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  Abstract

A well-designed and properly analyzed clinical trial is a powerful tool for the development of new drugs. Clinical trials 
are studies that explore whether a treatment, drug or device is safe and effective for humans. These studies can show 
which drug development method works best for certain diseases.  The first step in drug discovery (phase I) is very 
important to determine maximum tolerated dose (MTD). 

In the first part of the study, the classical 3+3 design, Continual Reassessment Method (CRM), and Bayesian 
Continual Reassessment Method (B-CRM) are compared in terms of selection probability of MTD and the number of 
treated patients. Among these designs, the B-CRM produced better results than the 3+3 and the CRM. In the second 
part of the study, we considered different model structures and priors in the B-CRM design. We considered three model 
structures; power model, hyperbolic tangent model, logit model and three different prior distributions; gamma, uniform 
and lognormal prior respectively. It was found that if power or hyperbolic tangent model structure and uniform prior 
were selected, the MTD selection rates were the highest in B-CRM.

Keywords: Bayesian inference; clinical trial; maximum tolerated dose; prior selection.

1. Introduction

Clinical trials are studies that are applied directly on 
humans as test subjects under convenient circumstances. 
They mainly focus on experimental medicine, new 
treatment methods, medical devices and clinical 
processes. Clinical trials play an important role in 
developing new treatment methods, helping researchers 
to find best medicine dosage levels. They also contribute 
to finding potential side effects of medicines, which 
safeguards patients.

Phase I trials focus on four major rules: the ethics 
of the trial, the initial selection of the dose, the speed of 
efficiency of the dose, the possibility of target toxicity, 
and the sufficiency of the trial design. Phase I trials aim 
to determine the maximum tolerated dose (MTD) of a 
suggested dose amount for   Phase II studies and to calculate 
its safety and tolerability. The MTD is the amount that 
is closest to the toxicity levels which is pre-determined 
by researchers. The recommended dose should be at the 
MTD level or below it. The dose-limiting toxicity (DLT) 
is the toxicity that blocks the further administration of the 
drug at current dose level.

There are many statistical algorithms and model-based 
methods for dose finding studies in Phase I. One is the 
standard 3+3 design, an algorithm-based approach, which 
finds the highest dose of MTD with its toxicity probability 
less than 33% (Storer, 1989). With its simple and easy 
applicability, the 3+3 design is the most commonly used 
rule-based design. Le Tourneau et al. (2009) explained 
drawbacks of the various dose escalation methods and 
recommended model-based designs rather than the 3+3 
design. Hansen et al. (2014) how that the 3+3 design 
identified the correct dose with an acceptable level of 
precision, but no single escalation method was proven 
superior in all conditions. Nie et al. (2016) showed that in 
the 3+3 design, the important dose-ranging clinical trials 
have not been routinely performed. Ulas & Karaman 
(2018) found that the 3+3 design produced the worst 
performance compared to model-based designs based on 
different simulation studies.

The most commonly used model-based design is 
continual reassessment methods (CRM) (O’Quigley et 
al., 1990). As more toxicity data is collected during the 
trial, CRM updates the estimation of toxicity probabilities 
for all doses. Each new cohort of patients is sequentially 
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assigned to the most appropriate dose based on the 
updated toxicity probabilities. The MTD is determined 
when the total sample size is exhausted. Babb et al. (1998) 
developed an increasing dose scheme which controls 
overdose so as to protect patients from excessive toxicity.  
Heyd & Carlin (1999) developed an advanced application 
for CRM in order to stop an experiment earlier when the 
probability interval is narrow enough for MTD. Ishizuka 
& Ohashi (2001) proposed a method that reduces the 
number of patients that are treated at the next dose levels 
of the MTD by using Bayesian computation for the CRM 
method during phase I clinical trials. Leung & Wang 
(2002) applied a decision theory to optimize the number 
of patients allocated for the highest dose using tolerated 
toxicity. Garret-Mayer (2006) discussed qualities that 
define a CRM design and showed examples of CRMs and 
standard designs. Cheung (2011) explained widely the 
CRM and its extended versions for dose finding studying 
in his book. 

