Kuwait J. Sci. 41 (2) pp. 175-203, 2014

Improved cross site scripting filter for input validation against
attacks in web services

ELANGOVAN UMA" AND ARPUTHARAJ KANNAN™

* Assistant Professor, Department of Information Science and Technology, Anna
University, Chennai -600025, India, email: iamumaramesh(@gmail.com

** Professor and Head, Department of Information Science and Technology, Anna
University, Chennai -600025, India email: kannan@annauniv.edu

ABSTRACT

Nowadays, everybody needs to handle sensitive data like online banking account details
and other information related to financial transactions on the Internet. In this scenario,
many Web attacks such as injection attacks are targeted on these sensitive data. Such
attacks are carried out by running scripts on users computers that utilize vulnerably
coded client/server pages. Moreover, these attacks run malicious codes to steal personal
information from the server. Though this code can easily be generated by the attacker, it
is very difficult to prevent it by the current cross site scripting filters due to their lack in
detection accuracy. Therefore, cross site scripting attack is a challenging issue for the
Internet users. Hence, it is necessary to detect and prevent the injection attacks through
efficient schemes. However, most of the existing schemes lack this capability in terms of
accuracy and need further improvement. In this paper, a new self-aware message
analysis cum validation algorithm has been proposed for detecting and filtering various
types of Web Service attacks. This proposed system receives requests and generates
suitable response from the dummy server page to analyze the nature of attack. New
policies are created in this work to analyze the response and forward the legitimate
request to original Web Service page. The proposed injection filters have been tested
with all possible attacks for verifying the robustness of filtering policies. The results
obtained from this work show that the proposed filtering policy is highly robust in
refining the malicious message. The implementation and accuracy of the proposed
approach has been proved through extensive testing using real-world cross site scripting
generation and analysis. The results obtained from the work show that the proposed
filtering policy is very strong in refining the malicious message, which contains attacks
such as cross site scripting, injection, message replay and semantic attacks. We
demonstrated the implementation and accuracy of our approach through extended
testing using real-world cross site scripting exploits.

Keywords: Cross site scripting attacks; cross site scripting filters; security;
semantic attack filter; web services.

176 Elangovan Uma and Arputharaj Kannan

INTRODUCTION

W3Cdefines a Web service as a software system designed to suppor
tinteroperable machine-to-machine interaction over networks. It contains three
major components, namely SOAP, WSDL and UDDI. The service requester
sends the request through SOAP protocol to UDDI and then it maps the
corresponding URL in WSDL format from service provider. The WSDL of
service can easily be viewed by Internet users. The attackers can read the
information like data type, maximum length, card number and password. They
generate Cross Site Scripting (XSS) attacks to get sensitive data easily (Negm,
2004). In general, they use the graphical user interface to generate attacks from
the client side.

XSS is a type of computer security vulnerability, typically found in Web
applications. It enables attackers to inject client-side script into Web pages
viewed by other users. A cross site scripting vulnerability is used by attackers to
bypass access controls. It is categorized into persistent and non-persistent
attacks. The persistent (or stored) XSS vulnerability is a more devastating
variant of a cross-site scripting flaw. It occurs when the data provided by the
attacker is saved by the server, and then permanently displayed on "normal"
pages returned to other users. These holes show up when the data provided by a
web client, most commonly in HTTP query parameters or in HTML form
submissions, are used immediately by server-side scripts to parse and display a
page of results for the user, without properly sanitizing the request.

Figure 1 shows how an XSS attack happens and explains how it is allowed
inside a Web page. In this example, the attacker generatesa malicious script at the
client side and it is stored into server side database through login process as
shown in Figure 1. The Website affected by an XSS attacker is shown in Figure 2.

2 Untitled Page - Windows Internet Explorer - MP" indos et Exphrn, —
@V,ag_ locahost (8] (%] [x] [Wecoa
Gred- @ localhost
e e XA Websoarh <G - ¢l 16 8 |]| CORETD0 | (L - ko - ¢
Fietie B i povort oo i EE CorE— o [P
x (U - [web Ssarch G+ -ow E @ \\ % Fevortes | 3 8] htp-mabkhunder.com son.. Elc# + EIukt > Dukze Quks~ Suke > LDt v Duwauest e |
5 5 A8 o
R Cu BT e RS
. 5 User Nam
S Favorites | 5% 2] http--mobithunder com-son... yc# = Chunitt - Suontz ~
= — Passworc
‘ B untitled Page | Hello
User Name |escript=alert("hello XSS")¢

R

Fig.1. An XSS input from an attacker Fig. 2. Website affected by an XSS attacker

This malicious script which is accepted and stored in the database is present

Improved cross site scripting filter for input validation against attacks in web services 177

in the server and destroys the vulnerable website (Pete, 2004). The proposed
system for XSS filter combines static approach and dynamic approach to filter
it.In this work, new filtering policies for specific Web service attacks, namely
message replay, coercive parsing, oversized message, parameter tampering and
semantic URL attack were proposed and implemented. The main advantage of
the proposed system over the existing system is that it provides facilities which
dynamically detect Web attacks and prevent them efficiently.

LITERATURE SURVEY

To identify the threats raised by XSS attacks, many researchers have proposed
solutions, which are categorized as static and dynamic approaches based on the
literature details.

Static approach

A static tainted data flow analysis, using flow-sensitive, inter-procedural,
context-sensitive data for PHP checks if user input is used at a target statement
without adequate input validation. A string analysis approach for PHP, claimed
to be efficient and accurate to approximate the dynamically generated web pages
(Jovanovic et al., 2006; Minamide, 2005); Xie & Aiken (2006) carried out an
SQL injection vulnerability analysis that gains scalability and efficiency in
exchange for soundness by using block and function-summaries. Wasserman &
Su (2008) proposed a static analysis for finding XSS vulnerabilities that directly
addresses weak or absent input validation. It performs an adapted string
analysis to track untrusted string values and checks for untrusted scripts based
on formal language techniques using Context Free Grammar (CFG). It is used
to delimit the regions of the web page that contains untrusted data.

