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ABSTRACT

In this paper, we study the sectional curvatures of the generalized semi ruled surfaces in
semi Euclidean space E'*!. The first fundamental form and the metric coefficients of the
generalized semi ruled surfaces are calculated and in these regards, Riemannian-
Christoffel curvatures are obtained by the help of Christoffel Symbols. So, the curvatures
of arbitrary non-degenerate tangential sections of the generalized semi ruled surface are
investigated. In addition to this, the relations between the sectional curvatures are
obtained. These are called semi Euclidean Beltrami-Meusnier formulas.
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1. PRELIMINARIES

E'semi Euclidean space is an Euclidean space provided with the metric tensor

v n+1
<X7 Y>=—in)h'+ Z XiYi (1.1)
i=1 i=v+1

—_— — . .
where X = (x1,..., Xy, Xe1) and Y = (y1, ..., Vu, Yur1)- Especially, if v = 0, then
Eg“ is called Euclidean space, if v = 1(n > 2) then E”‘Z“ is called as Minkowski

space, (O’Neill, 1983). Since (, ) is an indefinite metric, recall that a vector
X € E’;“ can have one of the three causal characters; it can be spacelike if
<Xf, )?> >0 or X = 0, timelike if </\7 )?> < 0 and null (lightlike) if <)? )?> —0
and X # 0. Similarly, an arbitrary curve a=a(f) C E"! can locally be

spacelike, timelike or null (lightlike) if all of its velocity vectors &(z) are
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respectively spacelike, timelike or null (lightlike), (O’Neill, 1983). The norm of

- o - /< = . .
X € E'! is given as HXH = ‘<X, X> . Let the set of all timelike vectors in

E" 1 be T, we call
— — - =
C(X) :{Yer) <Y, X><o} (1.2)
for X € I, as time-cone of semi Euclidean space E'"! including vector Y,

(O’Neill, 1983).

If the timelike vectors X and Y are in the same time-cone in E”V’“, then there is
a unique non-negative real number such that

(%, ¥) =~ || X ]| cosh o (1.3)
where the number 6 is called an angle between the timelike vectors, (O’Neill,
1983).

If X and Y are spacelike vectors in £"'! that span a timelike subspace, there
is unique positive real number such that

- = ==
<X, Y> - HXHH YHcoshH (1.4)
where the semi Euclidean angle between X and Y is defined with 6, (Ratcliffe, 1994).

Suppose that X is spacelike vector and Y is timelike vector in E™! Then,
there is unique non-positive real number of such that

(7.7 = 7] 7 s e
where 6 is a semi Euclidean angle between the X and 7, (Ratcliffe, 1994).

A two-dimensional subspace IT of the tangent space T,(M) is called a tangent plane
to M at p. For tangent vectors v, w define Q(7, %) = (¥, (¥, w) — (¥,w)*. Tangent
plane TI is non-degenerate if and only if Q(¥, W) # 0 for one basis ¥, W of II. The
absolute value |Q(V, w)| is the square of the area of the parallelogram with sides V' andw.
Q(v,w) is positive if g|II is definite, negative if it is indefinite (use an orthonormal
basis), (O’Neill, 1983).

Lemma 1.1. Let I1 be a non-degenerate tangent plane to M to p. The number

R-;-:_', )
(s = o)

!

=

(1.6)

~—
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is independent of the choice of basis v, w for 11, and is called the sectional curvature
K(IT) of TI. Here R is a (1,3)—tensor field on M called Riemannian curvature
tensor of M, (O’Neill, 1983).