In the Bayesian paradigm, Yin (2012) investigated 
clinical trial designs with Bayesian and frequents 
methodologies. Ji et al. (2012) consider the Bayesian 
continual reassessment method for patients with 
malignancies and when sample sizes were small. The 
authors considered three different scenarios: Early 
Stopping (ES), Fast Escalation (FE), and Bracketed MTD 
(BR). They found that the 3+3 design could not increase 
quickly in an FE scenario. However, model-based designs 
were more effective. Thus, model-based designs can be 
recommended for trials in which the number of patients 
is small. Sweeting et al. (2013) demonstrated, through 
example of the BCRM package, how a variety of possible 
designs can be easily implemented within R statistical 
software. In addition, the authors showed how properties 
of the design can be communicated to trial investigators 
using simple textual and graphical output obtained from 
the software.

Section 2 includes a review of a one-parameter 
CRM design, Bayesian Continual Reassessment Method 
(B-CRM) and stopping rules. The main focus of Section 3 
is on how different priors for different model types affect 
the selection probability of the MTD. Simulation studies 
were carried out in order to compare CRM, B-CRM and 
3+3 designs. A selection of different prior and model 
structures for B-CRM is considered by using two different 
simulation studies in order to examine true MTD rates. 
Finally, a brief discussion is given in Section 4.

2. Methods

2.1. One parameter CRM design

CRM links to the true toxicity probability in each dose 
with pre-determined toxicity probability, using a single-
parameter model. As toxicity data is collected during the 
trial, CRM updates the estimation of toxicity probability 
of all doses constantly. Commonly, we expect toxicity 
to increase monotonically with respect to the dose. 
Let  be the predetermined toxicity 
probabilities of a set of d doses for the drug under 
consideration, which is often known as the skeleton of the 
CRM. Let  be the target toxicity probability specified 
by the researcher and  denote the binary toxicity outcome 
observed in the jth patient. The jth patient recruited to the 
trial,  denotes a DLT, for      

CRM power model is as follows:

                                     (1)

where a is the only unknown parameter (O’Quigley & 
Shen, 1996).

One parameter CRM hyperbolic tangent dose-response 
model as follows

                            (2)

where  and  
 
is the standardized dose at dose level 

j.

One parameter logistic CRM model which has a fixed 
intercept as follows 

                                                    (3)

The fixed intercept c is set to 3 for ease of calculation as it 
mentioned in (O’Quigley & Chevret, 1991).

In order to increase the robust of design, multiple CRM 
models can be used after creating a different skeleton (Yin 
& Yuan 2009). Different skeletons estimate the toxicity 
profile of a medicine with a different prior knowledge. So 
that it guarantees the researcher to estimate the toxicity 
probability closest to the best estimations among all the 
candidate models.

2.2. Bayesian framework

Estimation of  parameter is desired by using statistical 
model defined with probability density function  
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depending on  data. According to the 
Bayesian approach, when information on distribution and 
probability is insufficient,  cannot be exactly determined. 
The fundamental of the Bayesian inference is given 
below: 

For 1. , a probability distribution, represented as 

 is formulized. This distribution is called a prior 
distribution. 

2.   For observed y dataset and when  is given, a 
likelihood function  is determined to define 
the distribution of y given  

 is the posterior distribution which is defined using 
the prior and the likelihood function as the following:

                      (4)

Then, all statistical inferences about α are obtained 
through the posterior distribution.

Above steps can be formulated for CRM model by using 
Bayesian approach. 

When the posterior estimates of toxicity probabilities 
for all doses are updated, the recommended dose level for 
the next cohort of patients is the one that has a toxicity 
probability closest to the target . Thus, a new cohort of 
patients is assigned to dose level  such that

                              (5)

Denote the current dose level as .  

If • , de escalate to the dose level  
;

If • , escalate to the dose level  ;

Otherwise the dose stays at the same level for the • 
next cohort of patient.

The trail is continued until the total sample size is 
reached, after which the dose with a posterior toxicity 
probability closest to  is selected MTD (Yin, 2012).

Bayesian inference or modeling cannot be done 
without prior distribution. It is possible to take such prior 

distributions as Gamma, uniform and lognormal for the
. 

For instance, let  ~lognormal  prior and  
represent the prior distribution for CRM power model.