Kiezun et al. (2009) proposed an automatic static analysis technique for
creating inputs that expose SQL Injection (SQLI) and XSS vulnerabilities. This
technique generates consumed inputs, symbolically tracks taints through
execution and changes the inputs to produce concrete exploits. Moreover, their
technique creates real attack transmitters, which have few false positives, incur
no runtime overhead for the positioned application without requiring
modification of application’s source code and handles dynamic programming-
language constructs. Vogt et al. (2007) applied a mechanism to identify sensitive
data on the client-end in order to ensure that sensitive information is sent by the
JavaScript code only to the processed site. A similar approach was proposed by
Gundy & Chen (2009) in which, the content of the website is divided into nodes,
represented by classes of confidence marked with a XML namespace prefix,
randomly generated. The content of the website is divided into nodes.

178 Elangovan Uma and Arputharaj Kannan

Nadji et al. (2009) proposed a solution based on the same origin policy, which
applies the minimum serialization technique through the use of suffixes and
prefixes (markers) belonging to a CFG. This CFG is used to delimit the regions
of the web page that contain untrusted data. One of the limitations of their work
is that it can give only static detection for all input entries. Moreover, it does not
allow important data with restricted non-alphanumeric characters like email
address. Hence, it should be implemented only on effective dynamic XSS
detection mechanisms.

Dynamic approach

Nguyen-Tuong et al. (2005) proposed modifications of the PHP interpreter to
dynamically track tainted data in PHP programs. QED is a goal-directed model-
checking system that automatically generates attacks exploiting taint-based
vulnerabilities in large Java web applications (Martin & Lam, 2008). ARDILLA
generates test inputs for SQLI or XSS bug: it symbolically tracks taints through
execution (including through database accesses) and mutates the inputs to
produce concrete exploits according to the taint information (Kiezun et al.,
2009). Saner uses static and dynamic analysis to determine whether the PHP
program has been properly sanitized (Balzarotti er al., 2008). Shar & Tan (2012)
proposed a technique based on static program analysis and pattern matching
techniques. It identifies vulnerabilities in source code and secures with removal
mechanism.

Shen et al. (2007) proposed a game theoretic high level information fusion
based decision and control framework to detect and predict the multi-stage
stealthy cyber attacks. It addresses the cyber network security problem from a
system control and decision perspective and revises the Markov game model
with the knowledge of the cyber attack domain. But this approach does not
prevent semantic URL attack. It is designed to prevent URL attack (Liu et al.,
2013; Chuang et al., 2013; Adnan et.al., 2011).

Limitations of the Existing Systems:

All existing approaches use the server directly and hence cause data loss due to
unexpected malicious script that might affect the server. For example, hex
decimal, binary formatted malicious scripts. To overcome the limitation of these
existing systems, we propose a dynamic analysis method. Our approach allows
the request to dummy Web server page and analyses the request with HTTP
response header of the sample database. If the request passes the HTTP
response header analysis, then it is retrieved by web service parameters and
analyzed for the presence of attacks.

Improved cross site scripting filter for input validation against attacks in web services 179

The existing systems with the XSS filter solution which is installed on both
sides of the Client/Server reduce the speed of the communication. They also
introduce the overload problem to the server. Moreover, most of the existing
systems consider URL attack instead of semantic URL attack. In spite of all
these techniques, the XSS attacks are not filtered efficiently in current Web
application due to the static nature of the filters used in the current systems.
Hence, it is necessary to provide a dynamic self defense in addition to the static
analysis techniques.

XSS ATTACKS ON WEB SERVICES

The various XSS attacks on Web services are discussed below.

XML Injection Attack

XML Injection occurs when user input is passed onto XML stream. Since user-
editable fields can be accessed by Web interface through forms, XML Injection
overwrites the ‘“‘private” role element. For example, consider the customer
database defined by the following database schema:

<custrecord>
<id>1234</id>
<role>user</role>

<cname>abc</cname>

<email>abc@yahoo.co.in</ email>\<role>admin</r0le>\<email>abc@yahoo.co.in

</email>
<addresss>33-westcross st</address>
<zip>608001</zip>

</custrecord>

In this schema, all the fields can be edited by a user. Hence, this can be used
by an attacker to destroy the valuable data.

SQL Injection Attack

Simple SQL statements are inserted into the database using the input of a SOAP
message by an attacker. If the statements are not sanitized, the attacker may
gain access to the databases. This attack uses SQL commands such as SELECT,
CREATE, UPDATE, DELETE, DROP, 1=1, ALTER and INSERT. These
commands are used to embed malicious input in client side interface.

180 Elangovan Uma and Arputharaj Kannan

XPath Injection Attack

XPath is used in an “XML-Enabled” Database like SQL Server 2000 and 2005.
In SQL, XPath uses delimiters to separate code and data. Since there is no
access control in XML or XPath, an attacker can control data in an XPath
statement to access arbitrary parts of the XML file or return arbitrary data. The
sample code snippet for XPath Injection attack is shown below:

Public UserDataLoginUser(string Login, string Password)

{

UserData user = new UserData();

"

stringxpathQuery = "/Users/User[attribute::Login="" + Login + " and attribute::

Password ="" + Password + "]/*";

XPathNodelteratorxpathlter = xpathNav.Select(xpathQuery);...

Buffer Overflow Attack

The attacker inserts malicious content with well-formed message in SOAP
request, which is beyond the allowable size of the buffer and causes Denial of
Services attack (DoS). It is called buffer overflow attack.

Message Replay Attack

Amessage replay attackis one in which anattackereavesdrops and obtains a copy
of anencryptedmessage and then reuses themessageat a later time in an attempt
to reveal the secret messages or to provide a fake identity. For example, when a
legitimate client transfers money from his account in a bank to the receiver, the
attacker steals the password and uses it multiple times by sending it to the Web
service in order to cause money loss.

Parameter Tampering Attack

The WSDL document has parameters to receive inputs from the client. The
parameters are visible in a WSDL structure to all users. Here, the attacker tries
to send different data types of parameters several times. Then, the Web services
may crash.

Coercive Parsing Attack

The attacker sends a SOAP message with an unlimited amount of opening tags
in the SOAP Body. It means the attacker sends a very deeply nested XML

Improved cross site scripting filter for input validation against attacks in web services 181

document into the targeted Web service. If the parser receives a peculiar format
of SOAP messages, it reduces its processing capability and this may result in
Distributed Denial-of-Service (DDoS) attack. For example, consider the
following code:

<soapenv:Envelopexmlns:soapenv="...” xmlns: soapenc:”...”>
<soapenv:Body>

<xX>

L<x>

The nesting provided by tag X leads to an infinite loop resulting in a DDOS attack.

