Living benthic foraminifera around the Umm al Maradim Island (Kuwait)

Eqbal Al-Enezi1,*, Abdul N. Al-Ghadban1, Ibrahim Al-Refai2, Nadia Pieretti3, Fabrizio Frontalini3

1Kuwait Institute for Scientific Research, 13109 Safat, Kuwait
2Earth and Environmental Science, Kuwait University, Kuwait
3DiSPeA, Università degli Studi di Urbino, 61029 Urbino, Italy
*Corresponding Author: eenezi@kisr.edu.kw.com

Abstract

The present investigation focuses on the unique Island of Umm al Maradim that represents the largest and southernmost coral island in Kuwait. Thirty-seven stations around the Island were sampled for living benthic foraminiferal analyses. Relatively high values of diversity for both total and living assemblages, 101 and 96 species, respectively, have been documented. These figures are sensibly higher than those documented in most of the previous studies around Kuwait territorial waters. Porcelaneous test in terms of abundance dominates the foraminiferal assemblages followed by hyaline tests and only a minor part of the assemblages was represented by agglutinated foraminifera. The high dominance of porcelainous tests might be explained by the peculiar physiographic setting and the presence of coral reef around the Island. Very low foraminiferal abundances were associated with shallower environments, like the subtidal zone around the island, whereas higher values were found at deeper and more distal stations. Planispiral morphotypes were found dominant at the more shallow-proximal stations, while milioline morphotypes dominated at intermediate depth and trochospiral morphotypes were more abundant at greater water depth. This paper contributes towards the documentation of benthic foraminiferal diversity around the islands in the Kuwait territorial water.

Keywords: Benthic foraminifera; cluster analysis; diversity; Kuwait; Umm al Maradim Island

1. Introduction

Foraminifera, single-celled organisms, inhabit a wide range of marine environments, from the intertidal zone to the deep sea. Recent benthic foraminifera and their ecology have been extensively studied in the Arabian Gulf (See Cherif et al., 1997; Arslan et al., 2016). On the other hand, few studies have been performed on recent benthic foraminifera from Kuwait coastal water. These marine environments include the Sulaibikhat Bay (Al-Zamel et al. 2009; Al-Enezi & Frontalini, 2015), the subtidal zones of the western part of the Shatt Al-Arab Delta (Al-Zamel & Cherif, 1998), tidal creeks in Khor Al-Mufateh and Khor Al-Mammaha in the southeast of Kuwait (Al-Zamel et al., 1996) and a carbonate ramp located offshore Kuwait (Parker & Gischler, 2015). Most of these studies have focused on the total assemblages and rarely on the distribution of living benthic foraminiferal assemblages. Furthermore, previous researches have been mainly conducted in the northern marine environments of Kuwait. In the context of recording the overall Kuwaiti benthic foraminiferal diversity and species’ distribution, this study was conducted to document the benthic foraminiferal diversity and the assemblages’ distribution around the poorly known Umm al Maradim Island (Kuwait).

2. Study area

Umm al Maradim Island covers an area of 65 ha and is located in the southeastern part of the Arabian Gulf in Kuwait territorial waters (28°40′21.40″N 48°39′28.42″E) near the latitude of the Kuwait-Saudi Arabian border (Figure 1a). Unlike the other northern Kuwaiti islands, Umm al Maradim is surrounded by deep waters that enable ships to land directly at its shores. The surrounding rift is dominated by a massive stand of Porites corals and small colonies of branching Acropora and Stylophora (Al-Yamani et al., 2004). The beach of the island is dominated by carbonate grain shell and shell fragments, pelycepods, gastropods, echinoid spines, coralline algal, quartz and heavy minerals (Al-Ghadban et al., 1994). The marine biota around the island has been scarcely studied.

3. Materials and Methods

3.1 Sampling

Thirty-seven sediment samples were collected using a box-corer along 8 transects around the Umm Al-Maradim Island (Figure 1b) on June 2000. Water depth at collection sites ranged between 1 and 35.1 m. The uppermost parts of sediment (2 cm) were stored in polyethylene jars. Physico-chemical parameters (salinity, pH, dissolved oxygen (DO), turbidity, conductivity and
temperature) were measured using a Hureba system.

