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ABSTRACT

The utilization of back-propagation neural network in identification of internal dynamics of
chaotic motion is found appropriate. However, during its training through Rumelhart
algorithm, it is found that, a high learning rate («) leads to rapid learning but the weights may
oscillate, while a lower value of ‘a’ leads to slower learning process in weight updating formula
Avj, = adjx; Momentum factor () is to accelerate the convergence of error during the
training in the equation wp(t+1) = wi(t) + adez; + p{wi(t) — wi(t—1)} and
vie(t+ 1) = vae (1) + @bz pi{vie (1) — v (t — 1)} while transfer function sigmoid

S =

value of ‘e’ and ‘y’ during the training. To identify optimum value of ‘o’ and ‘i’ ,

. It is the most complicated and experimental task to identify optimum

firstly the network is trained with 10% epochs under different values of ‘o’ in the close
interval 0 <a <1 and p=1. At a=0.3 the convergence of initial weights and
minimization of error (i.e., mean square error) process is found appropriate. Afterwards
to find optimum value of u, the network was trained again with o = 0.3 (fixed) and with
different values of 4 in the close interval 0 < y < 1 for 10* epochs. It was observed that
the convergence of initial weights and minimization of error was appropriate with o=
0.3 and p = 0.9. On this optimum value of a and p the network was trained successfully
from local minima of error = 1.67029292416874E-03 at 10° epochs to global minima of
error = 4.99180426869658E-04 at 15 x 10° epochs. At the global minima, the network
has exhibited excellent performance in identification of internal dynamics of chaotic
motion and in prediction of future values by past recorded data series. These essentials

are presented through this research paper.
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INTRODUCTION

Chaos theory and identification of internal dynamics for prediction of future
values is a subject matter of study in mathematics, with applications in several
disciplines including, physics, engineering, medical science, meteorology and
hydrology (climate forecasting). Chaos theory studies the behavior of dynamical
systems those are highly sensitive to initial conditions, an effect which is
popularly referred to as the butterfly effect. Small differences in initial conditions
yield widely diverging outcomes for such dynamical systems, rendering long-
term prediction impossible in general. This happens even though these systems
are deterministic, meaning that their future behavior is fully determined by their
initial conditions, with no random elements involved. In other words, the
deterministic nature of such systems does not make them predictable. This
behavior is known as deterministic chaos, or simply chaos. Lorenz (1996, 1972)
has described Chaos, as that when the present determines the future, but
approximate present does not approximately determines the future. Chaotic
behavior is being observed in many natural systems, such as weather. In
common usage, "chaos" means, "a state of disorder". However, in chaos theory,
the term is defined more precisely.

Although there is no universally accepted mathematical definition of chaos, a
commonly used definition says that for a dynamical system to be classified as
chaotic, it must have the following properties:

(1) Sensitive to initial conditions.
(2) Random motion.

(3) High internal dynamics.

(4) Difficult to forecast.

Sensitivity to initial conditions is popularly known as the "butterfly effect"
(Lorenz, 1972). For example, the flapping wings of a butterfly represent a small
change in the initial condition of the system, which causes a chain of events
leading to large-scale weather phenomena. A consequence of sensitivity to initial
conditions is that, if we start with only a finite amount of information about the
system, then beyond a certain time the system will no longer be predictable. This
is most familiar in the case of weather, which is generally predictable only about
a week ahead. The most widespread techniques used for prediction are the
numerical and statistical methods. But it is quite difficult to forecast such
chaotic behavior. Researches in the field of predicting chaotic data time series
are being conducted for a long time, but successes are rarely visible. For
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example, Basu & Andharia (1992) found that the rainfall data time series shows
a chaotic behavior with its predictors not only to be chaotic in nature but also
suffer from epochal changes. They presented an alternative approach based on
the theory of chaos, which treated the time series of monsoon rainfall as
deterministic but possibly chaotic. They used past 'n’ years rainfall data as
predictors making the forecast possible for “#+ 1 months in advance. Some
significant contributions also found for the same by statistical approach.
However, Guhathakurta (1998, 2000, 2006); Guhathakurta et al. (1999);
Rajeevan (2001); Rajeevan et al. (2004); Thapliyal & Kulshrestha (1992);
Thapliyal (1997); Thapliyal & Rajeevan (2003); Krishnamurthy & Kinter (2003);
Krishnamurthy & Kirtman (2003) and Sahai et al. (2002) have found that
statistical models have inherent limitations such as the models are not useful to
study the highly nonlinear relationships between dependent (i.e., target) and
independent (i.e., predictors) parameters, even if one considers models like
power regression. It is concluded that the identification of internal dynamics of
rainfall for long period (chaos) is approximately difficult.

