Some applications of differential subordination on certain class of analytic functions defined by integral operator

R. M. EL-ASHWAH* AND M. K. AOUF**

* Department of Mathematics., Faculty of Science, Damietta University, Egypt

ABSTRACT

Two-parameters function $H(n, \lambda; z)$ involving the Feltt multiplier operator is introduced. Subordination properties as well as sufficient conditions for starlikeness are also obtained.

Keywords: Analytic functions; differential subordination; multiplier transformations. 2000 Mathematics Subject Classification : 30C45.

INTRODUCTION

Let A denote the class of functions of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \tag{1.1}$$

which are analytic in the open unit disc $U=\{z\in C:\ |z|<1\}$. Let $S,\ S^*(\alpha)$ and $C(\alpha)\ (0\leq \alpha<1)$ be the subclasses of functions in A which are, respectively, univalent, starlike of order α and convex of order α in U. Denote by $S^*(0)=S^*$ and C(0)=C. Suppose also that P denotes the class of functions k(z) given by

$$k(z) = 1 + \sum_{k=1}^{\infty} c_k z^k,$$
 (1.2)

which are analytic in Uand satisfy the inequality

$$Re(k(z)) > 0 \quad (z \in U).$$

If f and g are analytic in U, we say that f is subordinate to g, written $f(z) \prec g(z)$ if there exists a Schwarz function w(z), which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 for all $z \in U$, such that f(z) = g(w(z)), $z \in U$. Furthermore, if the function g is univalent in U, then we have the following equivalence (Miller & Mocanu, 2000; Bulboacă, 2005):

^{**} Department of Mathematics., Faculty of Science, Mansoura University, Egypt

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \text{ and } f(U) \subset g(U).$$

For a function f(z) given by (1.1) and g(z) defined by

$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k,$$
 (1.3)

the Hadamard product (or convolution) of f(z) and g(z) is defined by

$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k = (g * f)(z).$$
 (1.4)

For an analytic function f(z) given by (1.1) and for $n \in N_0$, Flett (1972) defined the multiplier transformations $I^n f$ by

$$I^{n}f(z) = z + \sum_{k=2}^{\infty} k^{-n} a_{k} z^{k} \quad (z \in U; n \in N_{0}).$$
 (1.5)

Clearly, the function $I^n f(z)$ is analytic in U. We note that for $n \in N_0$, we have

(i)
$$I^{-n}f(z) = z + \sum_{k=2}^{\infty} k^n a_k z^k = D^n f(z),$$

and

(ii)
$$z(I^{-n}f(z))' = D^{n+1}f(z),$$

where the operator $D^n f$ was introduced by Sălăgean (1983). We also note that

$$I^{n}(I^{m}f(z)) = I^{n+m}f(z) \quad (z \in U)$$

for all integers n and m. Further, the operator I^n can be seen as a convolution of two functions. That is

$$I^{n}f(z) = (h * h * ... * h * f)(z),$$

where the function $h(z) = \log \frac{1}{1-z} = z + \sum_{k=2}^{\infty} k^{-1} z^k$ occurs n times. It follows from (1.5) that

$$z(I^n f(z))' = I^{n-1} f(z) \quad (n \in \mathbb{Z})$$
 (1.6)

and

$$I^{0}f(z) = f(z), \quad I^{-1}f(z) = zf'(z), \quad I^{-2}f(z) = z(f'(z) + zf''(z)).$$

We now define a two-parameters function $H(n, \lambda; z)$ by

$$H(n, \lambda; z) = (1 - \lambda) \frac{I^{n-1} f(z)}{I^n f(z)} + \lambda \frac{I^{n-2} f(z)}{I^{n-1} f(z)} \quad (z \in U; \lambda \in R; n \in Z; f \in A).$$
 (1.7)

Finally, we denote by $K(n, \lambda, \alpha)$ the class of functions $f(z) \in A$, which satisfy the following condition:

$$Re(H(n, \lambda; z)) > \alpha \quad (z \in U; 0 \le \alpha < 1; \lambda \in R; n \in Z).$$

We note that:

- (i) $K(0, \lambda, \alpha) = M(\lambda, \alpha)$ ($\lambda \ge 0$; $0 \le \alpha < 1$), is the class of λ convex functions of order α (Srivastava & Attiya, 2007);
- (ii) $K(0, \lambda, 0) = M(\lambda)(\lambda \ge 0)$, is the class of λ convex functions (Miller *et al.*, 1973; Mocanu, 1969; Mocanu, 1994):
- (iii) $K(0, 0, \alpha) = S^*(\alpha)$ and $K(0, 1, \alpha) = C(\alpha)$ (Srivastava & Owa, 1992).