3. Materials and Methods

3.1 Sampling

Thirty-seven sediment samples were collected using a box-corer along 8 transects around the Umm Al-Maradim Island (Figure 1b) on June 2000. Water depth at collection sites ranged between 1 and 35.1 m. The uppermost parts of sediment (2 cm) were stored in polyethylene jars. Physico-chemical parameters (salinity, pH, dissolved oxygen (DO), turbidity, conductivity and temperature) were measured using a Hureba system.

3.2 Grain-size analysis

The sediment analyses were performed following the Regional Organization for the Protection of the Marine Environment (ROPME) method (1999). The statistical size parameters were calculated following the procedure of Folk & Ward (1957).

3.3 Benthic foraminiferal analysis

Immediately after sampling, an aliquot of 20 cm³ was treated with a rose Bengal solution (2 g/L) h to distinguish between living and dead foraminifera. Quantitative analyses on benthic foraminifera were performed on the fraction >125 µm. A total of 300 specimens of living and 300 ones of dead assemblages were hand-picked for taxonomical analysis. In this study, the suprageneric classification of WoRMS (2016) was largely followed. Several foraminiferal parameters including species diversity (S), the Fisher α index, the Shannon-Weaver index or information function (H’), evenness (J); and equitability (E) were calculated using the Paleontological Statistics Software Package (PAST).

3.4 Statistical analysis

Stations containing at least 100 specimens in the living assemblages were retained for the statistical analyses. Only species with a relative abundance greater than 5% in at least one sample were included in the statistical treatment. The relative abundances of taxa were logarithmically normalized log(1+X) prior to statistical analysis. Q- and R-modes Cluster Analysis (CA) were carried out by adopting the Ward’s linkage method and given in terms of the Euclidean distance using Statistica 7.0.

4. Results

4.1 Physico-chemical parameters and grain-size

Figure 2 shows the sample areas and depths. The salinity averaging 37.8 ranged from 37.5 to 38.1. The pH and DO showed only minor fluctuations among the sampling stations ranging from 8.08 to 8.14 and from 6.41 to 6.89 mg/l, respectively. Higher values of DO were documented around the western and southwestern parts of the island. The island is dominated by a sand-size fraction ranging from 56.3% to 99.3%. Gravel and mud represented only minor parts of sediments and accounted on average for 14.7% and 0.2%, respectively. Higher sand contents were normally found around the southeastern and northwestern parts of the island.

4.2 Benthic foraminiferal diversity and suprageneric classification

A total of 101 benthic foraminiferal species belonging to 48 genera were identified in the total assemblages (Table 1). Following WoRMS (2016), 5 orders of benthic foraminifera were found on Umm al Maradim Island. These include: Lituolida, Textulariida, Miliolida, Lagenida and Rotaliida (Table 1).
Table 1. Generic and suprageneric classification of benthic foraminiferal taxa recognized around Umm al Maradim Island