2. GENERALIZED SEMI RULED SURFACES IN E*!

After recalling some usual definitions and notations from algebra of the semi
Euclidean space, we investigate some relations for the sectional curvatures of
generalized semi ruled surfaces introduced by Ekici & Gorgili (2000).
Generalized ruled surface theory in n— dimensional Euclidean space E" were
studied widely in the last century in (Thas, 1978; Frank & Giering, 1976, 1978).
Frank & Giering (1979) obtained the Beltrami Euler and Beltrami Meusnier
formulas by applying the well known theorems concerning the curvatures in the
classical surface theory to the tangential sections. The sectional curvatures of
generalized timelike ruled surfaces in n— dimensional Minkowski space were
investigated by (Ersoy & Tosun, 2009, 2010) and Lorentzian Beltrami-Meusnier
formula was obtained in (Ersoy & Tosun, 2013) which were inspired by (Tosun
& Kuruoglu, 1998). In these regards, to introduce generalized expressions for
the sectional curvatures of generalized semi ruled surfaces, let us investigate the
first fundamental form, the metric coefficients of these surfaces and the
components of Riemann Christoffel curvature by using Christoffel symbols.

Let {ei(?),ex(), ..., ex(t)}, k < n,be an orthonormal vector field which is
defined at the each point «(¢) of a non-null curve in (n + 1)—dimensional semi
Euclidean space E'"!. This system is denoted by Ej ,(¢) and is given by

Ep (1) = Splei(t), ex(t), ..., e()} , 0<pu<v,

where
1<i<k-—p
<ei(t)7 ej([)> =¢eiby g =
-1 , k—pu+1<i<k.

For pu>1, it is clear that the subspace Ej ,(z) has number of p timelike
vectors. Ejo(t) = Ex(¢) is an Euclidean subspace if there is no timelike vector in
Ey (1), that is pn = 0. If there is one timelike vector (that is, u = 1), then Ej ;(¢)
is Minkowski subspace. Thus, in semi Euclidean space E'*!(7) a generalized
semi ruled surface (semi ruled surface) is given parametrically by

k
o(t, uy, uy, .., ) = aft) + Zuie,-(t) (2.1)
i=1

and denoted by M, (Ekici & Gorgiilii, 2000).
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Here, the subspaces Ej ,(¢) and the curve « are called the generating spaces
and base curve, respectively. We assume that

k
{&(I) +Zul%(1),el(t)v>ek([)} (22)
is linearly independent. The subspace

Ar) = Sp{el(l), ...,ek(t),%(t), ...,IZ:(I)} (2.3)

is called asymptotic bundle of M with respect to Ej ,(¢) such that e(1) is the
derivative of the vector field of ¢;(7), 1 < i < k, (Ekici & Gorgiilii, 2000).
If dimA(f) =k+m, 0<m <k, then there exists an orthonormal basis

{e1(t),...,ex(t), ak1(1), ..., ar+m(t)} of A(t) containing Ey ,(t). Also, for the
orthonormal base {e; (), e2(?), ..., ex(?) }, there are following equations

6;22f=1ayej+€k+iﬁiak+i ; I<ism (2.4)
24
eh:Zjl?ZIahjej , m+1<h<k
where
8,)'0(,] = —Oéjj s €j = <€j,€j> s 8,']‘ = 6,’6j (25)
and
Kl > Ky > o> Ky >0
(2.6)
Rm—r+1 < Rm—r42 < <Ky < O,
for r < p, (Ekici & Gorgiilii, 2000). The subspace
7(1) = Sp{er(n), ., ex(0),é1(1), . (), (0 | (2.7)

is called tangential sub-bundle of M with respect to E ,(¢). Thus,
k+m<dmT{)<k+m+1 , 0<m<k

Suppose that dim T(¢) =k +m, 0 <m < k. Then {ey, ..., ek, As1, -, At } 18
an orthonormal basis both of asymptotic bundle A(7) and tangential bundle
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T(¢). This means that A(¢) is coincident with T(z). Assume that, for all
t,dimT(t) =k+m+1, 0 <m < k. Thus, one can find an orthonormal basis
for T(z) as {e1, ..., €k, ki1 -y Akmy Akyms1 +- In the case of dim T(7) = k +m + 1,
(k+1)— dimensional generalized semi ruled surface M has a
(k — m)—dimensional tangent subspace called central space of M at the each
point «(f) and is denoted by Zi_,,.(t) C Er,(t). While the semi subspace
Zi—my(t) is moving through the base curve a of M, it generates a
(k —m+ 1)—dimensional ruled surface contained by M which is called as
(k —m + 1)—dimensional central ruled surface. This surface is denoted by (2.
Moreover, the central surface €2 is also, a semi ruled surface because Zj_,, . (?) is
a semi subspace, (Ekici & Gorgiilii, 2000).

