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Abstract

In this paper, Magnus Series Expansion Method, which is based on Lie Groups and Lie 
algebras is proposed with different orders to solve nonhomogeneous stiff systems of 
ordinary differential equations. Using multivariate Gaussian quadrature, fourth (MG4) 
and sixth (MG6) order method are presented. Then, it is applied to nonhomogeneous 
stiff systems using different step sizes and stiffness ratios. In addition, approximate 
and exact solutions are demonstrated with figures in detail. Moreover, absolute errors 
are illustrated with detailed tables.
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1. Introduction

Stiff differential equation systems emerge in the fields of chemical reactions, electrical 
networks, fluid mechanics, control theory and nuclear reactors (Bui & Bui, 1979; 
Flaherty & OMalley, 1997; Butcher, 2003; Ixar et al., 2000).

In 1952, Curtis and Hirschfelder examined explicit methods that failed for the 
numerical solutions of stiff ordinary differential equations. They were the pioneers 
for determination of stiffness in differential equations (Curtiss & Hirschfelder, 1952). 
Dahlquist showed the difficulties of solving stiff differential equations with standard 
differential equation solvers (Dahlquist, 1963). Many authors joined in independent 
research for tackling the problems created by stiff differential equations. Gear is one 
of the most important authors in the field (Gear, 1971).

An exponential representation  of the solution of a first order 
linear differential equation for a linear operator was introduced by Wilhelm Magnus 
in 1954 (Magnus, 1954).  However, W. Magnus has not proved convergence and he 
has not illuminated the general form of the  expansion. In recent years, Iserles 
and Norsett have successfully completed both the tasks (Iserles & Norsett, 1997). 
Magnus Series have taken attention in the theory of differential equations (Chen, 
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1957), mathematical physics (Wilcox, 1972) and control theory (Brockett, 1976). 

Iserles and Norsett analyzed the solution of linear differential equations in Lie 
groups (Iserles & Norsett, 1999). This method generated better results compared to 
classical methods. This situation was valid for both the recovery of qualitative features 
and stability (Iserles & Norsett, 1999; Iserles et al., 1999; Iserles et al., 1998). In 
addition, they demonstrated the advantages of the Magnus Series (Iserles & Norsett, 
1999). An important advantage of the Magnus Series Expansion is that Magnus Series 
is truncated, but it is maintaining geometric properties of the exact solution. 

Moreover, Blanes and Ponsoda applied Magnus Series Expansion Method to 
nonhomogeneous linear ordinay differential equations with a simple transformation 
(Blanes & Ponsoda, 2012). In 2013, it is demonstrated the analytical solution of 
reaction-diffusion equation by Garg and Manohar (Garg & Manohar, 2013).

In this paper, our aim is to show the efficiency of MG4 and MG6 on numerical 
solutions of nonhomogeneous stiff systems of ordinary differential equations with 
different step sizes and stiffness ratios.

The plan of this paper is as follows. In section 2, we present MG4 and MG6 
by using Multivariate Gaussian Quadrature. Section 3 is concerned with the stiff 
differential equation systems. In section 4, we introduce a number of computational 
results which demonstrate the power of Magnus Series Expansion Method. Finally, 
Section 5 contains our conclusion.

2. The magnus series expansion method

Consider the following equation 

                               (2.1)

subject to initial conditions , where  is the Lie group and  is the 
Lie algebra of the corresponding to . Here  is coefficient matrix. This 
type of equations are called to as Lie group equations. As W. Magnus introduced, the 
analytical solution of Eq.(2.1) can be written as follows:

                                       (2.2)

where  . Iserles and Norsett improved a general technique called the 
Magnus Series Expansion Method (Iserles & Norsett, 1997). Then,  is referred to 
as Magnus Series Expansion.

Explicitly, Magnus Series Expansion  can be demonstrated as an infinite sum 
of terms , where each  is a linear combination of terms that involved exactly 
commutators (Iserles et al., 2000).
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                                            (2.3)

where the first few terms in Eq.(2.3) are given as follows:

                                   
       (2.4)

                            (2.5)

                      (2.6)

                       .

                       .

                       .

Here, commutator or Lie bracket is a map form  with following 
properties, 

•  is  - bilinear.