<table>
<thead>
<tr>
<th>Order</th>
<th>Superfamily</th>
<th>Family</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodosariidae</td>
<td></td>
<td>Lagunidae</td>
<td>Nodosariidae</td>
<td>Polyplacostomina</td>
</tr>
<tr>
<td>Lagunidae</td>
<td></td>
<td>Lagunidae</td>
<td>Pararotalinidae</td>
<td>Pararotalinida</td>
</tr>
<tr>
<td>Bolivinitidae</td>
<td></td>
<td>Bolivinitidae</td>
<td>Bolivinitidae</td>
<td>Bolivinitida</td>
</tr>
<tr>
<td>Discorbidae</td>
<td></td>
<td>Discorbidae</td>
<td>Discorbidae</td>
<td>Discorbidae</td>
</tr>
<tr>
<td>Rotalinidae</td>
<td></td>
<td>Rotalinidae</td>
<td>Rotalinida</td>
<td>Rotalinida</td>
</tr>
<tr>
<td>Planorbilinida</td>
<td></td>
<td>Planorbilida</td>
<td>Planorbilinida</td>
<td>Planorbilinida</td>
</tr>
<tr>
<td>Asterozoidida</td>
<td></td>
<td>Asterozoidida</td>
<td>Asterozoidida</td>
<td>Asterozoidida</td>
</tr>
<tr>
<td>Notionellida</td>
<td></td>
<td>Notionellida</td>
<td>Notionellida</td>
<td>Notionellida</td>
</tr>
<tr>
<td>Nannolithida</td>
<td>Nannolithida</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The highest numbers of living specimens were documented at the more distal stations, whereas relatively low values were found at the shallower station and around the southwestern part of the island (Figure 3). A total of 96 taxa were identified in the benthic foraminiferal assemblages (Figure 4). The highest values of S and H' were found around the northern and southeastern parts of the island, particularly at the more distal stations, whereas the highest values of Fisher α index were documented around the northeastern part of the island (Figure 3). The E and J values showed a similar pattern of distribution with commonly higher values around the southwestern part of the island. The benthic foraminiferal assemblages were dominated by species with porcelaneous tests (63.5%), followed by hyaline tests (34.7%), only a minor part (1.8%) of the assemblages were represented by agglutinated foraminifera. Porcelaneous tests were found to be higher both around the northwestern part of the island at the more distal stations and in the eastern part at the more proximal one (Figure 3). On the other hand, hyaline tests were more abundant around the central-western part of the island (Figure 3). Planispiral morphotypes dominated at the more shallow-proximal stations, while milioline morphotypes dominated at an intermediate depth and trochospiral morphotypes were more abundant at a greater water depth (Figure 3).
8. Pattern of distribution with commonly higher values around the northwestern part of the island. The benthic foraminiferal assemblages were dominated by species with porcelaneous tests (63.5%), followed by hyaline tests (34.7%), only a minor part


4.3 Statistical analyses
On the basis of the R-mode CA, two clusters (1 and 2) and two sub-clusters (2.1 and 2.2) were recognized (Figure 5). Cluster 1 is represented by Siphonaperta sp. 1, S. dilatata, Quinqueloculina sp. 2, Quinqueloculina sp. 1, S. angulata, Trilocula sp. 1, and O. complanata. The sub-cluster 2.2 is solely constituted by three species (P. japonicum, P. mediterranensis and Elphidium sp. 1), whereas sub-cluster 2.1 is made up all the other taxa (Figure 5).

The Q-mode CA results in the grouping of three groups of samples, namely cluster A and sub-clusters (B1 and B2) (Figure 6). Cluster A includes stations that are located around the central eastern and southern parts of the island (Figure 6). On the other hand, sub-cluster B2 comprises stations that are mainly located near the southwestern and northeastern parts of the island, far from the coasts. Sub-cluster B1.

5. Discussion
5.1 Umm al Maradim Island
The Arabian Gulf is a marginal shallow (<100 m water depth) sea enclosed between the Arabian Peninsula and Iran. In contrast to the other Kuwaiti island, Umm al Maradim is surrounded by deep waters and represents the largest and southernmost coral island in Kuwait (Al-Yamani et al., 2004). All these features make Umm al Maradim unique. The physicochemical parameters around the island were quite homogeneous during the sampling. This homogeneity might be due to the water circulation and tidal movements. Sediments were dominated by sand representing ca. 85.1%, on mean, whereas gravel and mud constituted only minor parts of the sediment. The fine sand and mud fractions were restricted to the southeastern part of the island.
Sub-cluster 2.2 is solely constituted by three species (*P. japonicum*, *P. mediterranensis* and *Elphidium* sp. 1), whereas sub-cluster 2.1 is made up all the other taxa (Figure 5).

The Q-mode CA results in the grouping of three groups of samples, namely cluster A and sub-clusters (B1 and B2) (Figure 6).

Cluster A includes stations that are located around the central eastern and southern parts of the island (Figure 6). On the other hand, sub-cluster B2 comprises stations that are mainly located near the southwestern and northeastern parts of the island, far from the coasts. Sub-cluster B1 mainly comprises stations around the central part of the island (Figure 7).