We assume that the base curve of M is also the base curve of Q C M.
Therefore, we have

k
a(t) = ZCueu + M1 Wesms1 5 Nme1 Z 0. (2.8)

v=1

The tangential space T(¢) of M is perpendicular to the asymptotic bundle A(¢)
at the central points. If we consider the equation (2.8) at the central point of
central ruled surface 2 C M, then we get

u, =0 , 1<o<m. (2.9)

Considering the equations (2.4) and (2.8), if we differentiate the equation (2.1)
with respect to # and u;, 1 <i < m, we get

k k
m
o=, <Cf +> u_,a;;) ei+ Y 0 EktoloRolicio + Nm Aictmit,
=1

(Pui:eia lglgky

respectively. Thus, the canonical base of the tangential bundle of generalized
semi ruled surface M is

m

k k
Z Ci + Z Ui e+ Z Ek+olUoKoll+o + NMm+18k+m+1, €1, €2,...,€k 0. (210)
1

i=1 =1 P

Now, we can evaluate the first fundamental form of M and the metric
coefficients with respect to this canonical base. In conventional notation we
choose uy = t and calculate the metric coefficients of M as follows:
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m

2
k k
800 = <99t7 80r> = Z&‘ (Ci + Zufa_/i> + Z €k+a(uaﬁa)2+€k+m+1(Tlm+1)2,
i=1 j=1

o=1

k 2.11
gio = (pu;, 1) =i (Ci + Z“j%‘i) , 1<i<k, 21)
=

8ij = <(Pt‘j7<puj> =eby 1<ij<k.

Therefore, the determinant of the matrix of the first fundamental form of M
is as follows:

m

8= det[gab] =€ (Z 5k+n(uﬁﬂﬂ)2+5k+m+l(77m+1)2> y 1< a7b <k (212)

o=1

where € = ¢].£5. ... . &k. Since g is non-degenerate at the each point of Tj,(p) the
matrix [g,] 18 invertible and the inverse matrix is denoted by [g"”]. The
coefficients of the inverse matrix [g"b] are as follows:

g¥=cg!,
g =

k
—eg | G+ Y uay; 1 <i <k,
p= (2.13)

' k k
gr=g" ((Cf +> u,'04_ﬁ> <CA +> “jaj)\)f + 5[)\5ig> , 1<i A<k
P =

From (Beem et al., 1981), the Koszul equation is

Fk _ 1 ngm |:8gjm + 8gim o 3g1;/

T2 Ix;  Ox;  Oxp|

m

If we substitute the equations (2.11) and (2.13) into the equation (2.14), then
we reach the Christoffel symbols for 1 <1i,j, A < k, as follows:
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1 | Og k k Og
0 _— _— |25 . v | =2
b= o3 (6 3o ) ).
IS :_i C +§:M'OZ' @J’_zk: <.+Zk:u.a.. %
00 2¢ A i YA duo - i pa i ou;
AL k 1 0g
+ §+,:21 wool+ D6+ /;”./04/‘:' Xin = AT

i=1

=~

) =r) =0
F’\ FA—O

1 Og
I9 =T9 =——°
20 0 2g8u,\’

== [<9+zm%> +k<ﬂ.

where e = ¢1.65.¢63. ... .epand g; = FI.