Semantic URL Attack

In asemantic URL attack, aclientmanually adjusts theparametersof its request
by maintaining the URL’ssyntax,but altering itsmeaning. This can be avoided
by giving token and timestamp for expiration. The existing Web service allows
the users to reset their password by answering the security question correctly
and allows the users to send the password to the e-mail address of their
choice.The receiving page has all the information it needs to send the password
to the new e-mail. The hidden variable username contains the value uid001,
which is the user identification of the e-mail account as shown in the URL
http://urlsemanticdemo.com/resetpwd.aspx?userid =uid001&altemail =
alternative%40emailexample.com. When this URL appears in the location bar
of the browser, it is possible to identify the user details and the e-mail address
through the URL parameters. The malicious user may decide to steal other
people’s (uid002) e-mail address by visiting the following URL:http://
urlsemanticdemo.com/resetpwd.aspx?userid =uid002&altemail =
alternative%40emailexample.com. If the resetpwd.php accepts these values, it is
vulnerable to a semantic URL attack. The new password of the uid002 e-mail
address is generated and sent to alternative@emailexmaple.com which causes
uid002’s e-mail account to be stolen.

PROPOSED ARCHITECTURE

The architecture of the XSS filter system proposed in this work is shown in
Figure 3. This proposed architecture for XSS filter was implemented with three
major components in C#. They are server, database and filtering policies. The

182 Elangovan Uma and Arputharaj Kannan

filtering policies are XSS filter, message replay filter, coercive parsing filter,
oversized message filter, parameter tampering filter and semantic URL filter.
The filtering policies are built with SAX parser, which is faster than DOM
parser (Chuang et al., 2013). Thus, the system was implemented with SAX
parser to improve the filtering speed of the filter.

Attacker

Malicious
Script node

Valid text
node

SOAP filtering policies

3
<‘,:

@ . . o
& {memeT.. /)<:_> %8S filter Message replay filter Coercive parsing filter

Orversized message Parameter Semantic
filter tampering filter UERL filter

Service
provider

Fig. 3. Architecture of an XSS filter

The attacker tries to send the malicious script to the Web service through the
internet. If it is stored in the server directly, then it will cause data theft or
redirection problem. Therefore, this vulnerable server should be built with
robust security architecture. The malformed input was refined by the filtering
policies in the proposed XSS filter architecture. In this system, the script node
containing malicious message was blocked by the filter, otherwise the valid
SOAP message would be processed and responded by the Web method in the
Web services.

Many attacks are targeted at the Web services by the attackers. The proposed
technique has to avoid XSS attacks and some XML related attacks like message
replay attacks, oversized payload and recursive payloads. Hence, it was decided
to block XSS attacks and web service oriented attacks. The filtering policy
receives all input from the user. If it receives malicious script node, then it is
processed in dummy server page and HTTP response header analysis. Again, it

Improved cross site scripting filter for input validation against attacks in web services 183

is passed thorough input validator to find the possibility of XSS attack. Later, it
is analyzed for Web service related attacks like message replay, coercive parsing,
oversized message, parameter tampering and semantic URL filtering. The
system considers some important Web service related attacks. Then the
legitimate input is treated as normal text node and allowed to be processed with
web service parameters.

Advantages of the Proposed System

In the proposed system, the XSS filter was installed at the server side and it was
implemented by SAX parser. It avoids the attacker, by analyzing the servers
parameters to get the valid parameters of self validating algorithm. Then the
system maintained trust level of the particular IP Address by calculating the
number of requests coming with malicious script code. If it finds the attacker
then, it rejects the communication with him. In addition, the proposed system
used the dynamic approach instead of the static approach followed by the
current systems. Also, the proposed system has been designed to protect from
non-ASCII attacks like hex decimal, binary attacks.

Filtering Policies

The proposed XSS filter was developed with various filtering policies as
mentioned below for preventing different types of Web service attacks. The XSS
filter was improved with oversized message filter to identify buffer overflow
attack, message reply filter to defend against message replay attack, parameter
tampering filter to refine the parameter tampering attack, coercive parsing filter
to catch the wrong formatted SOAP format and semantic URL attack filter to
deny the semantic attacks.

XSS filter

The proposed system consists of two major phases: Dummy Web server page
XSS finder and Input Validator. The first phase identifies unmatched response
with expected response using Dummy Web server page and HTTP response
header analyzer. If so, it maintains the distrust level for an attacker. The Next
phase identifies the malicious script characters in the received input and then
increases the distrust level for fixed number of requests. This approach did not
maintain black list alone, but it is implemented along with the dummy Web
page with HTTP response header analyzer and input validator. Hence, the
proposed approach is dynamic when it is compared with existing systems.

184 Elangovan Uma and Arputharaj Kannan

Input refining is performed by HTTP response analyzer and regular
expression validator. The first module was implemented with attack tester,
which held the dummy web server page with dummy database. This dummy web
server page received the input from the user and performed with analyzer
modules. Then it responded back to user. This module cached the response and
then analyzed all fields of the header. At that time, it matched the nature of
requested data from Http request header with the nature of expected data from
the dummy database. If it does not match with the expected database then, it
checks set of alert HTTP response code like server redirection 3xx. Next, it
validates input type, length, format and range. Like this, the input was passed to
all types of refining stages and the session token was stored to block the
communication.

The server-side code was designed to constrain input supplied through client-
side input controls or input from other sources such as query strings or cookies
for XML injection, SQL injection, XPath Injection and cookie replay detection.
The input was checked for non-alphanumeric characters and it is checked with
BL (Blacklist) containing scripts for XSS attack. The filter stored user-specific
data using session token. It used this data to process requests from the user for
which the session state was instantiated. A session state of user was identified by
a session ID.

The architecture of the script based injection filter service proposed in this
research work is shown in Figure 4. It has been implemented using three major
components namely server, database and filtering policy with dynamic and
static filter. The attacker tries to send the malicious script to the Web Service
through the internet. If it comes to the server directly, it will cause distributed
denial of services attack and other attacks.

Through the proposed script injection filter service architecture, the
malformed input is refined in the filtering policies. If the script node contains a
malicious message then it is blocked by the filter, otherwise the valid SOAP
message is processed and responded by the Web method available in the Web
Services. The filtering policy receives all input from the user. If it receives
malicious script, then it is processed in test Web Service for HTTP response
header analysis. Again, it is passed through input validator to find the
possibility of XSS attack. Later, it is analyzed for Web Service related attacks
like message replay, coercive parsing, oversized message, parameter tampering
and semantic URL filtering attacks.