From Rumelhart ef al. (1986), the Artificial Neural Networks (ANNSs) have
been proved to be a powerful soft computing technique for prediction of highly
complex and nonlinear systems like chaos. ANNs belong to the black box time
series models and offer a relatively flexible and quick means of modeling. These
models can treat the non-linearity of system to some extent due to their parallel
architecture. Kowar et al. (2013) have found that the successful applications of
ANN models may be in the simulation of chaotic series with high degree of
accuracy. A broad literature review from 1986 to 2012 has been carried out.

It has been found that the two main architecture of ANN are back-
propagation neural network (BPN) and radial-basis function (RBF) network
commonly used by the researchers, especially for this problem. However, BPN is
used frequently in various applications worldwide. For illustration, the long-
range monsoon rainfall forecasting over a smaller geographical region is a very
challenging task for the scientists around the globe. According to Basu &
Andharia (1992); Mohammed (2010); Patil & Ghatol (2010) it is mainly because
of the chaotic behavior of rainfall data time series and due to the same reason,
researches in these fields are being conducted for a long time, but successes of
these models are rarely visible. Many researchers have introduced number of
models for chaotic series forecasting. No multiple models have forecasted the
same situation in exactly same way with same results. At the same time, no
single model is reliable for chaos forecasting. Climate and rainfall are highly
non-linear phenomena in nature.

Through literature review, it is also found that architectures of ANN such as
BPN and RBF are best established to forecast chaotic behavior and are efficient
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enough to forecast rainfall as well as other weather parameter (chaos) prediction
phenomenon over the smaller geographical region (Chih-Hong et al., 2011). In
support of the same experiment of BPN system in deterministic forecast, we have
gone through the literatures. Guhathakurta (2006) has successfully applied BPN
in long-range forecast of monsoon rainfall over very smaller Indian region
“Kerala”. In this forecast, past recorded rainfall data time series is used to
forecast the future value. In many other cases BPN is found to be fit for
prediction of other climate activities. Enireddy et al. (2010) used the BPN model
for predicting the rainfall data time series. 99.8% and 94.3% accuracy were
obtained by them during the training and testing period respectively. From these
results they concluded that rainfall can be predicted in future using the same
method. Sawaitul ef al. (2012) and Kowar et al. (2013) also performed
experiments on forecasting future weather to arrive at the conclusion that BPN
algorithm can also be applied on the weather forecasting data. Thus it is
concluded that the ANNs are capable of modeling in identification of internal
dynamics of chaotic motion. The ANN signal processing approach for chaos is
capable of yielding good results and can be considered as an alternative to
traditional approaches. Present survey of literatures in the proposed field of
research exposed that deterministic forecasting method is one of the useful
techniques for predicting chaotic motion especially when the identification of
physically connected predictors is difficult. A finite-dimensional dynamical system
is a system, whose state at any instant can be completely characterized by a set of
scalar observations xj, X»,..., x,. This set is of course fixed and must always
characterize the system throughout its evolution. The evolutionary history of the
system is then given by time series x(¢), x5()..., xn(?); these functions of time trace
out a trajectory in n-dimensional phase space. Guhathakurta (1998, 2000, 2006)
discussed a dynamical system is deterministic if its evolution is completely
determined by its current state and past history. It is found that BPN is
sufficiently suitable for identification of internal dynamics of chaotic series by past
history of series. However, selection of its parameters likes:

(1) Number of input vectors ().

(2) Number of hidden layers ().

(3) Number of neurons in hidden layers (p).
(4) Number of output neurons (y).

(5) Weights and biases.

(6) Learning rate («),

(7) Momentum factors (u).