The Riemannian-Christoffel curvature tensor of M is given by

k
Rh/g;'zzgrh<aa i F;, ZF, +ZF°F§S>.

r=0

71

(2.15)

Considering the equations (2.11) and (2.15), the Riemannian-Christoffel

curvature tensors are

Roooo = Riooo = Rjjoo = 0,1 < 1,7 <k,

Ropj = 0,1 <i,j,h <k,

Rl/u'j = 07 1< iajahvl < kv

1 &% 1 O0g 0g
oo ==~ S50 S )

(2.17)

(2.18)

(2.19)

(2.20)

Since a normal tangent vector n of the generalized semi ruled surface M will

be orthogonal to Ey () at the each point £(z,u,,), it is defined to be
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n= ngJra“cr/@a(t)akJr(r(t) =+ 77m+lak+m+1(l) y Mme1 #0 (2~21)

o=1

where n is either a timelike or spacelike vector.

Thus, the following theorem can be given related to the principal sectional
curvatures at the point £ € M.

Theorem 2.1. Let M be a generalized semi ruled surface with the central ruled
surface in E"' and n be a non-null normal tangent vector of M orthogonal to
Ey.,.(0). Thus, the i™ principal sectional curvature (e;, n) at the each point & € M is

10’¢ 1 (0g
o; =c| ———= <i<k. .
Ke(ei,n) 5,( 2000 tia ((‘?u,) ) 1<i<k (2.22)

Let e(#) be a unit vector in the generating space Ey ,(¢), that is, we write

e(t) € Splei(t), ..., em(t),emi1(t), ..., ex(t)} (2.23)

and e(7) is either unit spacelike or unit timelike vector. Now, we investigate these
situations, separately.

(i) Let e(?) be spacelike vector. In this case, we write

m+p—s k

e= Zsmh Ocex + Z cosh f,e, + Z sinh f.e, + Z cosh e, (2.24)
y=s+1 z=m+1 w=m+14+p—s
and
m+p—s k
- z:smh2 O + Z cosh’ §, — Z sinh? 0, + Z cosh?f, =1 (2.25)
y=s+1 z=m+1 w=m+1+p—s
where the hyperbolic angles 6, 0, ..., 6, 01, ..., Oy Os1, - .., O are the angles between
spacelike unit vector e and the base vectors e, ea, ..., €, i1, Cm,Cmrl, - - -, €k, espectively.

(i) Let e(7) be a timelike vector. Therefore, we have

m m+p—s

e= Zcosh@xe\ Z sinhf,e, + Z coshf.e. + Z sinhf,e,  (2.26)
x=1

y=s+1 z=m+1 w=m+14p—s
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and
s m m+p—s k
— Z cosh? 0, + Z sinh? 6, — Z cosh? 0. + Z sinh?6,, = —1 (2.27)
x=1 y=s+1 z=m+1 w=m+14p—s
where the hyperbolic angles between the base vectors ey, ea, ..., €5, €1, .-+, CmyCmrly - -, €k
and timelike unit vector e are 01,6y, ...,0, 051, .., 00, Os1, ..., O, respectively.

Considering these situations, we give following theorem.

Theorem 2.2. Let M be a semi ruled surface with the central ruled surface in
E{f“and n be the normal tangent vector orthogonal to Ey ,(t) of M. In this case,
there exist the following relation between the sectional curvature of the non-
degenerate section (e,n) and the principal sectional curvatures at the point
¢ €QC M as follows:

(i) If the unit vector e(t) is a spacelike vector, then

N m
Kc(e,n) = — Zsinh2 0;Kc(ei,n) + Z cosh? 0K, (ej,n), (2.28)
i=1

J=s+1

(i) If the unit vector e(t) is a timelike vector, then

Kc(e,n) = Zcosh2 0K (ej,n) — Z sinh” 0K (e, n) (2.29)
i=1 J=s+1
where the angles 01,05, ...,0, 051, ...,0,011,...,0 are the hyperbolic angles

between the unit vector e (spacelike or timelike) and the base vectors
€1,€, ey sy CoilynnsCnyCmal,y- -, Ck, FESpectively.