Improved cross site scripting filter for input validation against attacks in web services 185

l Blofked
HTTP Static
Request/ Loadanaly At
Response zer e
analyzer
4 A
—invalid‘
invalid
Black list Flow analyzer
User valid
Interface

v | . Dummy

Al » service
Converter i .
provider

A 4

Other
| servic

Dummy database

Dynamic filter

Fig. 4. Proposed architecture of XSS injection filter service

This filter has been built with significant components to achieve dynamic
filtering policies using American Standard Code for Information Interchange
(ASCII) converter, blacklist, dummy Web Service provider with dummy
database, flow analyzer, HTTP request/response analyzer, load analyzer and
static filter.

Dynamic Filter

ASCII converter

The legitimate/illegitimate user sends an input to the server through the Web
user interface provided by the server side. In server side, the converter receives
the request and checks its format to find the non-ASCII format like hex, octal,
binary form of request. If it presents, the request is converted into ASCII format
to compare its value into blacklist. The blacklist contains whole set of updated
list of script injection attacks in ASCII format. This is used to compare the
request with ASCII format. It identifies the presence of attacks in the message.
Then the identified invalid request is forwarded to flow analyzer to block the
request.

186 Elangovan Uma and Arputharaj Kannan

Blacklist

The non-ASCII input is converted to ASCII to check it with blacklist container.
The blacklist container has up-to-date malicious script for the comparison of
script based injection attacks. If the input matches with blacklist container then
the communication will be cut off from the server side. Otherwise, the input is
forwarded to the dummy service provider with dummy database.

Dummy service provider and database

This service models like real web service to identify the anomaly request escaped
from above modules. It receives the requests and processes the request even he is
not an authenticated user to identify SQL injection. This allowed request gets
response from the dummy service provider. If the request contains any SQL
injection, then the executed request retrieves dummy user realms from the
database. This flow is analyzed using flow analyzer.

Flow analyzer

The incoming and outgoing message from user and dummy Web Service is
clearly analyzed by the flow analyzer to make decision for the user. If it
identifies and records the illegitimate user, then the flow analyzer blocks the
communication. This report is retrieved by three components. Those are
blacklist, HTTP request/response analyzer and load analyzer. The escaped
request from dynamic filter is forwarded to static filter.

HTTP request/response analyzer

The request is processed and responds back to the client with dummy values.
Here, the HTTP request and response are clearly captured by the flow analyzer.
Then the flow analyzer gets report from the HTTP Request/Response analyzer
about the communication of the user/attacker. It maintains set of policies to
identify the illegitimate request. If the input is matched with the policy of flow
analyzer, then that users IP address will be added to blacklist of filter. In
addition, the request is again forwarded to static filter to verify its nature of the
input. It also identifies the redirection of the values from the server to other
proprietary servers.

Load analyzer

This is used to find the load value of returned data. The exceeded data value is
compared with expected allowable load value of the analyzer.

Improved cross site scripting filter for input validation against attacks in web services 187

Static filter

The static filter verifies its format by passing the value to the special character
testing policy. This checks the incoming request for the presence of non
alphanumeric characters. The encountered request is reported to flow analyzer
and then the flow analyzer blocks the communication with that system.

ALGORITHM FOR SELF-AWARE MESSAGE ANALYZING FOR
SCRIPT BASED INJECTION ATTACKS

The proposed algorithm consists of two major phases namely response analyzer
and malicious script analyzer. In the first phase, the response analyzer identifies
unmatched responses with expected responses using Dummy Web Service
provider and flow analyzer based on HTTP request/response header analyzer. If
they do not match, it maintains blacklist for attacks and such users are black
listed. The next phase identifies the malicious script characters in the received
input and then it maintains session information of the attacker. This approach
not only maintains black lists, but also analyzes the dummy service providers
using the flow of attackers input and input validator. Hence, this proposed
dynamic approach provides better security, when it is compared with existing
systems that use static analysis. In this proposed system, input refining is
performed by flow analyzer and static filter.

The first module has been implemented with flow analyzer, which holds the
dummy Web page with dummy database. This dummy Web page receives the
input from the user and performs the analysis on the dummy page and response
are sent to the user. This module caches the response, and then analyzes all fields
of the header. At that time, it matches the nature of requested data from HTTP
request header with the nature of expected data from the dummy database. If it
does not match with the expected database, then it checks set of alert HTTP
response codes like server redirection 3xx. Next, it validates the input type,
length, format and range. In this way, the input is passed to all the refining
stages and the session token is stored to block the communication.

The server-side code has been designed to constrain input supplied through
client-side input controls and also the input from other sources such as query
strings or cookies for XML injection, SQL injection, XPath Injection and
cookie replay detection. The input is checked for non-alphanumeric characters
and is checked with BL (Black List) containing scripts for XSS attack. The filter
stores the user-specific data using session tokens. It uses this data to process
requests from the user for which the session state is instantiated. A session state
of user is identified by a session ID.

The detailed steps of the proposed algorithm for XSS filter are given in Figure

188

Elangovan Uma and Arputharaj Kannan

5. The malformed requests are calculated by session variables to add particular
IP address black list. The received input checks for alphanumeric characters.

Algorithm for script based injection filter service

Input = > Incoming request

Output = > Accept/Deny

1.
2.

N v kW

10.

Call ASCII convertor
If input = = Blacklist

Send invalid report to flow analyzer
At server side, Send Response with dummyDatabase to the client
Call flow analyzer
Analyze attributes of HTTP Request/Response Header attackers input
Extract Header Information
If (Response code = = Set of Banned Response Code)

Call LoadAnalyzer (Calculates size of returned data to the clientside)
If (Response! = size of expected data from test database)
Call static filter
If (Input! = Input Validator [(0-9)&&(A-Z)&&(a-z)])

Get IP address and send to blacklist.

Send message (“‘your input contains malicious data, you
connection is discarded”).

Else
Call Main Web Service

Fig. 5. Algorithm for XSS injection filter service

The users input is refined by validating its characters against symbols used in
scripting to deny the XSS attack. The filter maintains the trust level of user by
counting the number of malicious requests. If it exceeds a certain level, the Web
Service provider drops the communication for such user.