seems crucial during design time. Especially for chaos prediction, no authors



Impact of learning rate and momentum factor in the performance of back-propagation neural network... 155

have provided optimum value of these parameters. Within these parameters it is
found that the impact of ‘e’ and ‘u’ for the performance of BPN system is
extremely crucial. It is found that, weight changes in BPN system involve a
combination of current gradient and the previous gradient. This approach is
beneficial when some training data are very different from a majority of the
data. Sivanandam et al. (2006) and Kumar (2007) pointed out that a small ‘«’ is
used to avoid major trouble of the direction of learning, when very unusual pair
of training patterns is presented in chaos. High learning rate ‘«’ leads to rapid
learning but the weights may oscillate, while a lower learning rate leads to
slower learning in weight updating formula Avy = ad;x;. On the other hand, if
‘w’ 1s added to the weight update formula, then the convergence becomes faster.
The weights from one or more previous training patterns must be saved in order
to use momentum. For the BPN with ‘i’ the new weights for training step ¢+ 2
is based on 7 and ¢+ 1. It is found that ‘x’ allows the net to perform large weight
adjustments as long as the correction proceeds in the same general direction for
several patterns. Thus using ‘u’ the network does not proceed in the direction of
gradient, but travels in the direction of the combination of the current gradient
and previous direction for which the weight correction is made. Sivanandam et
al. (2006) have explained that the main purpose of the ‘i’ is to accelerate the
convergence of error propagation algorithm. This method makes the current
weight adjustment with a fraction of the recent weight adjustment. The weight
updating formulas (Equation 1 and 2) for BPN with momentum are:

wie(t + 1) = wi(t) + adez; + p{wpc (1) — wi(t — 1)} (1)
vie(t + 1) = v (1) + adezj + plvw (1) — v (1 — 1)} (2)

where, 0 < a< 1,0 < u< 1

Thus identification of an appropriate value of ‘e’ and ‘w’, for the most
favorable performance of BPN is a challenge for the scientists. And it is most
constructive during the modeling of chaos forecasting. In this study, the BPN is
used as deterministic forecast. 4 separate experiments have been prepared with
different values of ‘@’ and ‘i’ to recognize the impact of ‘e’ and ‘y’ during its
training and testing period.

DATA DESCRIPTION AND PREPROCESSING

Sixty two years (1951 - 2012) total monsoon rainfall data time series of
Ambikapur region (total geographical area is 15733 km?) in India, which
represented chaotic motion is considered for the study. Since BPN system with

its transfer function ’sigmoid’ f{x) = TL e is limited to the close intervals 0
o0
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and 1 therefore data time series is normalized by using following Equation 3 and
used as input to BPN system. Equation 4 is used to de-normalize authentic
representation of output (results) in this paper. Data for first 57 years (1951 -
2007) are used for training the BPN and tested for the years 2008 to 2012.

(x; + min(x;)

"= (x; + max(x;) (3)
o {min(x;) — r;. max(x;) }
" (ri—1) (4)
ABOUT BPN MODEL

BPN in deterministic forecast is illustrated in Figure 1, wherein 11 input vectors
(x1, X2...., X11) in input layer are used to input past eleven years’ data time series,
3 neurons in hidden layer (z;...z3) and one neuron (yy) in output unit are used to
observe 12" year prediction value. Karmakar et al. (2009, 2012) and Kowar et
al. (2013) have found that the mean absolute deviation (MAD) is inversely
proportional to number of input vector ‘n” and 11 <n < 15 is found
appropriate. Therefore n=11 has been chosen. 11x3 =33 hidden layer weights,
03 output layer weights, 03 hidden layer biases, and 01 output layer bias is used
in the system to be trained. And these weights v;is, wys, vo, and wy (total 40) are
trained during the training period. Phillip (2003) observed that one hidden layer
is sufficient for all types of chaos, while use of two hidden layers rarely improves
the model and it may introduce a greater risk of converging to a local minima.
One of the key causes is that it increases unknown variables (weights and biases)
in the network to be trained. Karmakar et al. (2012) and Kowar et al. (2013)
identified that the 3 neurons in hidden layer and 11 input vectors provided
satisfactory performance of BPN in deterministic forecast. And further
increment of neurons in hidden layer is increases MAD between actual and
predicted values. The neurons output is obtained as f (x;) known as transfer
function is typically the sigmoid axon given in the following Equation 5. The
output f (x;) is depicted in Figure 2.

1

f(x)zm

(5)

Where 6 determines the slope and 7 is the threshold. In the proposed model
6 = 1,17 = 0 have been considered with the output of the neuron in close interval
[0, 1] as shown in Figure 2. The BPN in deterministic forecast is trained with 57
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years (1951-2007) training dataset. In every epoch (i.e., parallel iteration
process) during the training process (Rumelhart et al., 1986) algorithm is used to
minimize the error i.e., mean square error (MSE). The training started with
initial set of weights and biases between 0 and 1. During the experiments, it was
carefully observed that how MSE got optimized regularly after each epoch.