3. BELTRAMI-MEUSNIER FORMULAS OF
SEMI EUCLIDEAN SPACE E"!

Let 2 be a central ruled surface of the generalized semi ruled surface M in E'!.
Therefore, any unit vector at the each central point ¢ € 2 is defined to be

n
a= AOM‘I' >\lel +...+ )\s—les—l + )\ses + >\s+les+l +...+ )\mem

+/\m+1em+l +...+ /\In‘HJ*SeﬂH»N*S + /\m+l+;rsem+l+pfs +...+ /\kek

,{a,a) = £1,

where a and ¢,, 1 < o < m, are linearly independent. The unit vector « is either
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spacelike or timelike vector. There exist the following four cases depending on
whether the normal tangent vector n which is orthogonal to the generating space
Ey (1) of M is spacelike or timelike vector.

1)  The unit vector a and the unit normal tangent vector n are spacelike.

2) The unit vector a is a spacelike and the unit normal tangent vector n is
timelike.

3) The unit vector a is a timelike and the unit normal tangent vector n is
spacelike.

4)  The unit vector a and the unit normal tangent vector n are timelike.
Now, we investigate these situations, separately.

1) Let the unit vector ¢ and the unit normal tangent vector n be spacelike
vectors. In this case, any spacelike vector @ at the central point £ € ) can
be written as follows

m+p—s k
= cosh 1y — +Zsmh¢xev+ Z coshipye, + Z sinh e, + Z coshipee, (3.1)
H H y=s+1 z=m+1 w=m+1+p—s
and
m-+p—s k
— Zsmh Uy + Z cosh? Py — Z sinh? 4. + Z cosh? ¢, =1 (3.2)
y=s+1 z=m+1 w=m+14p—s
where e;, 1 < s < m, is a timelike vector and the angles vy, 91, ..., v, ..., are

the hyperbolic angles between the spacelike unit vector ¢ and the vectors
n,ei,...,es,...,er, respectively.

2) Let the unit vector a be a spacelike vector and the unit normal tangent
vector n be a timelike vector. Suppose that e, 1 <s < m, is a timelike
vector. In this case, we write the spacelike unit vector a at the central point

£eQas
m m+p—s
smhz/;o Zsmhw& Z cosh,e, + Z sinh.e. + Z coshhye,  (3.2)
” || y=s+1 z=m+1 w=m+1+p-s
and
m-+p—s k
- Z sinh? ¢, + Z cosh? ¢, — Z sinh? . + Z cosh? ¢, = 1.
y=s+1 z=m+1 w=m+1+p—s

So that the angles vy, ¥y, ..., s, ..., Y, are the hyperbolic angles between the
spacelike unit vector a and the vectors n, ey, .. ., e;, ..., e, respectively.
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3) Let the unit vector a be a timelike vector and the unit normal tangent
vector n be a spacelike vector. As above cases, at the central point £ € 2
any timelike vector a is written as follows:

m mp—s k
a = sinh ¢0 + Z coshipey + Z sinh e, + Z cosh.e, + Z sinhe,.  (3.3)
H H y=s+1 z=m+1 w=m+14p—s
It is clear that
m—+p—s k
— Z cosh? Uy + Z sinh? Py — Z cosh? U, + Z sinh? Uy, = —1
y=s+1 z=m+1 w=m+14pu—s

where the angles g, ¥1,...,%s,...,%, are the hyperbolic angles between the
timelike unit vector a and the vectors n,eq,...,e;, ..., e, respectively. In
addition to that, the vectors e, 1 < s < m,are the timelike vectors.