The proposed system has been implemented with service requester, service
provider and filter service. The intermediary service receives the request from the
client, then it forwards the request to service provider. The intermediary service
has been designed with ASCII character converter, HTTP response checker,

Improved cross site scripting filter for input validation against attacks in web services 189

load analyzer, flow analyzer and blacklist container. The attacker can send other
types of script codes such as hex decimal, binary etc. The tested valid input is
forwarded to XML based injection filter service to identify the Web Service
based injection attack. The invalid request is rejected, if it is identified by the
static filter. The detailed steps of the proposed algorithm for XSS filter are given
in Figure 4. The number of requests is calculated by counter variable
connectcount used for particular IP address. If counter variable exceeds more
than 5 requests, then the communication with that particular IP address is
discarded by the proposed XSS filter. The received input checks for
alphanumeric character.

The users input is refined by validating its characters against symbols used in
scripting to deny XSS attack. The filter maintains the trust level of user, by
counting the number of malicious requests. If it exceeds a certain level, the Web
service provider drops the communication.

Oversized message filter

Because of oversized message, the Web service resources such as CPU time,
memory usage and database connections keep busy. The filter was implemented
to measure the size of the incoming message. Moreover, it verified signature to
ensure that the message is not transferred in transit. Finally, it parsed the entire
request message for malicious content. This filter avoided buffer overflow
attack. The service provider had to set its maximum request length. The filter
loaded the XMLdocument and change XSD value maxMessageLength =1024
or any required buffer size. The algorithm is given below:

1. Get XML document of client

2. Get messaging attribute

3. If maxMessginglLength = 1024 then do Web method
4. Else discard

Message replay filter

This filter catches an identifier for incoming messages, which match an entry in
the replay detection cache database. If message signature is valid, the filter
compares the message timestamp to its own current clock time value for
synchronization. If the message signature is invalid or any time stamp mismatch
then, the message is rejected. This can be done by calculating timeTolerance,
CacheLifetime and MaxMessageAge. The time tolerance is the acceptable value
time difference between the sender and the maximum message age is conFigd as
600 seconds.

190 Elangovan Uma and Arputharaj Kannan

* The server calculates the message age by subtracting the created value on
the message from the current server time.

* For a message that appears to have been created in the past or, if the server
and message creation times are identical, the message will be accepted only,
when its message age is less than or equal to the values for the
maxMessageAge parameter plus the timeTolerance setting,

* If the Maximum Message Age value is less than or equal to the Time
Tolerance setting, the message is accepted.

CacheLifetimeInSeconds = (MMA + TT*2)
CLS = CacheLifetimeinSeconds

MMA = MaximumMessageAge

TT = TimeTolerance

The algorithm of message replay filter is given in Figure 6.

FindReplayedMessage(get envelope of SOAP)

1. Create input/output filter for client/server.

2. Read XML document

3. Get CLS and MMA of incoming message.

4. Calculate the message expiration time based on the cache lifetime configured in the

policy assertion.

Get the current time.

6. Compute the time difference between the message timestamp and the current time.
timeDifference = currentDate - timestamp;

7. Assign messageAge = timeDifference

8. Check for messages where sender's clock is slower than the server’s clock for first

b

condition.

9. Account for messages where the sender's clock is faster than the server’sclock
through the second condition.
if ((messageAge>maxMessageAge +TimeTolerancelnSeconds)
|| (messageAge< 0 &&messageAgelnSeconds>TimeTolerance))
generates exception SecurityFault Messages for AgeRequirementsNotSatisfied

10. Add the Message, identity value of message and expiration time to message replay
cache database.

Fig. 6. The algorithm of message replay filter

This solves message replay attack.

Parameter Tampering Filter

In the Webservice, the received parameters are checked for data type and null
values. This filter checks the parameter for valid data; if it fails, then, it throws

Improved cross site scripting filter for input validation against attacks in web services 191

an error to the sender once. Even if the sender continues, his misbehaving with
parameters leads to the disconnection of communication. To solve this problem,
the proposed XSS filter was created with pmcheckerfunction as given in Figure
7. It checks the arguments for null values, start element and end element of the
received request.

1. Call pmcheckerXml(reader)
2. If (reader == null or empty)
sendArgumentNullException("reader");
3. Get xsdpath from received XML document
4. GetAttribute("xsdPath" as xsdpath);
5. If (xsdpath != null or xsdpath!=empty){
assignxsdPath = xsdpath;
else
send Exception for MissingXsdPath;
6. Get StartElement from received XML document
7. If(StartElement != Empty)
ReadEndElement
8. If(EndElement != Empty)
Call Web method
else

send exception to the attacker and alert administrator

Fig.7. Algorithm for proposed XSS filter with pmchecker function

Coercive parsing filter

The filter verifies the received message for wrong format of SOAP message by
generating SOAP fault code. This filter blocks the input that has a strange
format. This policy is used the values in SOAP fault code. They are:

k

Version Mismatch Fault Code
It finds an invalid namespace for a SOAP envelope and throws exception.
Must Understand Fault Code

It indicates whether a header entry is mandatory or optional for the
recipient to process.

192 Elangovan Uma and Arputharaj Kannan

Many of the things can go wrong with a Web service message. The Web
service may encounter a problem, input data may be wrong or a header may
come across which the server does not understand. The algorithm for coercive
parsing filter is given below.

1. Get XML document
2. If(SOAP version = =valid namespace)
if(mustUnderstand = = 1)
allow
else throw mustunderstand Fault Exception
3. else

throw Version Mismatch Fault Exception

Semantic URL attack filter

The semantic URL attack is theclientmanually retypes theparametersof its
request by keeping the URL’sstructure,but altering itssemanticmeaning. This is
protected by giving token and timestamp for expiration. This filter sets the
NONCE (Number used ONCE) by generating a random number and assigns
the time stamp to use the request URL for limited time. The random number
generator needs a seed value to create NONCE. For that, the system takes the
process id as seed value, as given below.

NONCE = (PID)“ mod N || TimeStamp((SD + ST) + D)
PID = Process ID

C = Counter value in 100 digits

N = Large Prime number in 200 digits

SD = System Date

ST = System Time

D = 24 Hours

The generated NONCE is very tough to break by brute force attack, because
PID is generated by a 32-bit memory operating system. Then the system
increases its power with counter variable to createa more complex number. The
URL is concatenated with user identity and NONCE.