12t vear SW monsoon rainfall

Outputlayer
(1 neuron)

Hidden layer
(3 neurons)

Vi3
Inputlayer
(11 input vectors;

Past 11 vears SW monsoon rainfall

Fig. 1. The BPN model

_J 0

Fig. 2. Output of Sigmoid Axon

The model acceptance criteria is measured by two statistical identifiers
namely: standard deviation (SD) and mean absolute deviation (MAD) given in
Equation 6 and 7 respectively with a hypothesis (H). Where "H’ is defined as
MAD must incredibly less than or at least half of the SD. If H is true, then model
can be accepted otherwise not. The performance criterion is measured by
correlation coefficient (CC) between actual and model predicted values. To
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accept and check performance, the model is analyzed during the training period
(1951-2007), and testing period (2008-2012).

MAD = ‘% Zn:(xf - i) (6)
i=1

SD = \/]11 ii(x,» —m)? (7)

Where, p; represents predicted values and m is mean.

IDENTIFICATION OF LEARNING RATE ()
AND MOMENTUM FACTOR (1)

To observe the impacts of changes in the value of ‘@’ and ‘x’ in the BPN model
to identify the internal dynamics of chaotic motion, Four experiments were
performed with different values ‘e’ and ‘u’ as follows:

1. Experiment 1 (0 < o < 1, u=1and 10° epochs).

2. Experiment 2 (o« = 0.3,0 < p< 1 and 10° epochs).
3. Experiment 3 (o = 0.3, ¢ = 0.2, and 15x10° epochs).
4. Experiment 4 (o = 0.3, 1 = 0.9, and 15x10° epochs).

Experiment 1 (0 < o < 1, = 1, and 10° epochs)

Trainable weights of the model are initialized by the random values between 0
and 1.Emphasize is given on the impact of ‘«’ by considering different values of
‘a’, ranging from 0.1 to 0.9 in the model during the training period. For each
value of ‘a’ the model is trained with 10° epochs repeatedly for 10 times. Finally,
their average MSE is analyzed as depicted in Table 1. From the data obtained
from such experiment, convergence of the network has been analyzed. It is
found to be lowest for a = 0.1 but it is already proved that the lower ‘a’ leads
to slower learning process, thus 0.1 cannot be considered as an appropriate
value of ‘a’, because the theory of Rumelhart et al. (1986) does not support this
value practically and which also may cause slower learning as well as adverse
effect to the results discussed by Sivanandam et al. (2006). Figure 3
demonstrated the graphical representation of the same result given in Table 1.
Although in the experiment convergence was found slower (i.e., MSE
=0.0013768651795) at « = 0.3 as compare to at « = 0.1 and 0.2.
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Table 1. Average MSE at various value of « between 0.1 to 0.9

a MSE

0.1 0.00137449301736871
0.2 0.00137601436701650
0.3 0.00137686517950020
0.4 0.00137689263460138
0.5 0.00137606629962170
0.6 0.00137606629962170
0.7 0.00137606629962170
0.8 0.00137606629962170
0.9 0.00137606629962170

0.001378 -
0.001377 ~
0.001377 ~
0.001376 -

0.001374 -
0.001373 T T T T T T T T 1
0.1 02 03 04 05 06 07 08 0.9

Learning rate (o)

Fig. 3. Minimizing MSE at 0 < « < I and through 10* epochs

However, it has been observed that convergence at point 0.3, 0.6, 0.7, 0.8, 0.9
are almost same, but according to the Reumelhart et al. (1986) high ‘«’ leads to
rapid learning, but the weights may oscillate. On the basis of all these facts, a =
0.3 is considered as optimum for further experiments.

Experiment 2 (& = 0.3,0 < ;< 1 and 10° epochs)

To identify the impact of ‘i’ on BPN model, the model is trained with optimum
value of ‘e’ i.e., 0.3 and different values of between 0.1 to 0.9 was considered.
For each value of ‘4’ the BPN is trained 10 times for 10° epochs. Finally their
average MSEs are found as given in Table 2 and Figure 4.
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Table 2. Average MSE
(o= 0.3 and p = 0.1 to 0.9 with 10* epochs)

« 1 MSE

0.3 0.1 0.001658868009638590
0.3 0.2 0.001659529384976310
0.3 0.3 0.001660240177338890
0.3 0.4 0.001659545857317930
0.3 0.5 0.001659545857317930
0.3 0.6 0.001659545857317930
0.3 0.7 0.001659681426853800
0.3 0.8 0.001659711835229300
0.3 0.9 0.001659606166807380