• 

•  which is knownas Jacobi identity (Iserles 
& Norsett, 1999).

Now, it is researched the way of computing all the terms in the Magnus Series 
Expansion for the coefficients matrix A(t). The approach of solving multiple integrals 
is known as Multivariate Quadrature.

Firstly, each integral in the Magnus Series Expansion is in the form of

                  
    (2.7)

where L is a multiple variable function,  is the number of integrals in the expression, 
and h is stepsize discretisation of the multiple integral. It has been given in Iserles & 
Norsett, 1999 to use the quadrature formula as 

   (2.8)

where v are choosen as distinct quadrature points .  can be 
found explicitly by the formula 

                               
      (2.9)
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Recall that the function  is the Lagrange interpolation polynominal at the 
nodes  and

                         (2.10)

For each-step of stepsize h from  to , with 

                                  
 (2.11)

                                    (2.12)

                         
(2.13)

                                             (2.14)

This method is called as MG4 in (Iserles et al., 1999).

Iserles et al. developed a sixth-order Magnus method based on Gauss-Legendre 
points  (Iserles et al., 1999).

                                   (2.15)

                                          (2.16)

 
                        

         (2.17)

where,

       (2.18)

The method can be expressed as,

    (2.19)

                                          (2.20)

This method is called as MG6 in (Iserles et al., 1999).
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3. Stiff differential equation systems

There are different kinds of problems that are said to be stiff. It is very difficult to write 
a precise definition of stiffness in relation with ordinary differential equations, but 
the main theme is that for a given system of ordinary differential equations, stiffness 
means a big difference in the time scales of the components in the vector solution.

For a general formulation for stiff problems,

                                          (3.1)

where  are the eigenvalues of the Jacobian matrix of the system for 
. 

Definition 3.1

 is said to be stiff if and only if the eigenvalues  of the Jacobian matrix 
satisfy the following conditions:

a) ,   

b) stiffness ratio ,   s=1,2,…,n (Fatunla, 1978).

4. Numerical experiments

In this section, Magnus Series Expansion Method is applied to nonhomogeneous stiff 
systems of ordinary differential equations.

Example 4.1. Consider the two-dimensional nonhomogeneous stiff ordinary differential 
equation (Lee et al., 2002)

                      (4.1)

subject to initial condition

                                                 

Its exact solution is 

We consider the stiff differential equation system (4.1) with three different case for 
MG4 and MG6.
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Fig. 1. Absolute errors of Example 4.1 wtih MG4 (left) and MG6 (right) for  and 

Fig. 2. Absolute errors of Example 4.1 wtih MG4 (left) and MG6 (right) for  and 

Fig. 3. Absolute errors of Example 4.1 wtih MG4 (left) and MG6 (right) for  and 
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Table 1. Numerical values of exact and approximate solutions obtained from fourth-order Magnus 
Expansion Method (MG4) for Example 4.1.

t y(t)
 (Exact)

y(t) 
(Approx. for h=0.01)

y(t) 
(Approx. for h=0.001)

y(t) 
(Approx. for h=0.0001)

0.1 1.7930625850103068 1.7930625782067209 1.7930625850095876 1.7930625850105464

0.2 1.4239023964894868 1.423902380674598 1.4239023964878361 1.4239023964898885

0.3 1.1315765220372396 1.1315764973215359 1.131576522034681 1.1315765220377074

0.4 0.9094085872759461 0.9094085539043321 0.909408587272514 0.9094085872764311

0.5 0.738787837528716 0.7387877958337838 0.7387878375244491 0.7387878375291873

0.6 0.6057096480109452 0.605709598408684 0.6057096480058877 0.6057096480113842

0.7 0.49986025226606756 0.49986019525163333 0.49986025226027 0.4998602522664684

0.8 0.41367147636118523 0.41367141250391104 0.41367147635470586 0.4136714763615437

0.9 0.34161434823638703 0.34161427817406453 0.34161434822929115 0.3416143482367031

1.0 0.2796749053584411 0.2796748297909253 0.2796749053507996 0.27967490535871603

Table 2. Numerical values of exact and approximate solutions obtained from sixth-order Magnus 
Expansion Method (MG6) for Example 4.1.