Improved cross site scripting filter for input validation against attacks in web services 193

Client URL=URL || UID || NONCE.
URL = Uniform Resource Locator
UID = User Identity

NONCE = Number used ONCE

Client Admm

ml={reset request || TP W1}

Authenticates TID &
Calculate M= (PID)® mod I ||
TimeStamp((SDHSTHD)
Client URL=UEL || UID || M||T1

A4

m2={URL || UID | N ||T1}

*
Calculate .
T3=T1 + Time m3=(UID || PWD1 | PWD2] N[T2} Compare vid N .PWD1
et o if (T2 (T1+ 24 hrs))
Tamp ot enen ®| Replaces PWD1=PWD2
then discard
PWD 1 = Old password PWD2 = New password
T1=Time stamyp of server T2= Client tune stamp added with T1

Fig. 8. Password reset policy of the proposed filter

The information flow between client and server is shown in Figure 8.
Therefore, the attacker cannot use the URL or imitate the user id embedded in
the URL by substituting other user id and random numbers. The attacker
cannot predict the seed value of NONCE from the 32-bit operating system or
higher configuration. Because each and every time the process id is changed by
the operating system.

194 Elangovan Uma and Arputharaj Kannan

Algorithm for Password reset policy of the proposed semantic URL filter

Input: reset request (user identity and password)

Output: accept/reject

1. Client sends message Ml=reset request || UID || PWDI to the service
provider

2. Service provider authenticates UID and calculates N=(PID)C mod N ||
TimeStamp((SD+ST)+D)

Concatenate Client URL=URL||UIDJ|N||T1
Send M2=URL||UID||N||T1 to the client

3. Calculate T2=T1+Time stamp of client

4. Calculate M3=UID|[PWD1|[PWD2||N| T2

Compare UID,N,PWDI1 if (T2<(T1+24hrs)) replace PWDI=PWD2 then
discard

Fig. 9. Algorithm for Password reset policy of the proposed semantic URL filter

The algorithm is proposed to send and receive the password resetting request
securely is shown in Figure 9. It utilizes the dynamic nonce used for each and
every communication.This filter guards password resetting, while the reset
request and response is communicated over Internet. Here, the attacker is not
visible; instead the legitimate user tries to steal the password of the other
legitimate user in that same Web community. First, the user sends the reset
request to the server and then the server sends back the response to the client
with corresponding URL with required parameters to reset the password. Now,
the legitimate user slightly modifies the parameter to locate the other users
parameter and receives the password reset access of the other user. In this filter,
the mitigation approach is implemented by two significant components of
semantic URL filter. Those are random nonce generator, and time stamp
calculator. The random nonce generator produces random values from identity
of task. Afterwards, the nonce value is concatenated with time stamp values to
maintain its freshness.

RESULTS

The proposed XSS filter was tested against a list of known XSS attacks as given
in Tablel. These attacks were uploaded in custom script of SOAPUI tool. The
system was tested by raising attacks shown in Tablel. The XSS attack
prevention took Ims or 2ms. It depends on its complexity to find the XSS
attributes in XSS attack. Our experiments showed that the proposed XSS filter
could detect about 99.99% XSS attacks. Our experiment also showed that our

Improved cross site scripting filter for input validation against attacks in web services 195

implementation uses a small amount of CPU time and memory space of the
system.

Table 1. Selected test case run with XSS Filter

S.No. Test Cases TimeTaken Results
1. <script > alert(XSS attack) <script> Ims OK
2. The ending tag of the envelope element Ims OK

< /SOAP-ENV:Envelope > is removed
3. Omit the quotes for the attribute in the envelope tag Ims OK

<SOAP-ENV:Envelopexmlns: nl =http://
www.au.edu/results/ >

4. The namespaces starting with xmlns are changed to xs 2ms OK
5. Change the name of the service Ims OK
6. A character is inserted in to the element Ims OK

<email > dfg@myWeb.com < role > admin
</rol > < /email >

7. Change the original namespace http://www.au.edu/ Ims OK
results to http://www.au.edu/students/

8. The message that has the <city > Chennai < /city > 2ms OK
tag repeated up to fifty times, i.e., test for replay
attacks.

9. An additional attribute is inserted into 2ms OK

< cardnoxsi:type =xsd:int > 1234 < /cardno >

The dummy login Webpage is shown to explain how the system prevents the
attack. It can be used with any type of Web services with relevant dummy Web
service and database. The input received in any sub-link of the page is tested
with a relevant set of input fields.

The fallowing operations are supported. For a formal definition, please review the Service Description

Fig.10. Server side login page of service provider

196 Elangovan Uma and Arputharaj Kannan

The proposed filter, embedded in Web service page is shown in Figure 10. The
client page of dummy login screen with username and password is displayed in
Figure 11. In this page, we have generated the XSS attack like an attacker by
typing <script >alert (Hello XSS) </script> through text box. The service
provider validates the users input through the proposed XSS filter. Here the parser
validates the input and identifies the input which is a script node. Suddenly, it
throws a warning message and blocks the user as shown in Figure 12.

= Untitled Page - Windows Internet Explorer

ey & hetpiiflocaihast a4 website L /Default asp

Fie Edt View Favortes Tooks Help

x O < ke G - EEE E &
x 03 -8 vew — BT o Server Error in '/WebSite14' Application
A n . ~ . o . Web.Services. Server was unable to process request. -
g Favorites ‘ W @] hitp-mobithunder com-son... () c# - Dl - Duritz - C System. Are gqmeanxcepzo XSS protected webservice .you are an XSS Attacker and your V has
= — blocked.
‘ @untitled Page | | at Service.login(String and \ \wse\l 3
J App_Code\Service.cs'I
T o ner excaption stack trace -
User Name |escript=alerti"hello XSS")

Fig.11. Attacker trying to generate XSS attack Fig. 12. Attacker has blocked by the XSS filter

PROTECTION EVALUATION

We tested the proposed and existing filters against three sources of XSS attack
data that have widely been used in previous research as shown in Table 2.

* xssed: xssed.com includes reports of Websites vulnerable to XSS, along
with a URL for a sample attack. Since the dataset is very large, we
randomly selected a subset of 500 recent working attacks from among
these, in order to estimate the effectiveness of our filter against real-world
attacks.

* XSS cheatsheet: The xssed dataset is biased towards very simple attack
payloads, since most of them simply inject a script tag. To assess the
fillter’s protection for more complex attacks, we have created a Web page
with multiple XSS vulnerabilities and tried attack vectors from the XSS
Cheat Sheet, a well-known and off-cited source for XSS filter
circumvention techniques. The proposed XSS filter refined all 350 test cases
generated by SOAPUI, also filtered attacks referred by xssed (400 attacks)
and cheat sheet (20 attacks).

