decreasing the
travelling cost according to some given constraints. In phase I, each cluster is
changed into an open route. In this step, the algorithm starts with a minimum
spanning tree (MST) and then applies to it a set of operations in which the
objective is to convert it into a minimum cost path.

A tabu search algorithm was proposed by Fu et al. (2005, 2006). In this
algorithm, the initial solution is provided by a ‘farthest first heuristic’ and
exchanges are based on the two-interchange generation mechanism. On the
other hand, a combination of vertex reassignment, 2-opt, vertex swap, and ‘tails’
swap within the same route or between two routes are used simultaneously.
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Tarantilis et al. (2005) offered a single-parameter metaheuristic method for
solving a version of the OVRP. In this variant of the problem, the objective is to
minimize the total distance covered without directly attempting to minimize the
number of vehicles and imposing an upper limit on route length. Besides, this
algorithm exploits a list of threshold values to guide intelligently a local search
based on a variety of edge and node exchanges. Li et al. (2007) developed a
variant of record-to-record travel algorithm for the standard VRP to handle
open routes. This algorithm avoided the premature convergence and found very
good solutions in a short computing time by conducting a better exploration in
the feasible space.

Pisinger & Ropke (2007) offered an effective metaheuristic based on adaptive
large neighbourhood search algorithm. In their algorithm, customers can be
removed randomly from the solution and then reinserted in the cheapest
possible route. Furthermore, various removal and insertion heuristics can be
used to diversify and intensify the search for better results. A simulated
annealing framework is applied to move from one solution to the next.
Moreover, several famous metaheuristic algorithms have been proposed for the
version involving only capacity constraints. For example, Tarantilis et al.
(2004b) presented a population-based heuristic and a heuristic of the threshold-
accepting type.

Levy (2005) has observed that if a company is not paying after the last
delivery, then it needs an efficient path that is not concerned with returning to
the depot. In fact, if the compensation model includes mileage, the company
wants a path that is not influenced by returning to the depot because that would
add extra mileage to the compensation model. This algorithm has the unique
capability of finding very good solutions in a short computing time through
reducing the size of the neighborhood by exploring only the most potentially
promising moves and avoiding the premature convergence. Besides, he used the
OVRP in the newspaper home delivery problem in which a carrier is
subcontracted by the newspaper company to make deliveries to homes. In this
problem, the newspaper company is only concerned with the path to the last
delivery and after that point, a carrier is not compensated.

Bodin et al. (1983) defined the OVRP encountered by FedEx in generating
open delivery routes for airplanes. In this problem, an airplane starts to move
from Memphis, makes deliveries to several cities, and does not come back to
Memphis. After that, the airplane rests in the last city on the delivery route and
begins its pickups from that city. Fu et al. (2005) described two further areas of
the OVRP applications involving the planning of train services and a set of
school bus routes. In the first problem, train starts or ends at the Channel
Tunnel and in the second problem pupils are picked up at various locations and
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brought to school in the morning. Besides, the routes are reversed to take pupils
home in the afternoon. A description of the problem of express airmail
distribution in the USA is defined so that there is an open pick-up and delivery
VRP with capacity constraints and time windows. These authors describe a
heuristic algorithm that was used by FedEx to develop an open route for each
airplane. This algorithm is based on a variant of the Clarke and Wright
algorithm which is currently used by FedEx. This company uses the OVRP in its
Home Delivery service to residential-only customers by FedEx contract couriers
with vehicles. In this problem, drivers move to the FedEX depot each morning,
load packages, and then make deliveries to residents so that the couriers and
vehicles do not return to the depot after their last deliveries.

Letchford er al. (2007) proposed an innovative local search metaheuristic
which examines wide solution neighborhoods for solving the OVRP. In this
problem, two objective configurations are considered in which the first one
primarily aims at minimizing the number of routes and secondarily minimizing
the routing cost, whereas the second one only aims at minimizing the cost of the
generated route set.

