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Abstract

In this paper, we obtain the explicit solutions of a three-dimensional system of 
difference equations with multiplicative terms, extending some results in literature. 
Also, by using explicit forms of the solutions, we study the asymptotic behaviour of 
well-defined solutions of the system.
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1. Introduction

Difference equations and their systems have been argued in the literature for several 
decades (Kulenović & Nurkanović, 2005; Papaschinopoulos & Schinas, 1998; 
Diamandescu, 2009; Papaschinopoulos & Stefanidou, 2010; Elabbasy et al., 2011; 
Taskara et al., 2011; Tollu et al., 2013; Yazlik, 2014 and references therein). The 
dominant trend in the theory of difference equations is actually to obtain the solutions 
of difference equation systems in the meaning of explicit or closed form. The solution 
forms are both an interesting and an elegant approach to study the existence and 
asymptotic properties of solutions of these systems (Yalcinkaya et al., 2008; Yazlik 
et al., 2014). Sedaghat (2009) determined the global behaviours of all solutions of the 
rational difference equations

  

    
                   (1)

Stević (2004) gave a theoretical explanation for the formula of solutions of the 
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difference equation

                                   
(2)

Later, the author showed that the following two-dimensional system of difference 
equations

              
   (3)

can be solved (Stević, 2011). Stević (2012) studied the three-dimensional system of 
difference equations 

   (4)

and showed that the system in (4) can be solved as the two-dimensional system in (3)
(see also Stević et al., 2012). Then, El-Metwally (2013) obtined the solutions form for 
the following systems of rational difference equations:

                    (5)

Stević et al. (2014) solved in closed form the system of difference equations

  

               
(6)

by generalizing systems in (5), and so considerably extended the results of El-
Metwally’s paper. 

They used formulas in the investigation of the asymptotic behaviour of the well-
defined solutions when the sequences 

 
and 

 
are all constant 

and 2k l=  in (6). They presented the domain of undefinable solutions of the system.

Remark 1. While system (3) is an extension of the first equation in (1), the system in 
(4) is a three-dimensional extension of the system in (3). Similarly, the system in (6) is 
an extension of both the second equation in (1) and the system in (5).

Another extension of the second equation in (1) is the following three-dimensional 
system of difference equations:

  
 (7)
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where the parameters a
i
,
 
b

i 
and the initial values (i = 0,1,2) are real 

numbers.

Note that the system in (7)  can be written in the form

  
    (8)

Therefore, the system in (7) reduces to first-order linear equations and so is solvable 
in explicit form. Using this approach, in this paper we get explicit solutions of the 
system in (7) and determine the forbidden set of the initial values  (i = 
0,1,2) and also study asymptotic behavior of the solutions using their explicit forms.

2. Explicit solutions of the system 

In this section we show that system (7) is solvable in explicit form. Here eight possible 
cases rise according to parameters a

i  
and b

i
:

Case 1:  and 

In this case, we obtain the system

from which it follows that
 
 

   
   (9)

From (9), we have

                 

(10)

  
               

(11)
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and

  
            

(12)

where and q
2
 . By decomposing (10), (11) and (12), we 

get the following non autonomous equations

  (13)

  (14)

and

  
    

(15)

where  and . 

Equations (13), (14) and (15) easily can be solved as the following 

     

(16)

where  and .
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Case 2: 
 
and 

In this case, the system becomes

from which it follows that

    
(17)

From (17), the general solution follows as

     

(18)

where  and .

Case 3:  and 

In this case, the system is

from which it follows that

    (19)

The solution can be obtained from (19) as
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(20)

where  and .

Case 4: 
 
and 

In this case, we get the following system

from which it follows that

 
          

(21)

From (21), the solution of system (7) takes the form 

    

(22)

where  and .
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Case 5:  and 

In this case, the system is expressed as

from which it follows that

          
(23)

From (23), we obtain the solution of system (7) as follows

    

(24)

where 
 
and .

Case 6: 
 
and 

The case yields the following system 

from which it follows that

        
(25)

The solution can be obtained from (25) as
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  (26)

  

where 
 
and .

Case 7: 0 1 2 1b b b= = =

In this case, the system is

from which it follows that

                
(27)

From (27), the solution of system (7) takes the form 

       (28)

where 
 
and .
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Case 8:  and 

In this case, the solution of each equation in system (8) is as follows

   (29)

From (29), we get the solution of the system (7) as

           (30)

where  and 

.