Improved cross site scripting filter for input validation against attacks in web services 197

Table 2. Results for SOAPUI, xssed and cheatsheet

Datasets Proposed XSS filter Validate request filter Anti XSS filter
SOAPUI 350/350 311/350 324/350
testing tool
xssed 400/400 348/400 350/400
cheatsheet 20/20 18/20 17/20

A Test Case is a collection of Test Steps that are assembled to test the
proposed XSS Filter service. The Implemented XSS Filter is tested successfully
with SOAP UI 4.5.1. It passes all test cases of XSS, fuzzing scan, Invalid types,
SQL injection, Custom Scripts, XML Bomb and XPath Injection from
SOAPUI. We can add any number of Test Cases to a custom script. It generates
text file report.txt to provide details of security test.

It contains test starting time, date and total hours to finish the test and status
of script. The status of the script means whether the scripts are cached or not by
the filters as shown in Figure 13.

SecurityTest started at 2012-08-30 12:48:55.328

Step 1 [login] No Alerts: took 720 ms

SecurityScan 1 [Cross Site Scripting] No Alerts, took = 187
[Cross Site Scripting] Request 1 - OK -
[sss=<SCRIPT>document.write("<SCRI");</SCRIPT>PT
SRC="http://soapui.org/xss.js"></SCRIPT>]: took 2 ms
[Cross Site Scripting] Request 2 - OK - [sss=<SCRIPT a=">">"
SRC="http://soapui.org/xss.js"></SCRIPT>]: took 2 ms
[Cross Site Scripting] Request 3 - OK - [sss=<SCRIPT a=">"
SRC="http://soapui.org/xss.js"></SCRIPT>]: took 1 ms
[Cross Site Scripting] Request 4 - OK - [sss=<SCRIPT "a=">"

SRC="http://soapui.org/xss.js"></SCRIPT>]: took I ms

Fig.13. Report generated by SOAPUI4.5.1 Web service testing tool

At last, SOAPUI returns all test case reports with done status as shown in
Figure 14. For this system, it raises all malicious script and custom script for
testing. This system received the done and no alert status while it checks the
filters in the dummy service web page.

198

Elangovan Uma and Arputharaj Kannan

osmsorm | SRS

P X s=uwm

Dane

[TestSteps

e K e B

Expanded

= Helloworld (8 scans) [T
"% Cross Site Scripting [Moaers
& Custom Script [TNoaAets
% Fuzzing Scan [HoAers
() Invalid Types [TNoAets
ankt MalFarmed XML [HoAets
“& SGL Injection [Nodets
‘@ WL Bomb [HoAets
B ¥path Injection [Nodets

Fig.14. Tested with SOAPUI4.5.1 Test cases

The result shows that the proposed technique is more robust, when we
compare this to existing methods. The proposed system took 720ms to filter the
test cases of SOAPUI testing tool as shown in Table3 and Figure 15.This is
comparatively lesser than the validate request filter of ASP.net Webservice and

anti X

SS filter of Java.

Table 3. Comparison of proposed XSS filter with the inbuilt XSS filter of
Asp. net Web services and jdk1.4SDK with respect to speed

s.no Language Time taken to finish
1 Proposed XSS Filter 720ms
2 Validate request filter 950ms
3 AntiXSS filter 1201ms

Seconds

Proposedscript

injectionfilter

——Validate requestfilte

AntiXss filter

100 i

50 100 150 200 250 300 350 400 450 500 550 600 650 700 770

Mumber of attacks prevented

Fig.15. Comparison on number of attacks prevented in seconds

Improved cross site scripting filter for input validation against attacks in web services 199

CONCLUSION

In this paper, we explained the design and implementation methods for the
filtering policies. The secured system was implemented with XSS filter, oversized
message filter, message replay filter, parameter tampering filter, coercive parsing
filter and semantic URL attack filter. We presented a dynamic approach
together with a static approach, by self-aware message analyzing algorithm
against script based injection attacks on web services. It does not allow the
inputs to service provider directly. Instead, it sends the request to dummy server
page and analyzes the nature of the request and response. Then, input is passed
on to input validator to find the malformed input. Further, attacks are analyzed
with the other filters to prevent Web service based attacks. The filters were
tested with valid and invalid SOAP messages. The results show that the
proposed filters are capable of identifying the malicious elements in the SOAP
messages and then block the messages. This can prevent various attacks such as
message replay attacks, oversized payload, recursive payloads and XSS attacks.
The system has to be implemented with its extended modules like
authentication, digital signature and certificates for providing more security
features.

ACKNOWLEDGEMENT

The authors wish to acknowledge the collaborative funding support from the
UGC, Govt. of India, New Delhi. (UGC F.No. 41-1363/2012(SR)

REFERENCES

Adnan, Gutub., Abdul-Rahman, El-Shafe. & Mohammed, Aabed. 2011.
Implementation of a pipelined modular multiplier architecture for GF(p)
elliptic curve cryptography computation. Kuwait Journal of Science and
Engineering, 38(2B): 125-153.

Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C. &
Vigna, G. 2008. Saner: Composing static and dynamic analysis to validate
sanitization in web applications. Proceedings of the 2008 IEEE Symposium
on Security and Privacy: 387-401.

Chuang, M. C., Lee, J. F & Chen, M. C. 2013. SPAM: A secure password
authentication mechanism for seamless handover in proxy mobile IPv6
networks. IEEE Systems Journal, 7(1):102-113

Gundy, M. & Chen, H. 2009. Noncespaces: Using randomization to enforce
information flow tracking and thwart cross-site scripting attacks. Proceedings
of16th Annual Network & Distributed System Security Symposium. NDSS
Symposium.

200 Elangovan Uma and Arputharaj Kannan

Jovanovic, N., Kruegel, C. & Kirda, E. 2006. Pixy: A static analysis tool for
detecting web application vulnerabilities. Proceedings of IEEE Symposium
on Security and Privacy: 258-263.

Kieyzun, A., Guo, P. J., Jayaraman, K. & Ernst, M. D. 2009. Automatic creation
of SQL injection and cross-site scripting attacks. Proceedings of 30th
International Conference on Software Engineering (ICSE):199-209.

Liu, H., Ning, H., Zhang, Y., He, D., Xiong, Q. & Yang, L.T. 2013. Grouping-
proofs based authentication protocol for distributed RFID systems. IEEE
Transactions on Parallel and Distributed Systems, 24(7):1321-1330.