Repoussis et al. (2010) developed a population-based hybrid metaheuristic
algorithm for solving the OVRP in which the basic solution framework of
evolutionary algorithms combined with a memory-based trajectory local search
technique is utilized. The proposed method manipulates a population of u
individuals using a (u + \)—evolution strategy (Back et al., 1997). By using arcs
extracted from parent individuals, a new intermediate population of A offspring
is formed via mutation at each generation. Besides, the selection and
combination of arcs are dictated by a vector of strategy parameters. Finally, the
quality of each new offspring is further enhanced via a memory-based trajectory
local search technique while an elitist scheme directs the selection of survivors.

An Integer Linear Programming (ILP) technique based on destruct-and-
repair paradigm was proposed by Salari et al. (2010) for solving OVRP. In the
proposed algorithm, an initial solution which is expected to be improved is
considered and the method follows a destruct-and-repair paradigm. In this
method, customers are randomly removed and repaired by solving an ILP
model for finding a new improved solution. It should be noted that the ILP can
be expanded and adapted to cover other variants of VRP.

Zachariadis & Kiranoudis (2010) proposed a local search metaheuristic
whose moves are statically encoded into static move descriptor (SMD) entities
to explore the wide neighborhoods within the reasonable computational effort.
When a local search operator is applied to the candidate solution, only a limited
solution part is modified. Consequently, to explore the next neighborhood only
the tentative moves that refer to this affected solution part have to be evaluated
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again. The search is effectively conducted by storing the SMD entities in
Fibonacci heaps insertions and deletions. To diversify the search, a tabu scheme
and a penalization strategy are employed.

Mirhassani & Abolghasemi (2011) proposed a real-value version of particle
swarm optimization (PSO) for solving the open vehicle routing problem
(OVRP). In this paper, a particular decoding technique is proposed for
implementing PSO. Furthermore, a vector of the customer’s position is
constructed in descending order in the decoding method. Then each customer is
assigned to a route by taking into account feasibility conditions. Finally, one-
point move has been applied to constructed routes which seem promising to
result in a better solution.

THE PROPOSED ALGORITHM

The ant colony optimization (ACO) was inspired by the behavior of real ant
colonies in nature as they forage for food and find the most efficient routes from
their nests to food sources. As some ants travel, they deposit pheromone on the
paths which are then followed by other ants. This natural behavior of ants can
be used to explain how they can find the shortest path. The increase in
pheromone increases the chance of the next ants selecting the path
(Yousefikhoshbakht & Khorram, 2012). During pass time, more ants are able to
complete the shorter route, pheromone accumulates faster on shorter paths, and
longer paths are less reinforced. Dorigo (1992) used this concept and proposed
the ACO to solve the combinational optimization problems. The ACO as a
population-based approach has been successfully applied to several NP-hard
combinatorial optimization problems such as the vehicle routing problem and
communications networks. In this paper, a hybrid efficient ant colony
optimization algorithm (HACO) is proposed to solve OVRP. The HACO is
based on the rank-based ant system (RAS). Although this algorithm is strongly
inspired by Ant System (AS), it achieves performance improvements through
the introduction of new mechanisms based on ideas not included in the original
AS. RAS algorithm proposed by Bullnheimer et al. (1997) is another version of
the ACO. RAS improved the AS algorithm through ranking the solutions
constructed by ants.

Our HACO modifies the transition rule, local and global pheromone updating
rules and adds several local search techniques on the algorithm. Furthermore, the
algorithm applied the idea of candidate lists to construct vehicle routes. Candidate
lists can concentrate the search on promising nodes to reduce the computational
effort and save the time for further iterations. The proposed algorithm mainly
consists of the iteration of the following three steps. These lead to avoiding
premature convergence and then searching over the subspace.
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Step 1: Build the solution independently using a new transition rule and
candidate list.

Step 2: Apply several local search techniques like insert, swap and 2-opt
heuristics for several best known solutions until now in order to improve
them.

Step 3: Update the global pheromone information.

In the following subsections, each step in more detail is described.