4)  Let the unit vector @ and the unit normal tangent vector n be timelike
vectors. Let ¢, 1 < s < m, be timelike vectors. In this case, timelike unit
vector a can be written as follows:

mtp—s k
= cosh zbo + Zcosh yex + Z sinh e, + Z cosh.e, + Z sinhe,.  (3.4)
H H y=s+1 z=m+l w=m+14p—s
In addition, there is
m+pu—s k
— Z cosh? ¢, + Z sinh? Py — Z cosh? ). + Z sinh? ¢, = —1.
y=s+1 z=m+1 w=m+1+4pu—s

where the hyperbolic angles between the timelike unit vector a and the vectors
N,€l,...,€E5 ... e are Yo, ¥1,..., %, ..., Y, respectively.
Considering equation (1.6), at the point ({ + ue,) € M, the curvature of non-

degenerate section (e, @) is

BeBsroMoRs000

(eq,€05)(a,a) — (e, a>2

Kg—}—ueq(ema) - 1 S g S m. (35)

9

Therefore, taking the cases 1), 2), 3) and 4) into consideration, we give the
following theorem below about the relationship between the curvatures of
section (ey,a), 1 < x < s and the x” principal section (e, n).
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Theorem 3.1. Let M be a generalized semi ruled surface with the central ruled
surface in E'' and the unit vector n be a non-null normal tangent vector of M
orthogonal to the generating space Ey. , (). In this case, the following relations
between the curvatures of non-degenerate section (ey,a), 1 < x <s, and non-
degenerate the x'" principal section (e, n) at the point ({ + uey) € M exist:

(i)  If the unit vector a and the unit normal tangent vector n are spacelike vectors,
then

(1 + sinh? l/lx)Kchuex (ey,a) = cosh? Yo Ketuey (€x, 1) (3.6)

(ii) If the unit vector a is a spacelike vector and the unit normal tangent vector n
is timelike vector, then

(1 + sinh? 9y ) Ketue, (€x, @) = — sinh? Y Ke e, (€, 1), (3.7)

(iii) If the unit vector a is a timelike vector and the unit normal tangent vector n is
spacelike vector, then

(1 — cosh? wx)KGm,x(ex, a) = —sinh? Yo Keiuey (ex, 1), (3.8)

(iv) If the unit vector a and the unit normal tangent vector n are timelike vectors,
then

(1 — cosh? 1/)X)K<+uex(ex, a) = cosh? Yo K juey (€x, 1) (3.9)

where the base vector e, are a timelike vectors and the non-null unit vector a is
linearly independent of the timelike base vector ey at the each point € € Q. In
addition to that, the hyperbolic angles are 1y and 1, between a and n, and between

a and ey, respectively.

Proof. Let the base vectors e¢,, 1 < x <s, be the timelike vectors in the
generating space Ej , (¢) of the generalized semi ruled surface M in E"*! and the
non-null unit vector a be linearly independent of the timelike base vectors e, at
the each point £ € ().

(i) Suppose that the unit vector ¢ and the unit normal tangent vector n are
spacelike vectors. Let the coordinates of the base vectors ¢;, 1 <i < k, and the
spacelike unit vector a (given by equation (3.1)) be (8o, 51, .-, 5B, k) and
(Y05 Y15+ -+ 55y - - -, Tk ), TESpectively. In this case, we can write

Bo = (ei,eq) =0 . Bi=(ei,ei) =€ , 1<i<k,
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and

cosh g .
70:<a7€0>:W ) 'Yx:<avex>zsmh¢x ) 1SXSS 9

Yy = <a,ey> =coshy, , s+1<y<m.

Substituting the last equations and the equation (2.20) into the equation (3.5),

we find
szcoshzwo ) _1a_2g+i g \*
T a)? 20u  4g \Ou,
K uex \€x, Ad) = ~ 3.10
Coerlex, ) S (3.10)
where € = ¢1.¢>. ... .&. Since \|n||2: egand e, = (ey, €x) = —1, we get

(1 + sinh?® 9y ) Ketue, (€x, @) = — cosh? 1) —i%Jri o’ (3.11)
sin ¥ ) Kétue, (€x, A) = S 0 2¢ aui 422 \ Ou, . .