Figure 6. Q-mode cluster analysis

Figure 7. Distribution of the groups as identified by the Q-mode cluster analysis

Relatively higher values of gravel were found around the northeastern and southwestern parts of the island. In contrast, higher sand contents were commonly found around the southeastern and northwestern parts of the island. The northern and northwestern parts of the island have been suggested as erosional in nature, while the southern and southeastern part are inferred as sites of deposition, reflecting the action of predominant Shamal northwestern winds across the island.

5.2 Foraminiferal diversity around Umm al Maradim Island

The knowledge of the diversity and distribution of benthic foraminifera is quite limited in Kuwait because most studies have either been based on total assemblages or have focused on Kuwait’s northern marine environments. On the basis of the total assemblages, 101 species belonging to 48 genera were identified. The living part is instead represented by 96 taxa. These figures are sensibly higher than those documented in previous studies around Kuwait territorial waters (42 species by Al-Zamel *et al.* (1996), 46 species by Al-Zamel *et al.* (1998), 45 species by Al-Zamel *et al.* (2009), 59 species by Al-Enezi & Frontalini (2015)). Relatively higher values (141 species from the total assemblages) were documented along a water depth transect in the central-southern part of Kuwait (Parker & Gischler, 2015). It should be emphasized that most of previous studies have focused on the total assemblages (living and dead foraminifera). Accordingly, the total assemblages include autochthonous taxa as well as allochthonous ones that might have been transported from other environments (Frontalini *et al.*, 2015).

5.3 Foraminiferal distribution

Relatively higher values of foraminiferal abundances were documented at deeper stations, commonly exceeding 20 m, with a higher sand content. Low abundances of living foraminiferal specimens were normally associated with shallower environments and subtidal zone around the island. A much lower total foraminiferal abundance was found for the northern part of the Arabian Gulf compared to the shallow ramp on the south (Gischler & Lomando, 2005). This low abundance was tentatively explained by the peculiar geomorphological and the depositional energy patterns offshore of Kuwait coupled with the extreme environmental variability of the Gulf (Parker & Gischler, 2015). In our samples, relatively higher values of living foraminiferal abundance were commonly found at deeper stations.

Porcelaneous tests in terms of abundance dominates the foraminiferal assemblages followed by hyaline tests. Only a minor part of the assemblages was represented by agglutinated foraminifera. These percentages are quite different from those documented by Al-Zamel & Cherif (1998) in the western part of the Shatt Al-Arab Delta. Accordingly, the foraminiferal fauna in these subtidal and tidal creeks exhibited a lower abundance of agglutinated and porcelaneous forms but a much higher abundance of hyaline one. These differences might be explained by different salinity and physiographic settings when compared to the more open marine environment around Umm al Maradim Island and the presence of coral reefs.

The porcelaneous foraminifera were found to dominate at the eastern proximal and northwestern distal stations. Planispiral morphotypes dominated at the more shallow-proximal stations, whereas milioline morphotypes dominated at intermediate depth and trochospiral morphotypes were more abundant at a greater water depth. A similar pattern was found by Parker & Gischler (2015) who documented planispiral morphotypes dominating at shallower stations (0–5 m water depth), milioline morphotypes dominating at an intermediate depth (5 to 18 m water depth), and a mix of morphotypes (trochospiral, planispiral, and milioline) at a water depth exceeding 18 m.