Consider the first-order differential subordination

$$H(\varphi(z), z\varphi'(z); z) \prec h(z).$$

A univalent function q is called its dominant if $\varphi(z) \prec q(z)$ for all analytic functions φ that satisfy this differential subordination. A dominant \hat{q} is called the best dominant, if $q(z) \prec \hat{q}(z)$ for all the dominants q. For the general theory of the first-order differential subordination and its applications, we refer the reader to Bulboacă (2005) and Miller & Mocanu (2000).

DIFFERENTIAL SUBORDINATION ASSOCIATED WITH $H(n, \lambda; z)$

To establish our main results we shall require the following lemma.

Lemma 1 (Miller & Mocanu, 1985 and Miller & Mocanu, 2000). Let the function q(z) be univalent in U, and let the functions θ and φ be analytic in a domain D containing q(U), with $\varphi(w) \neq 0$ when $w \in q(U)$. Set

$$Q(z) = zq'(z)\varphi(q(z))$$
 and $h(z) = \theta(q(z)) + Q(z)$

and suppose that

(i) Q(z) is a starlike function in U,

(ii)
$$Re\left(\frac{zh'(z)}{Q(z)}\right) > 0 \ (z \in U).$$

If p is analytic in U and p(0) = q(0), $p(U) \subseteq D$ and

$$\theta(p(z)) + zp'(z)\varphi(p(z)) \prec \theta(q(z)) + zq'(z)\varphi(q(z)), \tag{2.1}$$

then $p(z) \prec q(z)$, and q is the best dominant of (2.1).

Theorem 1. Let $\lambda \in R \setminus \{0\}$, $n \in Z$ and $f(z) \in A$. Suppose also that the function q(z) univalent in U, with q(0) = 1 and $q(z) \neq 0$ ($z \in U$), and satisfies each of the following inequalities:

$$Re\left(1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right) > 0 \quad (z \in U)$$

$$\tag{2.2}$$

and

$$Re\left(1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \frac{1}{\lambda}q(z)\right) > 0 \quad (z \in U).$$
 (2.3)

If

$$H(n, \lambda; z) \prec q(z) + \lambda \frac{zq'(z)}{q(z)},$$
 (2.4)

then

$$\frac{I^{n-1}f(z)}{I^nf(z)} \prec q(z)$$

and q(z) is the best dominant of (2.4).

Proof. We choose

$$g(z) = \frac{I^{n-1}f(z)}{I^n f(z)}, \quad \theta(w) = w \text{ and } \varphi(w) = \frac{\lambda}{w}.$$

Then $\theta(w)$ and $\varphi(w)$ are analytic in the domain $C^* = C \setminus \{0\}$, which contains q(U), q(0) = 1, and $\varphi(w) \neq 0$ when $w \in q(U)$. Next, we define the functions Q(z) and h(z) by

$$Q(z) = zq'(z)\varphi(q(z)) = \lambda \frac{zq'(z)}{q(z)}$$
(2.5)

and

$$h(z) = \theta(q(z)) + Q(z) = q(z) + \lambda \frac{zq'(z)}{q(z)}.$$
 (2.6)

It follows from (2.2) and (2.3) that Q(z) is starlike in U and

$$Re\left(\frac{zh'(z)}{Q(z)}\right) > 0 \quad (z \in U).$$

We note also that the function g(z) is analytic in U, with g(0) = q(0) = 1, since $0 \notin q(U)$. Therefore $g(U) \subset C^*$. Thus, the hypotheses of Lemma 1 are satisfied and we find that, if

$$\theta(g(z)) + zg'(z)\varphi(g(z)) = H(n, \lambda; z) \prec h(z), \tag{2.7}$$

then

$$\frac{I^{n-1}f(z)}{I^nf(z)} \prec q(z).$$

and q(z) is the best dominants.

Remark 1. If $q(z) \in P$ and $\lambda > 0$, then we can omit the condition (2.3) in Theorem 1.

Remark 2. If $q(z) \in P$ and $\lambda < 0$, then we can omit the condition (2.2) in Theorem 1.