t y(t)
 (Exact)

y(t) 
(Approx. for h=0.01)

y(t) 
(Approx. for h=0.001)

y(t) 
(Approx. for h=0.0001)

0.1 1.7930625850103068 1.793062585034908 1.793062585010273 1.7930625850105466

0.2 1.4239023964894868 1.4239023965466797 1.4239023964894257 1.4239023964898883

0.3 1.1315765220372396 1.13157652212662 1.1315765220371654 1.1315765220377079

0.4 0.9094085872759461 0.9094085873966254 0.9094085872758669 0.909408587276432

0.5 0.738787837528716 0.7387878376794886 0.7387878375286369 0.7387878375291872

0.6 0.6057096480109452 0.6057096481903044 0.6057096480108688 0.6057096480113843

0.7 0.49986025226606756 0.49986025247222116 0.49986025226599434 0.4998602522664691

0.8 0.41367147636118523 0.4136714765920734 0.41367147636111745 0.4136714763615445

0.9 0.34161434823638703 0.34161434848970246 0.341614348236325 0.3416143482367027

1.0 0.2796749053584411 0.2796749056316528 0.2796749053583856 0.2796749053587161

Example 4.2. Consider the two-dimensional nonhomogeneous stiff ordinary differential 
equation (Aminikhah & Hemmatnezhad, 2011)

                           (4.2)
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with initial condition

 

The exact solution of system is 
We consider the stiff differential equation system (4.2) with three different case for 

MG4 and MG6.

Fig. 4. Absolute errors of Example 4.2 wtih MG4 (left) and MG6 (right) for  and 

Fig. 5. Absolute errors of Example 4.2 wtih MG4 (left) and MG6 (right) for  and 

Fig. 6. Absolute errors of Example 4.2 wtih MG4 (left) and MG6 (right) for  and 
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Table 3.  Numerical values of exact and approximate solutions obtained from fourth-order Magnus 
Expansion Method (MG4) for Example 4.2.

t y(t)
 (Exact)

y(t) 
(Approx. for h=0.01)

y(t) 
(Approx. for h=0.001)

y(t) 
(Approx. for h=0.0001)

0.1 0.9950041652780258 0.9950041648936438 0.9950041652779738 0.9950041652778887

0.2 0.9800665778412416 0.9800665771916226 0.9800665778411536 0.98006657784109

0.3 0.955336489125606 0.9553364882870825 0.955336489125491 0.9553364891254453

0.4 0.9210609940028851 0.9210609930261116 0.9210609940027498 0.921060994002713

0.5 0.8775825618903728 0.8775825608106744 0.8775825618902209 0.8775825618901901

0.6 0.8253356149096783 0.8253356137532794 0.825335614909514 0.8253356149094869

0.7 0.7648421872844884 0.7648421860722431 0.764842187284314 0.7648421872842888

0.8 0.6967067093471654 0.6967067080967697 0.6967067093469831 0.6967067093469571

0.9 0.6216099682706644 0.6216099669979467 0.6216099682704775 0.6216099682704511

1.0 0.5403023058681398 0.5403023045877927 0.5403023058679502 0.5403023058679219

Table 4. Numerical values of exact and approximate solutions obtained from sixth-order Magnus 
Expansion Method (MG6) for Example 4.2.

t y(t)
 (Exact)

y(t) 
(Approx. for h=0.01)

y(t) 
(Approx. for h=0.001)

y(t) 
(Approx. for h=0.0001)

0.1 0.9950041652780258 0.9950041652780464 0.9950041652780135 0.9950041652778887

0.2 0.9800665778412416 0.9800665778412767 0.9800665778412192 0.98006657784109

0.3 0.955336489125606 0.9553364891256515 0.9553364891255754 0.9553364891254453

0.4 0.9210609940028851 0.9210609940029385 0.9210609940028475 0.921060994002713

0.5 0.8775825618903728 0.8775825618904324 0.8775825618903297 0.8775825618901901

0.6 0.8253356149096783 0.8253356149097423 0.8253356149096305 0.8253356149094869

0.7 0.7648421872844884 0.7648421872845552 0.7648421872844372 0.7648421872842888

0.8 0.6967067093471654 0.6967067093472343 0.6967067093471102 0.6967067093469573

0.9 0.6216099682706644 0.6216099682707338 0.6216099682706065 0.6216099682704513

1.0 0.5403023058681398 0.5403023058682087 0.5403023058680788 0.540302305867922

Example 4.3. Consider the two-dimensional nonhomogeneous stiff ordinary differential 
equation (Hojjati et al., 2004)

                                 (4.3)
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subject to initial values

The exact solution of system is 
We consider the stiff differential equation system (4.3) with three different case for 

MG4 and MG6.