Corollary 2. Assume that ( )1 0,1,2i ia b i+ = = and 
 

Then every solution of system (7) is six-periodic.

The next theorem establishes the forbidden set of the initial values 

( )0,1,2i =  of (7).

Theorem 3. . Then the forbidden 
set F of (7) is given by

i i
i i

i n
i n

n n
n n

x y

yz
x

z x
y z

F

where
n

i i

i

a b
i ib

n

i i

b i
a n b
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Proof. We observe that if 0i i ix y z− − − ≠ , { }0,1i ∈ , and 2 0x− = or 2 0y− = or

2 0,z− = then the solution{ } 2
, ,n n n n

x y z
∞

=−
 can be determined for some 0Nn∈ , while 

the solution can not be determined for the case 0i i ix y z− − − = , { }0,1i ∈ . Thus we can 

incorporate the case 0i i ix y z− − − = , { }0,1i ∈ , into the forbidden set. If 0i i ix y z− − − ≠ , 

{ }0,1i ∈  then we define new variables ( ) 20 ,n

n

y
n xu −= ( ) 21 n

n

z
n yu −=  and ( ) 22 n

n

x
n zu −= . In this 

case, (8) can be written in the form of the linear first order difference equations

( ) ( ) { }1 0, 0,1, 2 , N ,i i
n i n iu b u a i n+ = + ∈ ∈

                            
(31)

which is independent of each other. Now, we indicate that the solutions of system 
(7) are not defined if and only if

0 0 2 1 1 2 2 2 20 or 0 or 0.n n n n n na x b y a y b z a z b x− − −+ = + = + =

That is, the terms nx , ny and nz cannot be calculated for some Nn∈ , after finite 
number of terms are calculated. So we can establish our proof on the fact that the solutions 
of the system are not well-defined in the cases 0n n nx y z = for some Nn∈ . Let

{ }( ) , 0,1, 2 .i i if u b u a i= + ∈

Then we can write equation (31) as the following

( ) ( ) { }1 0( ), 0,1, 2 , N ,i i
n i nu f u i n+ = ∈ ∈

which have the solutions

( ) ( ) { }0 0( ), 0,1, 2 , N .i in
n iu f u i n= ∈ ∈

Suppose that

( ) { }0
0 0 0( ) 0, 0,1, 2 , N ,in

if u i n= ∈ ∈

which implies

 0
0(0) .n

if u− =                                                     (32)

The inverses of the functions if  can be calculated as follows

{ }1( ) , 0,1, 2 .i
i

i

v a
f v i

b
− −= ∈

Now note that difference equations associated with inverse functions 1
if
− are

( )
( )

{ }1 0, 0,1, 2 , N .
i

i n i
n

i

v a
v i n

b+
−= ∈ ∈

                                

(33)
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From (32) and (33), it follows that 

( ) ( ) { }0

1
(0) , 0,1, 2 , N,

1

n
i ii n

i
i

a b
u f i n

b

−
−

−
= = ∈ ∈

−
for 1ib ≠ . If 1ib = , then from (32) and (33), we have

( ) ( ) { }0 01 , 0,1, 2 , N .iu a n i n= − + ∈ ∈

Consequently, we have the eight possible cases in the theorem. So the proof is 
complete.

From the above theorem, it can be said that if initial values ix− , iy− , iz− ∉ ,
{ }0,1,2i = , then every solution of system (7) is well-defined.

Theorem 4. Assume that 1ib ≠ ,( )0,1, 2i = , and( ) 2
, ,n n n n

x y z
≥−

 is a well-defined 
solution of system (7). Then the following statements hold.

a) If 0 1b >
 
and 0 0q ≠

 
or 1 1b >

 
and 1 0q ≠

 
or 2 1b >

 
and 2 0,q ≠

 
then 

6 0n jx − → , 6 0n jy − →
 
and 6 0n jz − →  as n → ∞ ,

b) If    0 1b < ,  1 1b < ,  2 1b <
  
and  ( )( )( )0 1 2

0 1 21 1 1
1,

a a a

b b b
<

  
then 6 6,n j n jx y− −→ ∞ → ∞

 

and 6n jz − → ∞  as n → ∞ ,

c) If 0 1b < , 1 1b < , 2 1b <
 
and ( )( )( )0 1 2

0 1 21 1 1
1,

a a a

b b b
>

 
then 6 60, 0n j n jx y− −→ →

and 6 0n jz − →  as n → ∞ ,

d) If 0 1,b <
 1 1,b <

 2 1b <
 
and ( )( )( )0 1 2

0 1 21 1 1
1,

a a a

b b b
=

 
then ( ) ( )