Then,

 

2.3. Stopping criteria

In phase I trials, patients are continued to include in trial 
until the maximum sample size is reached or until it 
encounters one of the possible stopping rules. There are 
several stopping criteria in phase I dose finding studies. 
O’Quigley & Reiner (1998) proposed a stopping rule 
based on the probability that the remaining patients were 
included in the trial. According to this rule, together with 
the final recommended MTD, the same dose level is 
appointed and if, at any time, this predicted probability is 
high, then the trial is stopped. In this study, we considered 
two different criteria. First one is the O’Quigley & Reiner 
(1998) stopping criteria and the second one is the one of 
the commonly used practice stopping rule is as follows: 

If  (O’Quigley 
et al., 1990) then the trial is terminated for safety 
concerns.

3. Simulation Studies

We compare the classical 3+3 design, CRM and B-CRM 
design using a pharmacokinetic phase I clinical trial that 
aim to determine the MTD for Antroquinonol (C24H38O4) 
which is an active component of Anthodia camphorate. 
Anthodia camphorate is a unique mushroom of Taiwan, 
which has been used as a traditional medicine for 
protection of diverse health-related conditions. This 
clinical trial studied six doses of the drug. It was taken 
orally, daily within 15 minutes after a breakfast at the 
assigned dose level: 50, 100, 200, 300, 450, 600 mg/day 
for 4 weeks. A total of 21 assessable patients were used 
for dose escalation. 

We took the MTD as the dose with a DLT rate of 30%, 
it can be seen that different values can be used for DLT 
in the literature, (Iasonos & O’Quigley, 2014) The values 
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can be prepared five sets of initial guesses of toxicity 
probabilities:

The probabilities of skeletons are simulated by using 
R software with “dfcrm” (dose- finding by the continual 
reassessment method) package.

These probabilities have effect on the true MTD when 
the range between target toxicity and pre-determined 
toxicity are higher. We generated several skeletons for 
all CRM models. And we use the skeleton for each CRM 
model based on the best performance produced. The 
skeleton which produced the best selection probability is 
considered in our study. We took the cohort size 3 and 

treated the first cohort of patients at the lowest dose level. 
We created five scenarios for five skeletons and for each 
scenario; we carried out 10000 simulated trials for each 
scenarios. 

In this paper, the classical 3+3 design, CRM and 
Bayesian CRM methods are compared in order to select 
the true dose level as MTD and the numbers of patients 
who are treated at each dose level are highlighted. We 
used “East 6.3.1” program for MTD dose selection of 
probability in the 3+3 design and CRM. Furthermore, we 
investigated the different model structure and different 
priors of B-CRM method in order to determine the true 
dose level as MTD. In Table 1, we list the dose selection 
probability and the average number of patients treated 
at each dose using the 3+3, CRM and B-CRM design, 
respectively, for five scenarios at different dose levels.

Table1. Simulation results under different five scenarios for 3+3, CRM and B-CRM. 

   Dose  levels Average 
patient   50 100 200 300 450 600

Methods True toxicity rate 0.03 0.05 0.06 0.1 0.3 0.5

Sc
en

ar
io

 1

3+3
Probability selection 1.74 13.15 15.56 40.62 26.2 2.76  
number of patients treated 3.173 2.452 2.561 4.324 4.38 4.101 21

CRM
Probability selection 3.3 5.1 20.1 35.1 36.4 0  
number of patients treated 3.099 3.158 4.697 4.467 5.57 0 21

B-CRM
Probability selection 0 0 0.04 18.8 73 8.23  
number of patients treated 2.7 3.09 3.4 5.03 6.49 0.3 21

Methods True toxicity rate 0.15 0.2 0.25 0.3 0.35 0.4  

Sc
en

ar
io

 2

3+3
Probability selection 24.35 29.37 22.4 16.86 6.88 0.24  
number of patients treated 3.223 3.008 4.145 4.119 3.05 3.454 21

CRM
Probability selection 0 16.5 58.9 24.6 0 0  
number of patients treated 3.895 5.896 5.977 5.232 0 0 21