Construct solutions

In the HACO, for n groups, m ants are initially positioned randomly on n
vertices and each ant of the colony attempts to build a solution in parallel. At
each step of an iteration of the algorithm, only one customer is chosen for each
ant according to a transition rule. This method is continued until each ant
constructs its route. It should be noted that an important benefit of this
parallelism is that several solutions are built at the same time and they
interchange information during the procedure and use the information from
previous iterations. Besides, ants utilize pheromone trail and heuristic
information to build feasible solutions in the process of constructing solutions.
Like AS, the next node j from node i in the route is selected by ant £k among the
candidate list J¢ with nu number according to the following transition rule

1

which shows the probability of each city being visited:

Pi(r) = [Tij(l)]w[771;/;(1)][1[Féi{i(f)]7 vie st 0
Zrle." [T”(t)] '[nir(t)], [fii,»(t)}’y

Where 7;(¢) is the amount of pheromone on the edge joining nodes i and j,
n;j(¢)is the heuristic information for the ant visibility measure (e.g., defined as
the reciprocal of the distance between node i and node j for the TSP) and «, 3,
are control parameters. Besides, x; is defined as the savings of combining two
nodes on one tour as opposed to serving them on two different tours. The
savings of combining any two customers i and j are computed
askjj = ¢jo + coj — ¢;j where node 0 is the depot andc; denotes the distance
between nodes i and j.

A candidate list is used to determine the next customer selected in a vehicle
route and is one of the best methods for improving the quality of the solutions
and computational time in the vehicle routing problems (Bullnheimer et al.,
1998). Each individual customer is devoted a candidate list based on the
distance to all other customers in the customer set which is not visited until now.
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In this method, the closest customers are only considered in the candidate list
for the current customer and are made available for selection as the next
customer to be visited in the route. The size of the candidate list has been
determined by restricting its size to a fraction of the total number of customers
in the problem. For example, previous research set the candidate list size equal
to 25% of the total number of customers regardless of the number of customers
(Bullnheimer et al., 1998). For problems with fifty customers the candidate list is
limited to the rounded integer value of twelve. It is noted that this restriction
prevents the algorithm from wasting its efforts to consider moves to customers
which are a great distance from the current customer and have very little chance
of creating an improved solution to the problem. Moreover, problems with two
hundred customers are common in different versions of the VRP and therefore
candidate lists might include as many as fifty customers used in a previous
research (Bullnheimer et al., 1997). As a result, in order to decrease the
computational time and increase the probability of obtaining a higher-quality
solution, upper and lower limits [a,b] are fixed to the number of candidate list
nu. If the size of this list is not within the minimum « and the maximum b, then a
or b is allocated to it according to formula (2).

a n/4 <a
nu=1<b n/4>b (2)

int(n/4) otherwise

Local search

Most successful metaheuristic methods have paid attention to global search and
search in the whole solution space as far as possible. As the algorithm proceeds,
it moves to better solutions and the global search switches to a local search. We
have also factored in this issue and several local search techniques have been
used to improve the solution further. A local search starts with an initial
solution and searches within neighborhoods for finding better solutions. In the
proposed algorithm, after all the ants have constructed their solutions, the obest
solutions found until now are improved by applying several local searches
including insert exchange on each Hamiltonian path and various paths, and
swap exchange and 2-opt local search for two Hamiltonian paths. It should be
noted that because a local search is a time-consuming procedure, we only apply
these local searches to the o best solutions up to now, which have not been able
to improve yet. The idea here is that a better solution may have a better chance
to find a global optimum. In order to achieve this goal, several local search
techniques including insert exchange on a route and various routes, swap
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exchange and 2-opt move with the probability v, o, w and 6 respectively are used
sothatv+ o+ w+ 0= 1.

In insert exchange, a node from its position in one route is moved to another
position in either the same or a different route. Consequently, while the initial tour
is (0,...,0i+1,....7—2j—1,j,j+1,...,0), the improved one is constructed as
0,..,05,i+1,....7—2,j—1,j+1,...,0). The move is allowed when it is
considered favorable for the performance of the entire algorithm in terms of
objective and constraints. This move is demonstrated in Figure 1 (a and b).

Besides, in the swap algorithm two nodes from different routes are
exchanged. Consequently, if it is supposed that the initial tour consists of the set
of nodes (0,....,i—1,0,i+1,....j—1,j,j+1,...,0)}, the improved one is
constructed as (0,...,i—1,j,i+1,....j— 1,i,j+1,...,0). The same procedure
is conducted in the case of multiple routes. The move is allowed when it is
considered favorable for the performance of the entire algorithm in terms of
objective and constraints. This move is demonstrated in Figure 1 (¢). The most
commonly encountered move is the 2-Opt. In multiple routes, edges (i,i+ 1)
and (j,j + 1) belong to different routes, but they form a criss-cross again. The 2-
Opt move is applied exactly in the same way as is the case in multiple routes.
The move is allowed when it is considered favorable for the performance of the
entire algorithm in terms of objectives and constraints. This move is
demonstrated in Figure 1 (d).