Results of above experiment illustrated that the minimum MSE is found at p =
0.1. And increased at u = 0.2 to 0.3. At g = 0.3 it is decreased. And after that
however, the MSE remains almost constant for y = 0.4 to 0.6 with slight variation
between = 0.7 to 0.9. As in the theory it is clearly mentioned that, in case of
higher value of ‘u’ the weights may oscillate. Therefore, value of pu 0.2 is
considered as an optimum. Because the convergence at u = 0.2 to 0.6 except for
= 0.3 MSE almost remains the same. The adverse effects on results due to weight
oscillation can be avoided by fixing the value of x at 0.2, this being in the lower side
of the range of value of p. From the above two experiments, it has been finalized
that the values of o and will be 0.3 and 0.2 respectively for further experiments.

0.001661

0.001660

0.001660

=

:20.001659

0.001659

0.001658 T T T . . . T . .
01 02 03 04 05 08 07 08 089

Momentum factor(u)

Fig. 4. Minimizing MSE at @ = 0.3,0 < p < 1 through 10° epochs
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Experiment 3 (o« = 0.3, 1 = 0.2, and 15x10° epochs)

With the value of & = 0.3, & = 0.2 the BPN model is trained for 15x10° epochs
intended for obtaining global minima (maximum trained point). At this point, the
model becomes capable to identify the internal dynamics of chaos. The training
started with initial set of random weights between 0 and 1 as shown in Table 3.
The MSE minimized regularly after each epoch as depicted in Table 4 and Figure
5. After 15x10° epochs, the MSE reached a minimum level of
8.47798380689012E-04. The optimized weights at this point are shown in Table 5.

Table 3. Initial random weights

vi=1 to 11; j=1to 3

0.7794150114059440
0.8212675452232360
0.3309511542320250
0.1313177943229670
0.6847181916236870
0.4834440946578970
0.2634690403938290
0.8884155154228210
0.8755260109901420
0.7731931805610650
0.8535689115524290

0.3072796463966360
0.5119876265525810
0.8144663572311400
0.1872385144233700
0.3795685768127440
0.3880071043968200
0.3107233643531790
0.2106779813766470
0.1681295037269590
0.1036903262138360
0.7007688283920280

0.5058456063270560
0.6868295073509210
0.5876017212867730
0.6259894967079160
0.3410908579826350
0.0004483461380005
0.8642087578773490
0.2879743576049800
0.4218183755874630
0.8074117898941040
0.8036214113235470

Initial weights voi; i = 1 10 3

0.7650007009506220

0.3771285414695740

0.4249131083488460

Initial weights wi;; - | 0 3

0.9578890800476070

0.7296340465545650

0.2057505846023550

Table 4. Minimization of MSE during training process

Epoch Count MSE

1 1.63038145643859E-03

10 1.63022276413987E-03

10° 1.62896874155549E-03

104 1.35184423358056E-03

10° 1.34879656789549E-03
5x10° 1.33598879654699E-03
11x10° 1.32886756688897E-03
12x10° 1.12765899896565E-03
13x10° 9.98956773987995E-04

15x10° 8.47798380689012E-04
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Fig. 5. Minimization of MSE during training process

Table 5. Optimized weights after 15x10° epochs

V=1to1l;j=1to03

9.441118622142240
6.808217910988250
-6.441564391167690
-4.386089144258910
1.628959993914080
-6.107070634909740
-0.784777109922923

2.522718281525280
1.883782784715540
-0.894517875416847
-0.897749338227441
-0.388992286997265
-1.206877589966790
-0.782243359175445

-3.800881407232070
-3.929845922089530
2.421932330501940
1.553870729111280
-1.874375683363850
3.342372200262020
0.538706691691305

-0.402774653460837 -1.514272539028290 -1.615819434660100

-2.469422223603950 -0.460996744249289 1.169718064312870

-2.200750523205190 -0.188971677296908 1.286681721617640

0.672876739092872 0.912859764380702 0.685643438154767
Updated weights voi; i = 1 10 3

0.001980641526768 -0.004014601830225 0.002435093590160

Updated weights wq

0.00354914779937090
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Experiment 4 (o« = 0.3, 1 = 0.9, and 15x10° epochs)