B-CRM
Probability selection 0 0.4 5.2 94.4 0 0  
number of patients treated 3.2 3.6 4.9 9.3 0 0 21

Methods True toxicity rate 0.01 0.3 0.55 0.65 0.8 0.95

Sc
en

ar
io

 3

3+3
Probability selection 31.8 57.36 10.33 0.51 0 0  
number of patients treated 4.015 5.324 4.245 3.77 3.64 0 21

CRM
Probability selection 30.07 44.7 21.01 4.02 0.2 0  
number of patients treated 3.006 3.926 4.943 5.459 3.66 0 21

B-CRM
Probability selection 47 52.8 0.05 0 0 0  
number of patients treated 7.1 10.4 3.5 0 0 0 21
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Methods True toxicity rate 0.05 0.09 0.16 0.21 0.23 0.24
Sc

en
ar

io
 4

3+3
Probability selection 4.5 13.28 20.99 19.3 8.09 1.35  
number of patients treated 3.481 3.448 3.392 3.422 4.1 3.15 21

CRM
Probability selection 0.04 0.02 4.5 3.7 20.9 70.6  
number of patients treated 2.7 2.9 3.1 3.1 3.287 5.91 21

B-CRM
Probability selection 0 0.12 1.4 3.2 19.7 74.6  
number of patients treated 1.7 2.24 3.3 3.1 3.36 7.3 21

Methods True toxicity rate 0.5 0.6 0.6 0.7 0.8 0.9

Sc
en

ar
io

 5

3+3
Probability selection 27.4 2.17 0.25 0 0 0  
number of patients treated 4.442 3.451 4.106 3 6 0 21

CRM
Probability selection 26 23 7.9 0 0 0  
number of patients treated 3.78 5.233 5.418 0 0 0 13

B-CRM
Probability selection 19.3 0.01 0 0 0 0  
number of patients treated 4.47 1.17 0 0 0 0 5

The true probabilities that given in Table 1 are set 
based on some notion of testing different “dose-response” 
scenarios. Ji et al., (2012) have explained more clearly. 
Suppose that CRM model is one parameter power model 
and for all the methods except the 3+3 design, the trial is 
stopped when the maximum sample size is reached. We 
took the prior distributions of  as a Gamma for BCRM. 

In the first scenario, simulations are carried out by 
using skeleton 1 which is obtained from CRM skeletons. 
While fifth dose is the maximum tolerated dose, selection 
probability of this dose as MTD differs for three different 
methods. The 3+3 design has the lowest probability to 
select the MTD with 26%. When dose selection rates are 
considered for the 3+3 design, it tends to choose the forth 
dose as MTD. Selection probability, where the dose is 
MTD, is 36% in CRM approach and selection probability, 
where the dose is MTD, is 73% for B-CRM approach. 
B-CRM approach gives the best performance in scenario 
1. When treated patients for each dose are considered, 
generally all dose levels show similar results.

Simulations are carried out using skeleton 2 for 
scenario 2 and the fourth dose is found as the maximum 
tolerated dose.  Exclusively, B-CRM selected dose 4 as 
true the MTD. Moreover, when the number of patients 
treated at each dose is examined, there is no toxic dose 
more than the MTD for CRM and B-CRM. In contrast, 
there are 6 patients who are treated at a dose which has a 
higher toxic level than the MTD in the 3+3 design.

In scenario 3, the second dose is found as maximum 
tolerated dose and the selection probability of this dose 
as MTD is similar for three different methods. When 

treated patients for each dose are considered, the 3+3 
design has the highest probability to select MTD dose. 
However, when the number of patients treated at each 
dose is taken into account, patients are treated at higher 
toxic dose levels at B-CRM and CRM approach. Thus, 
although selection probability of MTD dose in B-CRM is 
lower than the highest selection probability in scenario, it 
is a better approach for treating fewer patients at extreme 
dose levels. 

In scenario 4, the right dose toxicity probabilities 
determined for all levels of toxicity is lower than probability 
of the target toxicity. In such a situation, the trial is expected 
to be stopped with a rapid dose escalation. The B-CRM and 
CRM showed a good performance in this scenario because 
they constantly update existing toxicity possibilities for 
each dose level. The scenario 5, the right dose toxicity 
probabilities determined for all levels of toxicity is higher 
than probability of the target toxicity. So that, all doses 
are extremely high. In such a case, the trial is expected to 
immediately stop before selection of MTD. 