From the equations (2.22) and (3.11), we find the relation between the
curvature of non-degenerate section (e,,a) and non-degenerate the x principal
section (ey,n) as

(1 + sinh? 1hy) Kesue, (€x, @) = — cosh? o K ue, (€x, 7).

To prove the (ii), (iii)and (iv), in a similar manner using the equations (3.2),
(3.3), (3.4) and (2.20), (3.5), we reach the relations (3.7), (3.8) and (3.9),
respectively. These complete the proof.

Now, considering the cases 1), 2), 3)and 4) for s+ 1 <y < m, we give the
following theorem related to the relation between the curvatures of section
(ey,a) and the y™ principal section (ey, n).

Theorem 3.2. Let M be a generalized semi ruled surface with the central ruled
surface in E'"*' and the unit vector n be a non-null normal tangent vector which is
orthogonal to the generating space Ey , (t). In addition to that, the base vectors
eys + 1 <y <m, are spacelike vectors and the non-null unit vector a is linearly
independent of the spacelike base vectors e, at the point & € ). Therefore, the
following relationship between the curvatures of non-degenerate section (ey, a) and
non-degenerate the y" principal section (ey,n) at the point (( + uey) € M as
follows:
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(i) Let the unit vector a and the unit normal tangent vector n be spacelike
vectors, then

(1 — cosh® ¥y ) Ke e, (€3, @) = cosh® i Kciue, (€3, 1), (3.12)

(ii) Let the unit vector a be a spacelike vector and the unit normal tangent vector
n be a timelike vector, therefore

(1 — cosh® ¥y ) Ke e, (€y,a) = — sinh® Yo K iue, (€y, 1), (3.13)

(iii) Let the unit vector a be a timelike vector and the unit normal tangent vector n
be a spacelike vector, in this case

(1 + sinh® 1y ) K yue, (€5, @) = —sinh® oKy, (e, 1), (3.14)

(iv) Let the unit vector a and the unit normal tangent vector n be timelike vectors,
then

(1 + sinh? 15 ) Ketue, (€0 @) = cosh? oK sue, (€5, 1), (3.15)

where the angles 1)y and 1), represent the hyperbolic angles a and n, and between a
and ey, respectively.

Proof. Let the base vectors e, s + 1 < y < m, be the spacelike vectors in Ey , (¢)
and the non-null unit vector a be linearly independent of the spacelike base
vectors e, at the each point € Q.

(/) Assume that the unit vector a and the unit normal tangent vector n are
spacelike vectors. If the coordinates of the base vectors ¢;, 1 < i< k and
spacelike unit vector a which is given by equation (3.1) are

(Bo, By -y Biy- -y Bk) and (0,71, -+ Yss - -+, Vk)> Tespectively, then we

have
Bo = (ei,e0) =0 , Bi=(ene) =¢; , 1<i<k,
and
Y = {a,ep) = COE:”l/}O , Yy =(a,ey) =sinhy, , 1<x<s |
Yy = <a, ey> =coshy, , s+1<y<m.

Substituting these equations together with the equation (2.20) into the
equation (3.5) and considering that ||n||2 = gg, we reach
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102 1 (dg\?
1 — cosh® ¥,) Ky, (€4, @) = cosh? —— =t | . 3.16
( 1/}}) C+ue}, ( Y ) wo ( 2g au/% 4g2 auy ( )

From the equations (2.22) and (3.16), we get the relation between curvature
of non-degenerate section (ey,a) and non-degenerate the y™ principal section
(ey,n), as

(1 — cosh? 1/)},)K<+ue}, (ey, a) = cosh? ogy Ketue, (ey, n). (3.17)

To prove the (ii), (iii)and (iv) in this theorem, in a similar way using the
equations (3.2), (3.3), (3.4) together with the equations (2.20) and (3.5), we find
the equations (3.13), (3.14) and (3.15), respectively.

Thus, the proof is completed.