To evaluate and review the impact of variations in « and against the results of
last experiment, the same experimental setup with same data set but with
different values of « and p has been repeated. Here, may cause weight changes
to be in a direction that would increase the error. Thus the value of p = 0.9 is
considered as appropriate value for training the model which will accelerate the
convergence but avoid the increase in error. The training started with initial set
of weights between 0 and 1 as shown in Table 6, i.c., after 15x10° epochs the
MSE is minimized up to 4.99180426869658E-04 marked as Mg (Global
minima) and the optimized weights are shown in Table 7. The training started
with initial set of weights between 0 and 1 at point P’ where MSE =
1.63289262934093E-01. After 15x10° epochs the MSE reached its lowest point
4.99180426869658E-04 marked as Mg, the global minima or maximum trained
network point as shown in Table 8 and Figure 6. In the previous literatures
various authors have clearly mentioned that attaining such point is almost
difficult or temporal nervousness. Interestingly, such point has been achieved in
the present study. In this experiment MSE is more minimized than that obtained
during experiment 3.

Table 6. Initial random weights

Vi=1to 11;j=11t0 3

0.280800521373748
0.472349166870117
0.119313240051269
0.923533260822296
0.313810527324676
0.007087528705597
0.512941122055053
0.071080148220062
0.040320515632629
0.353351771831512

0.168759763240814
0.809812307357788
0.312592983245849
0.312689185142517
0.941224575042724
0.538136720657348
0.947724163532257
0.571404635906219
0.674218833446502
0.232466399669647

0.044127523899078
0.855300962924957
0.731210827827453
0.295242071151733
0.792520821094512
0.904589712619781
0.393840074539184
0.451620757579803
0.487735211849212
0.005873143672943

0.984928369522094 0.470367133617401 0.641462087631225
Initial weights vo;; = 1 (0 3

0.5814671516418457 0.5955716967582703 0.21110987663269043
Initial weights wy; — | (0 3

0.6662726998329163 0.20196348428726196 0.8917340636253357
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Table 7. Optimized weights

Vi=1to 11;j=11to0 3

13.212680441 -3.043977842 -14.397325147
12.839138110 6.880667764 -3.267866395
-18.220808470 -11.208725106 -7.818172624
-1.665566401 3.380170693 9.262771717
6.007453047 2.824425500 -0.613637485
-13.113640093 -5.893302749 2.576067728
-5.373775965 -6.117592000 -3.119470042
-4.065856516 -5.748926243 -5.717660860
1.752119801 2.226165188 4.205130417
-5.860865432 -3.593515579 -2.458649507
9.387518936 14.261855302 20.131087700
Updated weight vg;; i1 10 3
0.0001052014214497 0.0001015295532543 0.0000240460520913
Updated wy
0.000167955628075041
Table 8. Optimized MSE
Epoch Count MSE
1 1.63289262934093E-01
107 1.67082747834919000E-03
10° 1.67029292416874000E-03
10* 1.65516581866368000E-03
10° 1.33629916609829000E-03
5x10° 9.15076092085467000E-04
11x10° 5.75971925301642000E-04
12x10° 5.63477906270142000E-04
13x10° 5.43576724081598000E-04

15x10° 4.99180426869658E-04
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Fig. 6. Minimizing MSE at o = 0.3, x = 0.9, and 15x10° epochs

RESULTS AND DISCUSSIONS

From experiments 3 and 4, it was observed that the minimization of MSE is
almost equal up to 10° epochs. However, in experiment 3 constant trend of MSE
was noted even after 10° epochs and convergence speed was found to be slow.
MSE got further minimized to 8.47798380689012E-04 after 15x 10° epochs. In
experiment 4, the MSE was found to decrease gradually after 10° epochs and
convergence speed was noted to high. Finally the MSE got minimized to
4.99180426869658E-04 after 15x 10° epochs. It was observed that experimental
set up 4 is more efficient in minimizing the MSE, compared to experimental set
up 3. In both the experiments the BPN was tested independently through
independent data set from 2008 to 2012. The statistical data sets of the training
and testing period for both the experiments are provided in Table 9. During the
testing period in experiment 3, the MAD (% of mean) is just half of the SD.
value of CC = 0.7 indicated that the model was not trained properly. Therefore,
poor performance is shown in the testing period. During testing period, it was
observed that the MAD (% of mean) is more than the SD indicating that the
proposed model cannot be accepted.