So, the second stopping criteria, which is “if
, is used for this 

scenario. In this scenario, the best performance is showed 
by the B-CRM. In total, only 5 patients are treated at 
extreme highest dose and trial is stopped at an early 
stage. 

In the most cases, the B-CRM method performed 
better than other trial designs. Therefore, different model 
structures and priors of B-CRM design are investigated 
and the selection probabilities of MTD in B-CRM are 
given in Table 2 and 3.
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Table 2. Probability selection of MTD under the different three scenarios.

Scenario 
1

Model
Prior 

distribution
Dose levels

50 100 200 300 450 600

Power
model

Gamma 0 0 0.01 17.1 74.8 0.8
Uniform 0 0 0 17.5 82.5 0
Log normal 0 0 0.03 20.7 46.2 32.8

Hyperbolic 
tangent 
model

Gamma 0 0 0 21 68.8 10.2
Uniform 0 0 0 16.9 83.1 0
Log normal 0 0 0.01 20.8 47.9 31.2

Logit model
Gamma 0 0 0.05 17.9 41 40.6
Uniform 0 0 0.13 14.4 35.1 48.8
Log normal 0 0.01 0.14 16.5 27.5 54.5

Scenario 
2

Power model
Gamma 0 0 0.52 93.7 0.11 0
Uniform 0 0 0.9 99.1 0 0
Log normal 0 0 19.7 64.5 15.8 0

Hyperbolic 
tangent 
model

Gamma 0 0 5.5 93.7 0.8 0
Uniform 0 0 0.11 98.9 0 0
Log normal 0 0 19.8 65.9 14.3 0

Logit model
Gamma 0 0.05 25.6 54.3 18.8 0.08
Uniform 0 0 28.2 46.4 25.4 0
Log normal 0 0.33 30.2 38.8 22.2 0.4

Scenario 
3

Power 
model

Gamma 48.8 50.1 0.07 0.04 0 0
Uniform 0.05 99.5 0 0 0 0
Log normal 16.6 68.5 14.9 0 0 0

Hyperbolic 
tangent 
model

Gamma 48.9 50.5 0.4 0.02 0 0
Uniform 0.08 99.2 0 0 0 0
Log normal 16.2 72.5 11.1 0.02 0 0

Logit model
Gamma 0.11 55.3 20 0.33 0.03 0
Uniform 0.36 96.4 0 0 0 0
Log normal 0.48 63.4 29.7 0.2 0.01 0

Fifth dose in the first scenario was the MTD. When 
the model structure was taken as a power-CRM model, 
selection probability of the MTD at the fifth dose level 
by using gamma prior was 75% and the probability of 
selection of MTD at the fifth dose level with uniform prior 
was 83% while probability of selection of the MTD at the 
fifth dose level with log normal prior was 46%.  When 
the priors are taken as gamma and uniform distribution, 
B-CRM performed better results for power-CRM in the 
first scenario.

On the other hand, if the model structure was selected 
as hyperbolic tangent model, the probability selection of 

the MTD at the fifth dose by using gamma prior was 69% 
uniform prior was 83% and log normal prior was 48% 
respectively. The selection probabilities of hyperbolic 
tangent model structure with different priors produced 
similar results as in the power-CRM model. In both model 
structures, uniform prior selected the true dose level as 
MTD with the highest rates.

Additionally, when the model structure was taken as 
the logit model, probability selection of MTD at the fifth 
dose level with gamma prior was 41%, uniform prior 
was 35% and log-normal prior was 28%. The logit model 
structure for B-CRM produces low probability selection 
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of MTD for different priors when compared to power 
model and hyperbolic tangent model. In three different 
model structures and three different priors, the selection 
probability of the MTD at the fifth dose level was the 
highest, when the power or hyperbolic tangent model 
structure and uniform prior was used.

In scenario 2, the fourth dose was selected as MTD. 
The highest selection probability of the MTD at the fourth 
dose level was found, when the power or hyperbolic 
tangent model structure was taken with uniform prior. In 
scenario 3 similar results were obtained as in scenario 2.