Note that although 2-opt local search as a powerful global search algorithm is
more used at the beginning of algorithm, for global search, insert and swap
exchanges are more applied at the end of the algorithm because these algorithms
might lead to premature convergence to suboptimal regions. In other words,
before the algorithm finishes a complete global search, it tends to adopt a local
search technique and consequently relatively weak results are attained.
Therefore, whenever the algorithm continues, the probability of 6 decreases and
the probability of v, o and w increases. Adding this behavior to the imperialist
algorithm’s revolution policy leads to creating the proper conditions for the
algorithm to escape from local peaks. Thus, as mentioned before, the
probabilities of using the 2-opt, insert and swap exchanges at the first step of the
proposed algorithm are considered v, 0,7 = 0.20 and 6 = 0.40 and then during
the steps of the proposed algorithm, they are gradually converted to
v, 0,7 = 0.30 and 6 = 0.10.
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Fig. 1. Insert (a, b), swap (c) and 2-opt exchanges (d)

Updating pheromone

In contrast to AS, the pheromone of all edges belonging to the route chosen by
ants is not updated in RAS. The pheromone updating of RAS includes only
global updating rules. The pheromone updating formula was meant to simulate
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the change in the amount of pheromone due to both the addition of a new
pheromone deposited by ants on the visited edges and the pheromone
evaporation. It results in the new pheromone trail being a weighted average
between the old pheromone value and the amount of pheromone deposited.
What distinguishes the HACO from the other algorithms is the fact that the
amount of releasing pheromone is based on the rank of the best known solution
until now. In other words, when all ants have completed their tours and have
produced a solution, these steps are repeated for the next group of ants. After
producing n solution for the problem in the current iteration, the pheromone
level on the edges of the o best known solution found up to now is updated by
formula (3). The rankings of ¢ elitist ants are updated by comparing the present
elitist ant solutions with the current ant solution. If the current found ant
solution is better than the p th elitist ant solution, the current ant solution
replaces that solution and becomes the newy th elitist ant solution. Therefore,
the ranks of the previous u th elitist ant solution and elitist ant solutions below
it are increased by one. In order to keep o elitist ants distinct from together, the
current solution is only considered, if the total tour length of the current
solution is different from the total tour length in any of the elitist ant solutions.

1) = (1— Py + 3 A G)
p=1
Where:
(0 —p+1).0L01)  (i,)) € S"
AT!.‘;/%(Z) = . (4)
0 (i, )¢ S"

1 : The variable indicating ranking index.

p : A parameter in the range [0, 1] that regulates the reduction of pheromone
on the edges.

S : The edges traversed by an ant which has gained the p th rank in finding the
best solution.

o : The number of solutions which have been ranked.
0 : A constant coefficient determined by the user.

L*(¢) : The length of the path traversed by the uth ant.

COMPUTATIONAL EXPERIMENTS

In this section, solution values and running times of the proposed algorithm on
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the test problems are presented. We first set the parameters which we use in this
algorithm and then the computational results are described in more detail.

Parameter sensitivity

There are many parameters in the HACO algorithm, like every metaheuristic
algorithm and the values of these parameters affect directly or indirectly the
final solution quality. As a result, a parameter setting procedure is necessary to
reach the best balance between the quality of the solutions obtained and the
required computational attempt. The goal is to find some robust parameters
which allow an algorithm to find high quality solutions for a wide range of
problem instances with different features. Because there is no way of defining
the most effective values of the parameters, a selection of some of the best
parameters for solving the OVRP are considered and finally the best one is
selected. For achieving this goal, C1 as a problem instance and several values for
each parameter are tested while all the others are held constant. We understand
that the most influential parameters in the proposed algorithm, which directly
affect the quality of the final solution are: the used number of ants (m), the
power parameter of the amount of pheromone on the edge (i,j) («), the power
parameter of the amount of ant visibility value ( 3), the power parameter of the
amount of saving value (y), a constant coeflicient in the formula (3) (Q),
minimum number of candidate list (a), maximum number of candidate list (b),
the evaporation rate of pheromones (p), a number of ants which have been
ranked and global updating pheromone has been deposited on their edges (o),
and the termination condition of finishing the algorithm (¢).