On the other hand in experiment 4, during testing period the MAD (% of
mean) was very less as compare to SD with very high (0.88) value of CC. These
indicated that the model got trained properly and clearly defined the internal
dynamics by creating a relationship between independent variables (x;, x,...,
x11) and dependent variable (yy).
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Table 9. Performance of the BPN during Training and
Testing Period in experiment 3 and 4

Training Period Testing Period
SD MAD CC SD MAD CC
Experiment #3 7.3 4.18 0.7 10.1 11.4 0.9
Experiment # 4 7.3 2.841 0.88 10.1 7.1 0.7

Experiment 4 is most appropriate since during the testing period of this
experiment, MAD (% of mean) was much less than SD as evident from above
Table 9. From the present study, it is thus concluded from the results obtained
that in identification of the internal dynamics of a chaotic series (rainfall data
time series for the present study), the following parameters are most appropriate
in designing a BPN Model:

(1) Number of input vector () 11
(2) Number of layer (m;) : 03
(3) Number of hidden layer (,) . 01
(4) Number of hidden neurons (p) . 03
(5) Number of output neuron (y) . 01
(6) Optimum value of ‘o’ 0.3
(7) Optimum value of ‘i’ 0.9

(8) Transfer function f'(x)

Sigmoid axon

(9) Number of epochs (¢) : 15x10°

Performance of the BPN model during training and testing period by the
experiment 3 and 4 is shown in Table 10 and 11 respectively. Although
experiment 3 wherein @ = 0.3 and p = 0.2 cannot be accepted because it is not
trained properly and also ‘H’ is false since observed MAD (% of mean) is found
to be on the higher side. Hence it is concluded that the proposed BPN model is
improper during training as well as testing period. On the other hand, the
proposed BPN used in experiment 4 with « = 0.3 and ¢ = 0.9 is found to be
appropriate since the value of MAD (% of mean) is observed low whereas, the
value of CC is high. This reiterates that the acceptance of the hypothesis ‘H’ is
true.

Verification for the current year 2012 is also given in the Table 12 for both the
experiments. It is found that, experiment 3 is completely impractical. It
produced very high deviation between actual and predicted value i.e., 1146.4
mm. However, experiment 4 with « = 0.3 and g = 0.9 predicted accurately
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with a nominal deviation (32.9 mm.). Thus, it is clear that the impact of ‘o’ and
‘w’ is vital during the design of BPN model especially for the prediction of
chaotic motion. Any slight change on the value of ‘e’ and ” may collapse the
BPN model as observed during the experiments performed. The graphical
representation of performance of the BPN during training, testing and
verification in both the experiments is presented in Figure 7 and 8§ respectively.
It is seen from Figure 7 that the deviation between actual and predicted value is
very high as predicted. However, Figure § has properly explained the internal
dynamics during the training and testing period.

Table 10. Performance during training period (1962-2007)

Experiment 3 Experiment 4
a=03and ;= 0.2 a =03and = 0.9
Absolute Absolute
Actual Predicted deviation Predicted deviation
Year data (in mm.) gata (in mm.) (in mm.) data (inmm.) __ (in mm.)
1962 952.3 1204.0 251.7 928.3 24
1963 1089.6 1136.6 47 1105.7 16.1
1964 1523.4 1129.6 393.8 1253.0 270.4
1965 1226.0 1257.1 31.1 1449.5 223.5
1966 815.4 1061.8 246.4 863.7 48.3
1967 1081.4 1070.8 10.6 1127.2 45.8
1968 914.8 1098.0 183.2 1039.6 124.8
1969 1193.3 972.7 220.6 1206.2 12.9
1970 906.0 821.1 84.9 827.1 78.9
1971 1773.5 1254.9 518.6 1751.2 22.3
1972 1188.6 1146.5 42.1 1267.9 79.3
1973 1153.4 942.0 211.4 1213.8 60.4
1974 919.4 1782.1 862.7 988.4 69
1975 1534.6 1386.6 148 1592.5 57.9
1976 1604.3 1151.8 452.5 1416.5 187.8
1977 1674.0 989.6 684.4 1590.4 83.6
1978 1103.4 1461.8 358.4 1353.7 250.3
1979 1020.1 1371.5 351.4 1111.1 91
1980 936.9 1590.3 653.4 951.5 14.6
1981 1106.9 1171.2 64.3 1221.2 114.3
1982 1303.2 1233.5 69.7 1329.4 26.2
1983 1254.8 1313.6 58.8 975.6 279.2

1984 1184.4 1085.3 99.1 1085.0 99.4
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Cont. Table 10. Performance during training period (1962-2007)