Table 3. Probability selection of MTD under the different two scenarios. 

Scenario 
4

Model
Prior 

distribution
Dose  levels

50 100 200 300 450 600

Power 
model

Gamma 0 0.12 1.5 3.2 18.7 75.6
Uniform 0 0 0 0 0.09 99.1
Log normal 0 0.17 4.1 4.53 40.8 50.4

Hyperbolic 
tangent 
model

Gamma 0 0 0 0.88 18.5 72.7
Uniform 0 0 0 0 1 99
Log normal 0 0 0 0 41.7 58.3

Logit model
Gamma 0 0 0 0.68 38.6 54.5
Uniform 0 0 0 0 3 97
Log normal 0 0.1 0.47 15 33.3 51

Scenario 
5

Power 
model

Gamma 18.9 0 0 0 0 0
Uniform 11.5 0 0 0 0 0
Log normal 21.2 0 0 0 0 0

Hyperbolic 
tangent 
model

Gamma 19.7 0 0 0 0 0
Uniform 13.4 0.02 0 0 0 0
Log normal 25.2 0 0 0 0 0

Logit model
Gamma 27 0.7 0.07 0 0 0
Uniform 18.5 0.06 0.01 0 0 0
Log normal 24.4 0.27 0.06 0 0 0

In scenario 4, the right toxicity probabilities 
determined for all dose levels are lower than the 
probability of selection of MTD dose. In such a case, 
the trial is expected to rapidly increase the dose. For 
scenario 4, when the three different models and three 
different priors are investigated, it seems that fastest dose 
increase happens when the proper prior is selected for 
three different structures. 

In scenario 5, all doses are highly toxic. In such a case, 
the trial is expected to stop immediately without selecting 
the MTD. 

In this scenario, we used the stopping rule 
 and that’s why 

the MTD is not selected.

In the next simulation study, the pharmacokinetic 
phase I clinical trial that aim to determine the MTD for 
aldoxorubicin is applied. This clinical trial studied five 
doses of the drug. The assigned dose levels are: 130, 175, 
180, 240, 320mg/day for 12 weeks. A total of 30 assessable 
patients were used for dose escalation. We took the MTD 
as the dose with a DLT rate of 25% and prepared five sets 
of initial guesses of toxicity probabilities:

and for each scenario we carried out 10000 simulated 
trials. It can be seen in Table 4.
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Table 4. Probability selection of MTD under different four scenarios.

      Dose  levels
         130 175 180 240 320

                     True toxicity rate 0.03 0.05 0.10 0.25 0.30

Sc
en

ar
io

 1
 

M
od

el

Power model

Pr
io

r 
di

st
ri

bu
tio

n 

Gamma 0.01 0.12 25 54.3 19.4
Uniform 0 0.07 20.4 78.9 0
Lognormal 0 0.08 15.2 53.3 30.7

Hyperbolic 
tangent
model

Gamma 0 0.15 23 54.1 21.4
Uniform 0 0 10.1 89.9 0
Lognormal 0 0.02 17.6 51.5 30.7

Logit model
Gamma 0 0.06 13.7 50.7 35
Uniform 0 0.17 15.4 61.1 21.8
Lognormal 0.03 0.13 22.8 50.4 25.2

                    True toxicity rate 0.01 0.05 0.10 0.10 0.25

Sc
en

ar
io

 2

M
od

el

Power model

Pr
io

r 
di

st
ri

bu
tio

n 

Gamma 0 0.01 0.09 0.95 89.5
Uniform 0 0.01 0.05 6.1 93.3
Lognormal 0 0 0.53 21.4 73.3

Hyperbolic 
tangent
 model

Gamma 0 0.01 0.11 11.7 87.1
Uniform 0 0.02 0.06 0.93 89.9
Lognormal 0 0 0.18 14.8 83.4

Logit model
Gamma 0 0 0.14 35.1 63.5
Uniform 0 0.01 0.10 20.7 78.2
Lognormal 0 0.02 0.14 25.3 73.1