Cluster A groups stations mainly located around the central eastern and southern parts of the island with intermediate values of depth and the highest content...
of gravel and the lowest of sand. This group is also characterized by a relatively high abundance of *A. dentata*, *A. milletti*, *C. excavatum*, *E. margaritaceum*, *Elphidium* sp. 1, *M. subrotunda*, *P. mediterranensis*, *P. japonicum*, *Q. stelligera*, and *V. neostriatula* as well as the lowest values of diversity indexes, *E* and *J*. This group can be compared with the *Asterorotalia-Elphidium* assemblages documented by Parker & Gischler (2015). Sub-cluster B2 includes stations placed around southwestern and northeastern parts of the island far from the coast, where the water was deepest and had intermediate values of sand and gravel. This sub-cluster is also marked by the highest values of diversity indexes, *E*, *J* and of *C. bradyi*, *E. craticulatum*, *E. cribrorepandus*, *O. complanata*, *Quinqueloculina* sp. 2, *S. barkeri*, *S. angulata* and *Triloculina* sp. 1. This sub-cluster might be compared with the foraminiferal assemblages from the carbonate shoals of Parker & Gischler (2015) that is characterized by the presence of *Heterostegina depressa*, *E. craticulatum*, *Amphistegina lessonii*, *Acerulina* spp. and *Eponides repandus*. On the other hand, sub-cluster B1 mainly comprises stations in the central parts of the island that are characterized by the lowest water depth (18.7 m, on average) and which have low gravel content and the highest sand content. This group of stations shows slightly higher values of assemblages’ parameters and of *A. alticostata*, *P. granulocostata*, *Q. poeyana*, *Quinqueloculina* sp. 1, *S. dilatata*, *Siphonaperta* sp. 1 and *S. nummiformis*. This cluster, which is dominated by porcelaneous wall type, can be compared to the Parker & Gischler (2015), though it was documented for Umm al Maradim Island at a greater water depth.

6. Conclusion

The present study focuses on the diversity and distribution of living benthic foraminifera around Umm al Maradim Island. Relatively high values of diversity have been documented. These figures are sensibly higher than those documented in most of the previous studies around Kuwait territorial waters. Porcelaneous tests in terms of abundance dominates the foraminiferal assemblages followed by hyaline tests. In addition, only a minor part of the assemblages was represented by agglutinated foraminifera. Very low foraminiferal abundances were associated with shallower environments and similar subtidal zone around the island, whereas higher values were found at deeper and more distal stations.

References


Living benthic foraminifera around the Umm al Maradim Island (Kuwait)


Submitted :14/05/2017
Revised :03/01/2018
Acceptance :18/02/2018
المنخربات (foraminifera)

القاعية الحية حول جزيرة أم المرادم الفريدة (الكويت)

اقبال العنزي، عبد النبي الغضبان، ابراهيم الرفاعي، ناديا بياريتي، فابريزيو فرونتاليني

المعهد الكويتي للأبحاث العلمية، الكويت
قسم علوم الأرض والبيئة، جامعة الكويت، الكويت
جامعة أوربينو، أوربينو، إيطاليا

الملخص

يركز البحث الحالي على جزيرة أم المرادم الفريدة من نوعها والتي تعتبر أكبر جزيرة شعاب مرجانية في جنوب الكويت. تم أخذ عينات من سبعون محطة حول الجزيرة لتحليل المنخربات القاعية الحية فيها. وقد تم توثيق كميات عالية تنوعاً لكل من التجمعات الإجمالية والحيّة، وهي 101 و 96 نوعاً، على التوالي. وهذه الأرقام أعلى بشكل ملحوظ من تلك الموثقة في معظم الدراسات السابقة التي أجريت حول المياه الإقليمية الكويتية. ومن حيث الوفرة، تسود تجمعات المنخربات ذات الأصداف الكريعية (porcelaneous tests)، ولن تمثل المنخربات الملتصقة (hyaline test) الجزء بسيط فقط من التجمعات. ويمكن تفسير هيمنة الجيرية الزجاجية عالية المنخربات ذات الأصداف الكريعية بسبب تواجدها في البيئة الفيزيوغرافية المميزة ووجود الشعاب المرجانية في جميع أنحاء الجزيرة. وارتبط تواجد المنخربات بكميات منخفضة جداً في بيئات ضحلة مثل المناطق المغمورة حول الجزيرة، بينما تم العثور على كميات أعلى في محطات أعمق وأكثر ضحالة. وجد أن الأنماط المورفولوجية ذات الالتفاف المستوي (planispiral) أكثر وأكثر وفرة في الأعماق البعيدة للمنطقة، بينما كانت الأصداف ذات الالتفاف المليوليئي (milioline) أكثر وفرة في الأعماق المتوسطة، بينما كانت الأصداف ذات الالتفاف الحزليني (chospiral) أكثر وفرة في الأعماق البعيدة للمياه. ويستهدف هذا البحث في توثيق تنوع المنخربات القاعية حول الجزيرة في المياه الإقليمية الكويتية.