Experiment 3 Experiment 4
a = 0.3and ;, = 0.2 o =03and ;= 0.9
Absolute Absolute
Actual Predicted deviation Predicted deviation
Year data inmm.) gaa inmm.)  (inmm.)  data (inmm.) _ (in mm.)
1985 1231.7 1443.3 211.6 1018.4 2133
1986 1257.8 1077.1 180.7 1187.5 70.3
1987 1540.0 1128.3 411.7 1621.6 81.6
1991 1645.6 894.7 750.9 1334.2 311.4
1992 1190.7 950.6 240.1 1401.2 210.5
1993 1236.6 1624.9 388.3 1219.9 16.7
1994 2092.8 1331.2 761.6 1498.5 594.3
1995 1146.7 1226.4 79.7 1095.5 51.2
1996 1619.7 1435.0 184.7 1514.9 104.8
1997 1139.4 1391.9 252.5 1250.8 111.4
1998 1049.3 1168.5 119.2 1048.7 0.6
1999 1229.5 1223.9 5.6 1582.1 352.6
2000 1236.0 1230.9 5.1 1218.0 18
2001 1820.5 1137.9 682.6 1787.9 32.6
2002 1086.0 1319.7 233.7 1078.1 7.9
2003 1240.6 1091.0 149.6 1106.6 134
2004 858.4 1584.7 726.3 803.8 54.6
2005 952.7 1003.2 50.5 872.8 79.9
2006 1066.3 1041.0 25.3 1010.6 55.7
2007 1046.8 968.2 78.6 945.8 101

Table 11. Performance during testing period (2008 - 2011)

Experiment 3 Experiment 4

a =03and ;= 0.2 a =03and ;= 0.9

Absolute Absolute

Actual Predicted deviation Predicted deviation

Year data (inmm.) ga¢a (in mm.) (in mm.) data inmm.)  (in mm.)
2008 1358.4 1142.7 215.7 1139.2 219.2
*2009 603.2 1211.0 607.8 1271.1 667.9
*2010 649.7 1177.3 527.6 1345.6 695.9

2011 1445.5 1087.4 358.1 1412.0 335
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Table 12. Verification of BPN for 2012

Experiment 3 Experiment 4

a=03and ;= 0.2 a=03and = 0.9

Absolute Absolute

Actual data Predicted  deviation (in  Predicted  deviation (in

Year (inmm.)  gata (in mm.) mm.) data (in m.) mm.)
2012 1181.8 2328.2 1146.4 1148.9 32.9
—— Actual

200 --@- Predicted
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Fig. 7. Performance of the BPN in experiment 3 (& = 0.3 and p= 0.2)
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Fig. 8. Performance of the BPN model in experiment 4 (& = 0.3 and p= 0.9)

CONCLUSIONS

Previous researchers in the field of study of the present work during 1986 - 2012
concluded that the identification of internal dynamics of chaotic motion and its
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prediction for future is extremely difficult. Though BPN has sufficient skills to
overcome such shortcomings, but a proper selection of appropriate parameters
is of utmost importance and a challenging task. These parameters can be
optimized by the theory except ‘e’ and ‘u’. These two parameters have unusual
effects on the performance of BPN model. The impact of variability of these two
parameters has identified and observed following three vital facts:

(1) «a = 0.3 is found optimum. It is neither high nor low (0.2 <« <0.9). The
theory states that high « leads to rapid learning, but the weights may
oscillate. The lower rate leads to slower learning process.

(2) p is to accelerate the convergence of error algorithm during the training
period. As a= 0.3 and p = 0.2, the BPN has shown high level of
convergence of error in limited number of epochs ’e’. However,
performance of the BPN is found exceptionally unfortunate with such

values of « and p.

(3). With @ = 0.3 and g = 0.9, the BPN is trained properly and also found
efficient enough.

Particularly for this problem o« = 0.3 and ¢ = 0.9 is found optimum and these
values have produced exceptional performance (SD= 7.3; MAD=2.841;
CC=0.88) with a high level of convergence of error (MSE = 4.99180426869658E-
04) during the training process. However, it is noted that their values may diverge
for other problems. Thus, identification of impact of ‘e’ and ‘u’ is extremely vital
and therefore their optimum values must be chosen carefully through experiments
only. Finally, it can be concluded that the BPN model can be applied to forecast
chaotic motion through deterministic process. However, required superiority to
select its parameters like vis,wiis, vo, wo, My, ma, 1, p, f(X), €, Vi, o, and p is vital.
In the present study, the optimum value of these parameters, especially for this
problem is:

1
my=3,m=1n=11,p=3f(x) T 15%10°, e = 1,a = 0.3 and 1 = 0.9.
However, it may change with type of data series and chaos present in the

series. Thus a careful experimentation to optimize the values of the parameters
is highly suggested.
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