0 0
6 6

N N
,

n j n j
n n

x y

and ( )
0

6
N

n j
n

z are convergent,

e) If 0 1,b <
 1 1,b <

 2 1b <
 
and 

 
then ( )

0
12

N
,

n j
n

x

( )
0

12 6
N
,

n j
n

x + ( )
0

12
N
,

n j
n

y ( )
0

12 6
N
,

n j
n

y + ( )
0

12
N

n j
n

z and ( )
0

12 6
N

n j
n

z +

are convergent,

where 2

0 00 1
oay

x bq −
−= − , 2 1

0 11 1
z a
y bq −

−= −
 
and 2 2

0 22 1
x a
z bq −

−= − , { }3, 2, 1,0,1,2j ∈ − − − ,

0Nn∈ .
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Proof.  We will present the proof for each cases seperately. For the proofs of (a) 
and (b): Let 

(1) 6 6 6 4 6 20 1 2
0 0 1 1 2 2

0 1 2

(1) 6 6 6 4 6 2 01 2
1 1 2 2 0 0

1 2 0

(1) 6 6 6 4 02
2 2 0 0

2

: ,
1 1 1

: ,
1 1 1

:
1 1

m j m j m j
m

m j m j m j
m

m j m j
m

a a a
X q b q b q b

b b b

aa a
Y q b q b q b

b b b

aa
Z q b q b

b b

+ − + − + −

+ − + − + −

+ − + −

⎛ ⎞⎛ ⎞⎛ ⎞
= + + +⎜ ⎟⎜ ⎟⎜ ⎟− − −⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
= + + +⎜ ⎟⎜ ⎟⎜ ⎟− − −⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞
= + +⎜ ⎟− −⎝ ⎠

6 2 1
1 1

0 1

.
1

m j a
q b

b
+ −⎛ ⎞⎛ ⎞

+⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

After that the result follows from the asumptions in (a). Thus, we obtain

6 6 6lim lim lim 0.n j n j n jn n n
x y z− − −→∞ →∞ →∞

= = =

As a similar approximation, by the facts in (b) and using formula (30), we have

6 6 6lim lim lim .n j n j n jn n n
x y z− − −→∞ →∞ →∞

= = = ∞

For the proof of (c): By reconsidering the assumptions in the beginig of the proof, 
a simple calculation 

( )( )( )
0 1 2(1) (1) (1)

0 1 2

lim lim lim ,
1 1 1m m mn n n

a a a
X Y Z

b b b→∞ →∞ →∞
= = =

− − −

gives the result. For the proofs (d) and (e): In fact it will be given only the proof of (d) 
since (e) can be obtained with the same manner. Again reconsidering the assumptions, 
it is seen that 

(34)
( ) ( ) ( )

( )( ) ( )( )

( )

(1) 6 6 6 4 6 20 1 2
0 0 1 1 2 2

0 1 2

0 0 1 1 2 26 6 6 4 6 2
0 1 2

0 1 2

0 1 0 1 0 2 0 26 6 6 4 6 6 6 2
0 1 0 2

0 1 0 2

1

1 1 1

1 1 1
1

1 1 1 1

1 1

m j m j m j
m

m j m j m j

m j m j m j m j

a a a
X q b q b q b

b b b

b q b q b q
b b b

a a a

b b q q b b q q
b b b b

a a a a

b

+ − + − + −

+ − + − + −

+ − + − + − + −

⎛ ⎞⎛ ⎞⎛ ⎞
= + + +⎜ ⎟⎜ ⎟⎜ ⎟− − −⎝ ⎠⎝ ⎠⎝ ⎠

− − −
= + + +

− − − −
+ +

−
+ ( )2 1 2 6 4 6 2 6 6 6

1 2 0 1 2
1 2

( ),m j m j m m mb q q
b b O b b b

a a
+ − + −−

+
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( ) ( ) ( )