Fig. 7. Absolute errors of Example 4.3 wtih MG4 (left) and MG6 (right) for  and 

Fig. 8. Absolute errors of Example 4.3 wtih MG4 (left) and MG6 (right) for  and 

Fig. 9. Absolute errors of Example 4.3 wtih MG4 (left) and MG6 (right) for  and 
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Table 5. Numerical values of exact and approximate solutions obtained from fourth-order Magnus 
Expansion Method (MG4) for Example 4.3.

t y(t)
 (Exact)

y(t) 
(Approx. for h=0.01)

y(t) 
(Approx. for h=0.001)

y(t) 
(Approx. for h=0.0001)

0.1 0.9048374180359595 0.9048374369597412 0.9048374180378442 0.9048374180359566

0.2 0.8187307530779818 0.8187308444870725 0.8187307530871168 0.8187307530780347

0.3 0.7408182206817179 0.7408182974080687 0.7408182206893917 0.7408182206817704

0.4 0.6703200460356393 0.6703200538741403 0.6703200460364238 0.6703200460356462

0.5 0.6065306597126334 0.6065306638207445 0.6065306597130387 0.6065306597126248

0.6 0.5488116360940265 0.5488116898518103 0.548811636099398 0.5488116360940533

0.7 0.49658530379140947 0.4965853612826954 0.4965853037971592 0.4965853037914511

0.8 0.44932896411722156 0.449328976300502 0.44932896411844053 0.4493289641172339

0.9 0.4065696597405991 0.4065696584197628 0.40656965974046344 0.4065696597405927

1.0 0.36787944117144233 0.3678794710118004 0.367879441174423 0.36787944117145477

Table 6. Numerical values of exact and approximate solutions obtained from sixth-order Magnus 
Expansion Method (MG6) for Example 4.3.

t y(t)
 (Exact)

y(t) 
(Approx. for h=0.01)

y(t) 
(Approx. for h=0.001)

y(t) 
(Approx. for h=0.0001)

0.1 0.9048374180359595 0.9048374180518104 0.9048374180359539 0.9048374180359559

0.2 0.8187307530779818 0.818730753130921 0.8187307530779807 0.8187307530780348

0.3 0.7408182206817179 0.7408182207215819 0.740818220681722 0.7408182206817706

0.4 0.6703200460356393 0.670320046039081 0.6703200460356418 0.6703200460356457

0.5 0.6065306597126334 0.60653065971815 0.6065306597126295 0.606530659712624

0.6 0.5488116360940265 0.5488116361260384 0.5488116360940224 0.5488116360940531

0.7 0.49658530379140947 0.49658530382186616 0.49658530379141214 0.496585303791451

0.8 0.44932896411722156 0.4493289641228474 0.4493289641172245 0.44932896411723366

0.9 0.4065696597405991 0.40656965974166054 0.4065696597405966 0.4065696597405926

1.0 0.36787944117144233 0.36787944118984306 0.36787944117143984 0.3678794411714549

5. Conclusion

In this paper, we applied MG4 and MG6 to nonhomogeneous stiff systems of ordinary 
differential equations with different step sizes and stiffness ratios. When the figures 
and tables are examined, in comparison with results of MG4, we can see that the 
approximations obtained byMG6 are better than MG4 for smaller step sizes at the 
same interval for all nonhomogeneous problems. MG4 and MG6 are explicit methods, 
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which can be used with variable time step and variable order. Also, they have similar 
stability to the implicit methods. Therefore, they are methods suitable for stiff sytems 
of ordinary differential equations. As a result, MG4 and MG6 are very effective for 
stiff ordinary differential equations with different stiffness ratios.
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