For determining these parameters, each one for C1 instance was run 10 times
while all the others were held constant, and the ones which were selected
produced the best computational results concerning the quality of the solution
needed to achieve this result. The ranges of six parameters and all of the
parameter values have been presented in Table 1. To determine the value of
parameters, several alternative values for each parameter were tested. It should
be noted that although the results confirm that our parameter setting worked
well, it is also possible that better solutions could exist.

Based on the results presented in Table 1, the algorithm with the smaller
weight parameter («) of pheromone trails possesses higher performance. If it is
assumed that the initial pheromone trails are large values and if the large control
factor of pheromone trail is used, the effect of visibility value is weakened and a
premature convergence occurs. Besides, the qualities of the solutions of the
algorithms with ~, 3 = 3 are better than 1,2, 3 and 5. From the test results, it
can be understood that by setting the evaporation factor to 0.1, HACO can
obtain the best solutions. It can be concluded that if pheromone evaporation is
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too rapid, the search can be easily trapped in local minima. In other words, a
smaller evaporation factor can ensure the sufficient diversity of search space and
can guide following ants to explore better solutions. Clearly, increasing the
number of iterations of the best solution for termination function (t) devoted to
solving the problem should ultimately (after ‘enough’ iterations) improve
solution quality. It is noted that the number of iterations assigned to solving the
problem has been proved to be important for the solution quality, which can be
obtained by the algorithm. If the number of problematic iterations is too small,
the problems will be solved unsatisfactorily and the algorithm may converge to
a poor solution. If the number of problematic iterations is too large, the
algorithm will waste resources and converge too slowly. The settings are chosen
to provide a good compromise with respect to this trade-off and have proved to
work well independently of the problem instance, which has been solved.
However, as discussed in this section, the number of iterations devoted to
solving the problem should be kept small to find solutions within reasonable
time, in particular for problems of real world size. Therefore, there is a tradeoff
between solution quality found at the end of the run time and solution quality
found over a short time. Therefore, the best value found for 7 is 15.

Table 1: Parameter setting

Parameters Candidate Value The best value
m n,n/2,n/3,n/4,n/5 n
« 1,2,3,4,5 1
164 1,2,3,4,5 3
g 1,2,3,4,5 3
0 50, 100, 200, 300 100
a 3,5,7,9,11, 13 5
b 17,19, 21, 23,25 21
P 0.1,0.2,0.3,0.4.0.5 0.1
o 3,6,9,12,15 12
t 3,5,10, 15, 20 15

Computational results

The HACO is coded in Matlab 11 programming language and executed on a PC
equipped with an Intel Pentium IV processor running at 3500 MHz; Core i3 and
8 GB of RAM running Microsoft Windows 7 Ultimate. Because the proposed
approach is a metaheuristic algorithm, the results are reported for ten
independent runs and the best solution found for all instances is reported. Our
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proposed metaheuristic algorithm was tested on two small and large size sets of
OVRP benchmark problems. The first set consisted of fifteen tests numbered
from A-n19-k2 to A-n72-k4 with sizes from 19 to 72 nodes. Table 2 shows the
result of applying the proposed algorithm compared to three versions of particle
swarm optimization (PSO) on problems. In this table, the first column includes
the instance name, the second column shows the number of vertices n, and the
third column presents the number of used vehicles K, which for all of these
instances is fixed at the minimum possible. In other words, the value of K has
been estimated through dividing the sum of all customer demands by vehicle
capacity. It should be noted that these instances do not have the maximum
route length restriction. The fourth, fifth and sixth columns of Table 2 are PSO,
PSO without one-point move (PSOWO) and PSO without neighbor (PSOWN),
the problem name described in (MirHassani & Abolghasemi, 2011). The results
of the proposed algorithm and its CPU time are in the seventh and eighth
columns and the last column includes the optimal values of these instances
obtained from http://www.hha.dk/~lys/.