                     True toxicity rate 0.01 0.25 0.45 0.65 0.80

Sc
en

ar
io

 3
 

M
od

el

Power model

Pr
io

r 
di

st
ri

bu
tio

n 

Gamma 0.24 80.3 17.2 0.01 0
Uniform 0.17 86.1 12.1 0.01 0
Lognormal 0.20 81.9 16.1 0 0

Hyperbolic 
tangent
 model

Gamma 0.20 80.3 17.7 0 0
Uniform 0.18 83.3 14.7 0.02 0
Lognormal 0.30 79.4 17.5 0.01 0

Logit model
Gamma 0.32 69.8 26.7 0.03 0
Uniform 0.16 78.9 19.2 0.03 0
Lognormal 0.30 62.6 34.3 0.01 0

                    True toxicity rate 0.10 0.25 0.30 0.40 0.50

Sc
en

ar
io

 4

M
od

el

Power model

Pr
io

r 
di

st
ri

bu
tio

n 

Gamma 0.94 55 30.1 0.55 0
Uniform 0.76 65.4 19.5 0.75 0
Lognormal 12.1 55.6 27.4 0.48 0.01

Hyperbolic 
tangent
 model

Gamma 0.92 64 20.6 0.61 0.01
Uniform 0.65 73.6 12.1 0.78 0
Lognormal 12 58 25.3 0.44 0.03

Logit model
Gamma 15.7 42.9 35.2 0.6 0.02
Uniform 10.5 52 28.8 0.79 0.08
Lognormal 15.6 44.3 33.1 0.70 0
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In the first scenario, the fourth dose was the MTD. 
It is important that the model structure was critical on 
selecting the true toxicity probabilities. Results of the first 
scenario shows that the best performance was calculated 
by hyperbolic tangent model structure and uniform prior 
distribution. In contrast, logit model structure and log-
normal prior was produced the worst performance. In the 
second and third scenario, the results of the simulation runs 
were similar. The best performance was examined when 
the power model structure and uniform prior distribution 
were selected. On the other hand, if the model structure 
was selected as logit model and prior distribution was 
selected as log normal, the probability selection of the 
true MTD was very low. Results of the last scenario were 
very similar to the first scenario. The best performance 
was calculated by hyperbolic tangent model structure 
and uniform prior distribution. Moreover, the worst 
performance was examined by logit model structure and 
gamma prior. 

4. Conclusions

Determination of MTD in phase I trials plays an important 
role in developing a new drug. A wrong MTD dose 
selection can cause a trail failure. This results and a loss 
of time and investment. It can also delay critical medical 
treatment resulting in loss of life.

In this study, the classical 3+3 design, CRM and 
B-CRM designs were compared in order to select the 
true dose level as MTD. When these methods were 
compared, five different skeletons of CRM and five 
different scenarios were used. The results show that the 
B-CRM gives the best performance in scenario 1. For 
scenario 2, only the B-CRM selected the true dose as 
MTD. In the third scenario, the 3+3 design performed the 
best true toxicity probability. However, the 3+3 design 
were treated many patients with extremely toxic dose 
levels in this design. Although selection probability of 
the MTD dose in the B-CRM was lower than the highest 
selection probability, it is a better approach for treating 
patients at extreme dose levels. So, B-CRM appears to 
be a robust method. In scenario 4, all doses had lower 
toxicity levels than the target toxicity. Therefore, the 
last dose level is expected to be the MTD.B-CRM and 
CRM showed good performance in this scenario. In 
scenario 5, all doses were extremely toxic, so the trial 
was immediately stopped before the selection of the 
MTD. Generally, B-CRM showed a better performance 
than the 3+3 design and CRM. 

We also considered power, hyperbolic tangent and 
logit models for gamma, uniform and lognormal priors 
via a simulation study in the B-CRM. In most cases, the 
better results were obtained when the uniform prior was 
taken with the power and hyperbolic model structures. 
The worst performances were produced by the logit model 
structure and log-normal prior in almost all scenarios. In 
conclusion, it is clear that B-CRM was found to be the 
most robust method among the dose finding methods in 
phase I trials. Lastly, it is important to note that if a power 
or hyperbolic tangent model structure and uniform prior 
are selected, the MTD selection rates appear to be at their 
highest rate in B-CRM.
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