Theorem 2. For $\lambda > 0$, $n \in \mathbb{Z}$ and $0 \le \alpha < 1$, if $f(z) \in A$ and

$$H(n, \lambda; z) \prec \frac{(1 - 2\alpha)^2 z^2 + 2[(1 - 2\alpha) + \lambda(1 - \alpha)]z + 1}{(1 - z)[1 + (1 - 2\alpha)z]},$$
 (2.8)

then the operator $I^n f(z)$ is a starlike function of order α in U, that is,

$$Re \frac{I^{n-1}f(z)}{I^nf(z)} > \alpha \quad (z \in U).$$

Proof. For $0 \le \alpha < 1$ and $z \in U$, we first put

$$q(z) = \frac{1 + (1 - 2\alpha)z}{1 - z} \in P$$

in Theorem 1. Then, since

$$Re\left(1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right) = Re\left(\frac{1}{1-z} + \frac{1}{1+(1-2\alpha)z} - 1\right) > 0 \quad \ (z \in U),$$

the proof of Theorem 2 is completed.

Remark 3. Letting $\lambda \to 0^+$ in (2.8), we have

$$\frac{I^{n-1}f(z)}{I^n f(z)} \prec \frac{1 + (1 - 2\alpha)z}{1 - z} \,,$$

which implies that the operator $I^n f(z)$ is a starlike function of order α in U, that is, $Re\left\{\frac{I^{n-1} f(z)}{I^n f(z)}\right\} > \alpha \quad (0 \le \alpha < 1, z \in U).$

By taking $\alpha = 0$ in Theorem 2, we obtain the following result.

Corollary 1. For $\lambda > 0$ and $n \in \mathbb{Z}$, if $f(z) \in A$ and

$$H(n, \lambda; z) \prec \frac{z^2 + 2(1+\lambda)z + 1}{1 - z^2},$$
 (2.9)

then the operator $I^n f(z)$ is a starlike function in U, that is,

$$Re\left(\frac{I^{n-1}f(z)}{I^nf(z)}\right) > 0 \ (z \in U).$$

Theorem 3. Let $\lambda < 0, 0 \le \alpha < 1, n \in \mathbb{Z}$, such that

$$A(\lambda, \alpha; z)Re(z) + B(\lambda, \alpha; z) > 0$$
 $(z \in U),$

where

$$A(\lambda, \alpha; z) = -\lambda(1 - 2\alpha)|1 - z|^2 + [\lambda + 2(1 - \alpha)]|1 + (1 - 2\alpha)z|^2, \quad (2.10)$$

and

$$B(\lambda, \alpha; z) = |1 - z|^2 [(1 + \lambda - 2\alpha)|1 + (1 - 2\alpha)z|^2 - \lambda] - [\lambda + 2(1 - \alpha)]|1 + (1 - 2\alpha)z|^2. \quad (2.11)$$

If $f(z) \in A$ and $H(n, \lambda; z)$ satisfies the subordination (2.8), then the operator $I^n f(z)$ is a starlike function of order α in U, that is,

$$Re\left(\frac{I^{n-1}f(z)}{I^nf(z)}\right) > \alpha \quad (z \in U; \ 0 \le \alpha < 1).$$

Proof. For $0 \le \alpha < 1$, $\lambda < 0$ and $z \in U$, we first set $q(z) = \frac{1 + (1 - 2\alpha)z}{1 - z}$ in Theorem 1, to obtain,

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \frac{1}{\lambda}q(z) = \frac{1 + [\lambda + (1 - 2\alpha)]z}{\lambda(1 - z)} + \frac{1}{1 + (1 - 2\alpha)z}.$$

Then, after some calculations, we observe that

$$Re\bigg(1+\frac{zq''(z)}{q'(z)}-\frac{zq'(z)}{q(z)}+\frac{1}{\lambda}q(z)\bigg)=-\frac{A(\lambda,\,\alpha;\,z)Re(z)+B(\lambda,\,\alpha;\,z)}{\lambda|1-z|^2|1+(1-2\alpha)z|^2}>0 \qquad (z\in U),$$

which completes the proof of Theorem 3.

By taking $\alpha = 0$ in Theorem 3, we obtain the following result.