(1) 6 6 6 4 6 2 01 2
1 1 2 2 0 0

1 2 0

1 1 2 2 0 06 6 6 4 6 2
1 2 0

1 2 0

1 1 1

1 1 1
1

m j m j m j
m

m j m j m j

aa a
Y q b q b q b

b b b

b q b q b q
b b b

a a a

+ − + − + −

+ − + − + −

⎛ ⎞⎛ ⎞⎛ ⎞
= + + +⎜ ⎟⎜ ⎟⎜ ⎟− − −⎝ ⎠⎝ ⎠⎝ ⎠

− − −
= + + +

(35)

( )( ) ( )( )

( )

1 2 1 2 0 1 0 16 6 6 4 6 2 6 6
1 2 0 1

1 2 1 0

0

1 1 1 1

1 1

m j m j m j m jb b q q b b q q
b b b b

a a a a

b

+ − + − + − + −− − − −
+ +

−
+ ( )2 0 2 6 2 6 4 6 6 6

0 2 0 1 2
0 2

( ),m j m j m m mb q q
b b O b b b

a a
+ − + −−

+

and

(36)

  

( ) ( ) ( )

( )( ) ( )( )

( )

(1) 6 6 6 4 6 202 1
2 2 0 0 1 1

2 0 1

2 2 0 0 1 16 6 6 4 6 2
2 0 1

2 0 1

0 2 0 2 0 1 0 16 6 6 4 6 4 6 2
2 0 0 1

0 2 0 1

1

1 1 1

1 1 1
1

1 1 1 1

1 1

m j m j m j
m

m j m j m j

m j m j m j m j

aa a
Z q b q b q b

b b b

b q b q b q
b b b

a a a

b b q q b b q q
b b b b

a a a a

b

+ − + − + −

+ − + − + −

+ − + − + − + −

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠

− − −
= + + +

− − − −
+ +

−
+ ( )2 1 2 6 2 6 6 6 6 6

1 2 0 1 2
1 2

( ),m j m j m m mb q q
b b O b b b

a a
+ − + −−

+

for every { }3, 2, 1,0,1,2j ∈ − − −
 
and sufficiently large m . From (34), (35), (36), 

the assumption 0 1,b < 1 1,b < 2 1,b < and the proof is completed by a known result 

on the convergence of products.

Theorem  5.  Let  at  least  one  of  parameters ib ,( )0,1,2 ,i =  be  one  and( ) 2
, ,n n n n

x y z
≥−

 

be a well-defined solution of system (7). Then 6 6 60, 0, 0.n j n j n jx y z− − −→ → →

Proof. Let

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

(2) 2 2 2
0 1 2

0 0 0

2 2 2 2
1 2 0

0 0 0

(2) 2 2 2
2 0 1

0 0 0

: 6 6 6 4 6 2 ,

: 6 6 6 4 6 2 ,

: 6 6 6 4 6 2

m

m

m

y z x
X a m j a m j a m j

x y z

z x y
Y a m j a m j a m j

y z x

x y z
Z a m j a m j a m j

z x y

− − −

− − −

− − −

⎛ ⎞⎛ ⎞⎛ ⎞
= + + − + + − + + −⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞

= + + − + + − + + −⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞

= + + − + + − + + −⎜ ⎟⎜ ⎟⎜
⎝ ⎠⎝ ⎠⎝ ⎠

,⎟
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( ) ( )

( ) ( )

( )

(3) 6 6 0 2 2
0 0 1 2

0 0 0

(3) 6 2 02 2
1 2 0 0

0 0 0

(3) 6 4 02 2
2 0 0 1

0 0 0

: 6 4 6 2 ,
1

: 6 6 6 4 ,
1

: 6 6
1

m j
m

m j
m

m j
m

a z x
X q b a m j a m j

b y z

az x
Y a m j a m j q b

y z b

ax z
Z a m j q b a

z b y

+ − − −

+ −− −

+ −− −

⎛ ⎞⎛ ⎞⎛ ⎞
= + + + − + + −⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
= + + − + + − +⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= + + − + +⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

( )6 2 ,m j
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

( ) ( )

( ) ( ) ( )

( ) ( )

(4) 6 42 1 2
0 1 1 2

0 1 0

4 6 6 1 2 2
1 1 2 0

1 0 0

(4) 6 22 2 1
2 0 1 1

0 0

: 6 6 6 2 ,
1

: 6 4 6 2 ,
1

: 6 6 6 4

m j
m

m j
m

m j
m

y a x
X a m j q b a m j

x b z

a x y
Y q b a m j a m j

b z x

x y a
Z a m j a m j q b

z x

+ −− −

+ − − −

+ −− −

⎛ ⎞ ⎛ ⎞⎛ ⎞
= + + − + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
= + + + − + + −⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= + + − + + − +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ 1