Martin, M. & Lam, M. S. 2008. Automatic generation of XSS and SQL
injection attacks with goal-directed model checking.Proceedings of 17th
USENIX Security Symposium: 31-43.

Minamide, Y. 2005. Static approximation of dynamically generated Web pages.
Proceedings of the 14th International Conference on World Wide Web,
Chiba, Japan: 432-441.

Nadji, Y., Saxena, P. & Song, D. 2009. Document structure integrity: a robust
basis for cross-site scripting defense. Proceedings of 16th Annual Network &
Distributed System Security Symposium, NDSS Symposium.

Negm, W. 2004. Anatomy of a Web services attack: A Guide to Threats and
Preventative Countermeasures, http://www.bitpipe.com/detail/RES /
1084293354294 .html

Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J. & Evans, D. 2005.
Automatically hardening web applications using precise tainting. Proceedings
of 20th IFIP International Information Security Conference, Makuhari-
Messe, Chiba, Japan:295-307

Pete, Lindstrom, A. 2004. Attacking and defending Web services. Technical
Report, Spire Security, LLC.

Shar, L. K. & Tan, H. B. K. 2012. Automated removal of cross site scripting
vulnerabilities in web applications. Information & Software Technology
54(5): 467-478.

Shen, D., Chen, G. & Jose, B. Cruz. 2007. Theoretic solutions to cyber attack
and network defense problems. Proceedings of 12th International Command
and Control Research and Technology Symposium.

Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C. & Vigna, G. 2007.
Cross-site scripting prevention with dynamic data tainting and static analysis.
Proceedings of Network and Distributed System Security Symposium,
NDSS,San Diego.

Improved cross site scripting filter for input validation against attacks in web services 201

Wasserman, G. & Su, Z. 2008. Static Detection of cross-site scripting
vulnerabilities. Proceedings of 30th International Conference on Software
Engineering. :171-180.

Xie, Y. & Aiken, N. 2006. Static detection of security vulnerabilities in scripting
languages. Proceedings of the 15th USENIX Security Symposium: 179-192.

Submitted : 18/07/2013
Revised : 12/01/2014
Accepted : 21/01/2014

202 Elangovan Uma and Arputharaj Kannan

Ol ot Slasmgd o3 @l godl 1o SIS A G s o

OUS 16,0 7 Lo 0 g

Ll = gl = Ul el = L ISl e sl 5l o™
gl = (gl = Ul el = Lo o oS5 o gladl o gle b 5 5 585 Snl™

oM

Slleodl ool o Aulead) UL Edlan 1 plY1 a3 ppeed) 2l

a3 s w1 S e AW oMlalaall 2ol (51 bl &2 45 a0l
Ciwlasdl SUL sda il Slazes o Sleaeg)) o el Gagiad ¢l
cww\w\f&wvg&gwﬂuwj&w\ﬁow@\o&mj
Slazgll ol Jriss el [Leadl i 4Vl ol a5 5 Y) .
i Loy Bl e 5l daseddl Sloghaall B o Lgbis B Sl
el bl lir coay &l VI (i s Sl I oda Joo sk el
LBLES] 3505 &3 s oy S35 Wl W 5adl oo Aol SO I Sl 5o
i plal o dowiailpoll e Lo I O Il Slozen a1 D s
ol Sy Al Ok dauly il Dlars do s SLAS) Com ades A
o el e B el e g sadl 1 2l s 8508 el Lpa A1 G LI
By e CaiSUl Gy ol Il 38055) @iy &5 e a5 13
S mmal plall s iy ol Slads e Slomgdl e Al 6l
azgll dnb o O) GlS5 dens ol i e bl s Jl sl 25k
QLJ\QJJJJJJ\JA}J@J\.l.ag_éa,\ﬁ.x?owum\ﬁqyj\.u
JIRERRLINY] .S\.i.l..,a\“ o Slial (Clamdl o JBI 6D g5 2]l
Sl Bl asl sy colasyl ¢ls! s o i aldl ol)
by e Bl 6,0 53l s e OF Sl S it Al
O R T o R WA SR P tRCH T [PER U PPE W [V W
sda e 3l grenall ldl J05 LA @31l dl dome Mo gl gl

Improved cross site scripting filter for input validation against attacks in web services 203

s bl Dl i e 506 e 55 2l e A e O s
S e s 15 ol padlpadl e e) e o s e 5 0
Sl o 1S il b Ly skl B s 83 L pmtal 48§ el Slanegll
B ESe Ay Doy e daane il W)

Slezer (ol Clidx (&gl Sl e Ciulasdl lialie ol
Blsedl e hams Mo Sl o (Rl sall e Ay Do

’ . e

dons Las> ¥ | dlsme

23 . ? .
d
LoSow — dggolST — lad
oSl ol — ol 3001 Gudro 8yl
Dol V1 Loasly ploin Vi slaB¥ly bl wlaass § wlilally wlndl i Gas
laglally LSl psley Lalamlly Luslain ¥l Lanslyyg 1531y ol ol

- é; é; é; é; é; é; é; é; E; 3 & PO

A SOl puez 4293
Jee el (e S g 3
¥) Signd| i B iz A pglad|

(o laaclons Liliad dotLaa (2 algul 1y

Agelaio VI pglall Aoy joci (yutdy
CogS) Aol

ugS)I -13055 (Blawall 27780 i p0

00965-4810436 1, 92l wigllg R (5 LA o ol Jul) B
s | ladily
4836026 uSola 9kl Likaally

E-mail:JSS@kuc01.kuniv.edu.kw

m| ~ Bakad| SLEBLAL g SO £3

kil g S Qlar| g

8 L guag pLIATI g ¢ Ly Lol 501 A | S35 3
LS Flia g L1y puter (o Backand | LG 194

e J
) S o ¥

Loyl Jga Gl gy sl)

N 7 - 3

¥ 15 TR | At td | I
o T | U b ants]| T)
Lo 1Y \ | Lol 5105 \
gs 025 60 .:)Lu.._..uj.a &é ‘i 2 15 QL"‘"""’S’A

Qrane a9 gi el lgic Ao a9 A 9801 8 luall usi e L goas Aloell @by s 9f 1 Lok 31 a1 S| fudd g8
(ubaall g 58) i gSIY (9 il i 50 07101685 (o) Auc Lo N1 p glall Alseo luusn)

e Ve

Visit our web site: http://pubcouncil. kuniv.edu.kw/jss