Corollary 2. For $\lambda < 0$, such that

$$(\lambda + 1)(1 + |z|^2) + 2Re(z) < 0 \quad (z \in U).$$
 (2.12)

If $f(z) \in A$ and the function $H(n, \lambda; z)$ satisfies the subordination relation (2.9), then the operator $I^n f(z)$ is starlike in U.

Proof. For $\lambda < 0$ and $z \in U$, we first set $q(z) = \frac{1+z}{1-z}$, in Theorem 1, to obtain,

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \frac{1}{\lambda}q(z) = \frac{1 + (\lambda + 1)z}{\lambda(1 - z)} + \frac{1}{1 + z}.$$

Then, after some calculations, we observe that

$$Re\left(1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \frac{1}{\lambda}q(z)\right) = \frac{(1 - |z|^2)[(\lambda + 1)(1 + |z|^2) + 2Re(z)]}{\lambda|1 - z|^2|1 + z|^2} > 0 \quad (z \in U),$$

which completes the proof of Corollary 2.

Finally, by taking $\alpha = 0$ and $\lambda \le -2$ in Theorem 3, we obtain the following sufficient condition for starlikeness.

Corollary 3. For $\lambda \le -2$ and $z \in U$, if the function $H(n, \lambda; z)$ satisfies the subordination relation (2.9), then the operator $I^n f(z)$ is starlike in U.

Proof. Since $Re(z) \le |z| < 1, \ z \in U$, then from (2.12) for $\lambda \le -2$, we have

$$(\lambda + 1)(1 + |z|^2) + 2Re(z) < 0 \quad (z \in U),$$

which proves Corollary 3.

REFERENCES

- **Bulboac**, **T. 2005.** Differential subordinations and superordinations, recent results, House of Scientific Book Publ., Cluj-Napoca.
- **Flett, T. M. 1972.** The dual of an inequality of Hardy and Littlewood and some related inequalities, Journal of Mathematical Analysis and Applications, **38**: 746-765.
- Miller, S. S. & Mocanu, P. T. 1985. On some classes of first-order differential subordinations, Michigan Mathematical Journal, 32: 185-195.
- Miller, S. S. & Mocanu, P. T. 2000. Differential subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel.
- Miller, S. S., Mocanu, P. T. & Reade, M. O. 1973. All α_{-} convex functions are univalent and starlike, Proceedings of the American Mathematical Society, 37: 553-554.
- **Mocanu, P. T. 1969.** One propriete de la convexite generalisee dans la theorie de la representation conforme, Mathematica, (Cluj) **11**(34): 127-133.
- **Mocanu, P. T. 1994.** On certain subclasses of starlike functions, Studia Universitatis Babes-Bolyai Mathematica, **39**(4): 3-9.
- Slgean, G. S. 1983. Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013, 362-372.
- Srivastava, H. M. & Attiya, A. A. 2007. Some applications of differential subordination, Applied Mathematics Letters, 20(11): 1142-1147.
- Srivastava, H. M. & Owa, S. 1992. (Eds.). Current topics in analytic function theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong.

 Submitted:
 04/11/2012

 Revised:
 13/08/2013

 Accepted:
 29/08/2013

بعض تطبيقات التبعية التفاضلية على صنف خاص من الدوال التحليلية المعرفة بمؤثر تكاملي

*رابحة الأشوح و **محمد كمال عوف

*قسم الرياضيات - كلية العلوم - جامعة دمياط **قسم الرياضيات - كلية العلوم - جامعة المنصورة

خلاصة

نقدم في هذا البحث دالة ذات وسيطين تشتمل على مؤثر فيلت الضارب. كما نحصل أيضاً على خواص التبعية والشروط الكافية لتكون هذه الدوال نجمية.

المجلة المربية للملوم الإنسانية

اكاديمية - فصلية - محكمة تصدر عن مجلس النشر العلمي - جامعة الكويت

الله العربية العربية العربية المربية المعوث باللغة الإنجليزية الم مناقشات وندوات الكتب الجديدة الم تقارير ومؤتمرات

مجلس النشـر العلمي

رئيسة التحرير أ.د. سعاد عبدالوهاب العبدالرحمن

P.o.Box: 26585 - Safat. 13126 kuwait

Tel: (+965) 4817689 - 4815453 Fax: (+965) 4812514

E-mail: ajh@kuniv.edu.kw http://www.pubcouncil.kuniv.edu.kw/ajh/