Table 2. Comparison results and optimal solutions

HACO
Instance n K PSO PSOWO PSOWN ot Time BKS
A-n32:KS 32 5 487.306 940.845 487.306 487306 7.05 487.306
A-n33kS 33 5 424.543 749.387 424.543 424543 7.58 424.543
A-n33-kS 33 6 462.433 799.005 462.433 462.433 9.27 462.433
A-n34-kS ¥s 508.516 838.539 511.088 508.173 6.89 508.173
A-n36-kS 36 5 519.455 947.025 526919 519.455 8.71 519.455
A-n37kS 37 5 486.243 792.794 486.243 486.243 8.18 486.243
A-nds-k4 45 4 463.896  1249.250 463.896 463896 1170 463.896
A-n72-k4 4 177.453 643.618 220813 177.298 2849 176.999
A-n19-k2 19 2 168.569 197.076 168.569 168.569 5.48 168.569
A-n20-k2 20 2 170.278 218370 170.790 170.278 4.99 170.278
An21-k2 21 2 163.877 229.981 163.877 163.877 5.67 163.877
A-n22-k2 2 2 167.191 204.112 167.191 167.191 5.12 167.191
A-n40-k5 40 5 349.552 568.116 349.552 349.552 9.86 349.552
A-nd5ks 45 5 391.809 637.533 401.531 391809 1084 391.809
A-n50-k7 50 7 407.727 720973 416.938 397376 1159 397.376

Table 2 shows that PSO in all examples except for three instances including
A-n34-k5, A-n72-k4 and A-n50-k7 has been able to find equal values for
solutions compared with HACO. However, HACO has found optimal solutions
for all the instances except for A-n72-k4 in 93% . Generally, the results show
that the PSOWO and PSOWN have had a weak performance, but the results of
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PSOWN are much better than PSOWO. Besides, the proposed algorithm has
been able to improve the performance of the PSOWN and can obtain better
results for five instances compared to PSOWN. As a result, the HACO is the
best algorithm and the performances from the worst to the best belong to
PSOWO, PSOWN, PSO and HACO.

We now consider the large-scale vehicle routing problems in which the
number of customers ranges in size from 50 to 199. Each problem exhibits a
geometric symmetry, which allows us to visually estimate a solution. In all of
these instances, the vertices are taken to be points located in the Euclidean
plane. The cost of an edge is then taken to be equal to the Euclidean distance
between its end-vertices computed with real numbers. There are 16 test
problems identified by their original number and prefixed respectively with the
letters C and F available in the literature, and they are summarized in Table 3.
The fourteen problems named C1-C14 are taken from Christofides et al. (1979),
and two problems represented by F11-F12 are taken from (Fisher & Jaikumar,
1978). Furthermore, the problems CI-C5, C11, C12, F11 and F12 have no
driving time constraint, and C6-C10, C13 and C14 are the same instances as C1-
C5, C11 and CI12, but with a travel time constraint. All problems are available
online (see www.branchandcut.org/VRP/data/ and http://people.brunel.ac.uk/
mastjjb/jeb/info.html).

In Table 3, some of the characteristics of these problems are described. The
first column includes the instance name, the second and third columns show the
number of customers n, and the number of used vehicles K, which is fixed at the
minimum possible for all of these instances. In other words, the value of K has
been estimated through dividing the sum of all customer demands by vehicle
capacity. Besides, the fourth column which shows the value of Ldenotes the
maximum route length. Seven of the problems have a route-length restriction.
The objective of the computational experiments is to compare the performance
of the HACO with several famous metaheuristic algorithms. For achieving this
goal, seven different metaheuristic approaches given in the literature for the
OVRP such as tabu search by Fu et al. (2005, 2006) (TSF) and Brandao (2004)
(TSB, TSAN), record-to-record travel algorithm (ORTA) by Li et al. (2007),
variable neighborhood Search (VNS) by Fleszar et al. (2009), threshold
accepting approach by Tarantilis et al. (2004b) (BATA) and adaptive large
neighborhood search (ALNS) by Pisinger & Ropke (2007) were considered.
Moreover, TSB is proposed by Brandao (2004), TSR is proposed by by Fu et al.
(2005), BR is proposed by by Tarantilis et a/. (2005) and LBTA is proposed by
Tarantilis et al. (2004a). In this table, two sub-columns which include the best
gained solution and CPU time are allocated to each algorithm. Furthermore,
the best algorithms gaining minimum vehicles with the least distance and the
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best algorithms gaining minimum distance with the least number of vehicles for
all of the instances are presented. Finally, the last column shows best known
solution (BKS) by the various algorithms until now. All the times in the tables
are in seconds. For each problem, the proposed algorithm used the minimum
number of vehicles as specified by the lower bound of K. It should be noted that
some authors consider the distances as floating point numbers in their
algorithms and then report the cost of the solutions with a fixed precision like
one decimal place. Since papers on the OVRP tend to report results only for the
floating point versions, in this paper we do the same. This table indicates that
some algorithms used different number of vehicles shown in the brackets.