,
1 b

⎛ ⎞
⎜ ⎟−⎝ ⎠

( ) ( )

( ) ( ) ( )

( )

(5) 6 22 2 2
0 1 2 2

0 0 2

5 6 42 2 2
1 2 2 0

0 2 0

(5) 6 6 2 2 2
2 2 0 1

2 0 0

: 6 6 6 4 ,
1

: 6 6 6 2 ,
1

: 6 4 6
1

m j
m

m j
m

m j
m

y z a
X a m j a m j q b

x y b

z a y
Y a m j q b a m j

y b x

a y z
Z q b a m j a m

b x y

+ −− −

+ −− −

+ − − −

⎛ ⎞⎛ ⎞⎛ ⎞
= + + − + + − +⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞
= + + − + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
= + + + − +⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

( )2 ,j
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

( )

( ) ( )

( )

(6) 6 4 6 22 1 2
0 1 1 2 2

0 1 2

6 6 6 6 41 2 2
1 1 2 2 0

1 2 0

(6) 6 6 2 2
2 2 0 1 1

2 0

: 6 6 ,
1 1

: 6 2 ,
1 1

: 6 4
1

m j m j
m

m j m j
m

m j
m

y a a
X a m j q b q b

x b b

a a y
Y q b q b a m j

b b x

a y
Z q b a m j q b

b x

+ − + −−

+ − + − −

+ − −

⎛ ⎞⎛ ⎞⎛ ⎞
= + + − + +⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
= + + + + −⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= + + + −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

6 2 1

1

,
1

m j a

b
+ −⎛ ⎞

+⎜ ⎟−⎝ ⎠

( )

( ) ( )

(7) 6 6 6 20 2 2
0 0 1 2 2

0 0 2

7 6 4 6 2 02 2
1 2 2 0 0

0 2 0

: 6 4 ,
1 1

: 6 6 ,
1 1

m j m j
m

m j m j
m

a z a
X q b a m j q b

b y b

az a
Y a m j q b q b

y b b

+ − + −−

+ − + −−

⎛ ⎞⎛ ⎞⎛ ⎞
= + + + − +⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞
= + + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠
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(7) 6 6 6 4 02
2 2 0 0

2 0

:
1 1

m j m j
m

aa z
Z q b q b

b b
+ − + −

⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞

= + +⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
( )2

1
0

6 2 .a m j
y
−⎛ ⎞

+ + −⎜ ⎟
⎝ ⎠

and 

( )

( ) ( )

( )

(8) 6 6 6 40 1 2
0 0 1 1 2

0 1 0

8 6 6 6 2 01 2
1 1 2 0 0

1 0 0

(8) 6 4 02
2 0 0 1 1

0 0

: 6 2 ,
1 1

: 6 4 ,
1 1

: 6 6
1

m j m j
m

m j m j
m

m j
m

a a x
X q b q b a m j

b b z

aa x
Y q b a m j q b

b z b

ax
Z a m j q b q b

z b

+ − + − −

+ − + −−

+ −−

⎛ ⎞ ⎛ ⎞⎛ ⎞
= + + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
= + + + − +⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= + + − +⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

6 2 1

1

.
1

m j a

b
+ −⎛ ⎞

+⎜ ⎟−⎝ ⎠

Since ( ) ( ) ( )lim lim lim ,k k k
n m n m n mX Y Z→∞ →∞ →∞= = = ∞

 
and by 

(14), (18), (20), (22), (24), (26) and (28), this completes the proof.

3. Conclusion

In this paper, we investigate an extension of the second equation in (1), that is, 
the system given in (7). After that we reduce this system to the first-order linear 
equations and then we obtain explicit solutions of the related system. Additionally, 
we determine the forbidden set of the initial values ix− , iy− , iz− ( )0,1,2i = and also 
study asymptotic behavior of the solutions using their explicit forms. Thus, we extend 
some recent results in the literature.

In the future studies on systems of difference equations, we except that the following 
topics will bring new insight:

The system in (7) can be extended to higher-dimensional systems;1) 

The system in (7) can be extended to higher-order systems;2) 

and finally, one can investigate behaviors and solubility of these extended 3) 
systems.
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