Considering the unit vector e given by the equations (2.24) and (2.26) in
Ey ,(t) and the unit vector a given by the equations (3.1), (3.2), (3.3) and (3.4) at
the point £ € 2, then we give the following theorem according to these
situations of the vectors e and a, separately.

Theorem 3.3. Let M be a generalized semi ruled surface with the central ruled
surface in E"' and the vector n be a non-null normal tangent vector which is
orthogonal to the generating space Ey. ,(t). Considering that the non-null vector a
which is independent of the non-null unit vector e in Ey ,(t) at the V¢ € Q. There
exist the relations between the curvature of non-degenerate section (e,a) and the
curvature of non-degenerate section (e,n) as follows:

(i) Let the vectors n, e and a be spacelike vectors (timelike vectors). In this
case

Ke(e,n). (3.18)

(it) 1If the vectors n and a are spacelike vectors (timelike vectors), the vector e is
timelike vector (spacelike vector), then

h2
Ke(e,a) =20 g (e,m). (3.19)
1+ (e,a)
(iii) Let the vectors a and e be spacelike vectors (timelike vectors), the vector n
be timelike vector (spacelike vector). Therefore
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. h2
Kc(e,a) = — MKC(@ n). (3.20)

(iv) If the vectors n and e are timelike vectors (spacelike vectors), the vector a is
a spacelike vector (timelike vector). In this case

sinh? 1

Kc(e,a) = fml(g(e,n). (3.21)

where )y is the hyperbolic angle between non-null unit vector a and non-null
normal tangent vector n.

Proof. Assume that the non-null unit vector e which is given by (2.24) and (2.26)
in the generating space Ej ,(¢) and the non-null vector @ given by the equations
(3.1), (3.2), (3.3) and (3.4) which is linearly independent with the vector e at the
point £ € Q. In addition to this, suppose that the non-null vector # is orthogonal
to Ek,u(t)-

Considering the equation (1.6), the sectional curvature at the point £ € € is

given by

Zf{: 1 /BX ﬂx >\0 )\0 RXOXO + ZT:.H» 1 /By 6}’ A0 >\0 RyOyO

(e,e)(a,a) — (e, a>2

Kc(e,a) = (3.22)

(i) First of all, let the vectors n, e and a be spacelike vectors. If the
coordinates of e given by equation (2.24) and the tangent vector a given by

equation (31) are (607ﬁ17"'763‘7"'76k) and (’707717"'7757"'7’7/()3
respectively. Then we write

ﬂO = <6760> = 07
By = {(e,ey) = sinh 6, I<x<s, (3.23)
By = <e,e)> =coshf, , s+1<y<m
and
(a . > cosh g
Yo = (4, €0) =
7]
vy = {a,ex) =sinhty, , 1<x<s (3.24)

’yy:<a,ey>:coshwy , s+1<y<m.
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Substituting the equations (3.23), (3.24) and (2.2) into equation (3.22), we find
cosh’ ¢ by g U 'y 13 g 8g )
o, [e| —=—= 126, |e| ~ 24—
H”H (Z ( 20 Jr442 (EM) ) . E “ ( 20 4g i,

1= (e,
where € = ¢;. ;. ... .. Using ||n||2: —g, from the equation (3.25), we reach

), , | &g g | g
2. s 2 m
cosh” 1y (ZH sinh” 6, ( 2_W+_<E> )%—Z) 1 ( 2—32 (3g8ul) ))

1 - (e,a)

(325)

K (61 a) =

Considering e, = —1, ¢, = land the equation (2.24) together with the last
equation we complete the proof.

By following similar calculations and using the equations (2.28) and (2.29)
together with the equations (2.22), (2.26), (3.1), (3.2), (3.3) and (3.4), we
complete the proof of the other cases.

These relations given by the equations (3.18)-(3.21) between the curvature of
the non-degenerate section (e,a) and the curvature of the non-degenerate
section (e,n) are called Semi Euclidean Beltrami Meusnier Formulas of
generalized semi ruled surface at the central point £ € () in E"1.
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