To measure the efficiency and the quality of an algorithm, a simple criterion is
to compute the number of optimal solutions found in specific benchmark
instances by algorithm. As it can be seen from Table 3, the proposed algorithm
HACO finds the optimal solution for 7 out of 16 problem instances in a
reasonable time and these solutions have been published in the literature.
Moreover, TSB, TSF, TSAN, BATA, ORTR, ALNS and VNS have been able
to find 0,0,0,4,5,4 and 6 optimal solutions from among these instances. These
results indicate that HACO is a competitive approach compared to mentioned
algorithms and the results are much better than the ones found by these
algorithms. As it is shown in (Tarantilis et a/. 2008), direct comparisons of the
required computational times cannot be conducted as they closely depend on
various factors such as the processing power of the computers, the programming
languages, the coding abilities of the programmers, the compilers and the
running processes on the computers.
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A simple criterion to measure the efficiency and the quality of an algorithm is
to compute the relative average of percentage deviation (PD) of its solution
from the BKS on specific benchmark instances. Figure 2 shows the percentage
deviation (Gap) of our algorithm and the ones for seven other metaheuristic
algorithms. Gap is computed by formula (5) wherec(s**) is the best solution
found by each algorithm for a given instance, and ¢(s*)is the overall BKS for the
same instance on the Web. From Figure 2 we conclude that the proposed
method has the best deviation from the BKS. In more detail, the best algorithm
is HACO which has found the best known solutions for all 7 examples including
Cl, C3, C7, €9, C13, F11 and F12 and is competitive with other algorithms.
However, in other instances, the proposed algorithm finds nearly the BKS, i.e.
the gap is about as high as 1. On the whole, the average Gap for TSF, TSB,
TSAN, ORTA, VNS, BATA, ALNS, and HACO respectively are 2.01, 3.16,
6.34, 1.26, 1.55, 0.97, 0.82 and 1.34. The performance Comparison of results
shows that the proposed HACO clearly yields better solutions than the other
algorithms.

Gap = c(s*) — ¢(s")e(s*) x 100 (5)
18
16
14 ' ETSF
- ETSB
mTSAN
10 —
EORTR
8 BVNS
6 l == EBATA
4 4 : | mHACO
5 .| | I 1 Rl I ALNS
" ‘
Cl C2 C3 C4 C5 C6 C7T C3 C9 Clo Cl11 C12 C13 Cl4 F11 F12

Fig. 2. Comparison Gap of the metaheuristic algorithms

CONCLUSION

In open vehicle routing problem (OVRP) the vehicles do not return to the depot
after delivering the packages to the last customer. Although the practical
importance of this problem was established some decades ago, it has received
very little attention from researchers. An effective hybrid efficient ACO called
HACO for the OVRP has been proposed. In addition to introducing some
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modifications to improve the algorithm, we compared its performance with
other metaheuristic algorithms which were designed for the same purpose and
have been published recently. Computational results on thirty one benchmark
problem instances demonstrated the competitiveness and the accuracy of the
proposed method with fixed configuration of parameters and reasonable
computational burdens. A research direction worth pursuing will be towards the
investigation of more powerful local search techniques which will incorporate
intelligent pattern-identification mechanisms. Besides, we are convinced that this
strength can be combined with other metaheuristic approaches in the future
works. Moreover, this algorithm will be applied a lot more in the future with all
versions of vehicle routing problems.
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