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ABSTRACT

We obtain sufficient conditions for the existence of random fixed point of Gregus type
random operators on separable Banach spaces and use it to solve a random nonlinear
integral equation of the form:

x(t5w) = h6,w) + / (1, 5105, x(s:0) o s).

N

To further illustrate, examples of nonlinear stochastic integral equation are constructed.

Keywords: Random fixed point; Gregus mapping; nonlinear stochastic integral
equation; banach space.

INTRODUCTION

In recent years, considerable attention has been given to the study of random
operators involving probabilistic models with numerous applications. The major
area concerning random operator equation involves the existence, uniqueness,
characterization, contraction and approximation of solutions. The introduction
of randomness however leads to several new equations of measurability of
solutions.

It is well known that random fixed point theorems are stochastic
generalization of classical fixed point theorems. Hans (1961) first formulated a
random analogue of the classical Banach contraction principle in a separable
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Banach space. Subsequently fundamental work has been done in this area by
Bharucha-Reid (1972); Itoh (1979); Mukherjee (1966) and Sehgal & Waters
(1984); Papageorgiou (1986); Beg (1977, 2002a, 2002b); Beg & Shahazad (1994);
Xu & Beg (1998); Saha & Debnath (2007); Saha (2006) and Tan & Yuan (1997).
Still there are some new questions and problems that expand the scope of the
random fixed point theory. Itoh (1979) and Padgett (1973) applied random fixed
point theorem to prove the existence of a solution in a Banach space of a
random nonlinear integral equation. Achari (1983), Saha & Dey (2012)
developed this new area of application. Recently Saha & Ganguly (2012)
extended this application forCiric (1974) operator which is generalization of
Gregus (1980) mapping. The random fixed point theorems for Gregus (1980)
mapping is not worked out by the researchers. So we continue to investigate this
problem as an application in the light of the random analogue of certain class of
mappings which is more general than semi non-expansive mappings on a
separable Banach space. We consider here a class of contractive operator due to
Gregus (1980) and have been able to prove random analogue of deterministic
fixed point theorems for such operators belonging to this class. As an
application, we obtained the existence of a solution in a Banach space of a
random nonlinear integral equation of the form:

x(t;w) = h(t;w) + / k(1,51 0)(s, x(5; ) dao(s)
S

where

(i) Sis a locally compact metric space with a metric d on S x S equipped with a
complete o- finite measure po defined on the collection of Borel subsets of S;

(il) w € , where w is a supporting element of a set of probability measure space

(2, 8, 1);

(iii) x(#;w) is the unknown vector-valued random variable for each ¢ € S;
(iv) h(t;w) is the stochastic free term defined for 7 € S;
(V) k(t,s;w) is the stochastic kernel defined for # and s in S and

(vi) f(t, x) is a vector-valued function of 7 € S and x.

PRELIMINARIES

In order to make the paper self contained, first we state some important
definitions and an example that are available in Joshi & Bose (1984) and
Debnath & Mikusinski (2005).
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Let (X, 8y) be a separable Banach space where Gy is a o-algebra of Borel
subsets of X, and let (92, 8, 1) denote a complete probability measure space with
measureu, and 3 be a o-algebra of subsets of ). For more details one can see
Joshi & Bose (1984).

Definition 2.1. A mapping x : 2 — X is said to be an X-valued random variable,
if the inverse image under the mapping x of every Borel set B of X belongs tos,
that isx~!(B) € 3, for all B € By.

Definition 2.2. A mapping x: ) — X is said to be a finitely valued random
variable, if it is constant on each of finite number of disjoint sets 4; € 3 and is

equal to 0 on Q2 — (U A,-> .x is called a simple random variable, if it is finitely
i=1

valued and p{w : [|x(w)]| > 0} < oo.

Definition 2.3. A mapping x : 2 — X is said to be a strong random variable, if
there exists a sequence {x,(w)} of simple random variables, which converges to
x(w) almost surely, that is, there exists a set 4y € 8 with u(A4y) = 0 such that
y}irgox,z(w) = x(w),w € Q — Ay.

Definition 2.4. A mapping x : 2 — X is said to be a weak random variable, if the
function x*(x(w)) is a real valued random variables for each x* € X*, the space
X* denoting the first normed dual space of X.

In a seperable Banach space X, the notions of strong and weak random
variables x :  — X (see corollary 1 of Joshi & Bose (1984)) coincide and in
respect of such a space X, x is termed as a random variable.

We recall the following results with appropriate references.
Theorem 2.5. Joshi & Bose (1984, Theorem 6.1.2(a))

Let x,y : @ — X be strong random variables and «, 5 be constants. Then the
following statements hold.

(a)  ax(w)+ By(w) is a strong random variable,

(b) If flw) is a real valued random variable and x(w) is a strong random
variable, then f{w)x(w) is a strong random variable.

(¢) If {x,(w)} is a sequence of strong random variables converging strongly
to x(w) almost surely, i.e., if there exists a set 4y € 8 with u(4y) =0
such that lim ||x,(w) — x(w)|| = 0 for every w ¢4y, then x(w) is a strong
random variable.

Remark 2.6. If X is a separable Banach space, then every strong and also weak
random variable is measurable in the sense of definition 2.1.
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Let Y be another Banach space. We also need the following definitions from
Joshi & Bose (1984).

Definition 2.7. A mapping F: {2 x X — Y is said to be a random mapping if
F(w,x) = Y(w) is a Y-valued random variable for every x € X.

Definition 2.8. A mapping F: 2 x X — Y is said to be a continuous random
mapping, if the set of all w € Q2 for which F(w, x) is a continuous function of x
has measure one.

Definition 2.9. A mapping F: Q x X — Y is said to be demi-continuous at the
x € Xif ||x, — x|| — 0 implies F(w, x,) weakly F(w, x) almost surely.

Theorem 2.10. Joshi & Bose (1984) Theorem 6.2.2) Let F: Q2 x X — Y be a
demi-continuous random mapping where Banach space Y is separable. Then for
any X-valued random variable x, the function F(w, x(w)) is a Y-valued random
variable.

Remark 2.11. Joshi & Bose (1984) Since a continuous random mapping is a
demi-continuous random mapping, Theorem 2.5 is also true for a continuous
random mapping.

We shall also recall the following definitions as seen in Joshi & Bose (1984).

Definition 2.12. An equation of the type F(w, x(w)) = x(w) where F: Q x X — X
is a random mapping is called a random fixed point equation.

Definition 2.13. Any mapping x : 2 — X which satisfies random fixed point
equation F(w,x(w)) = x(w) almost surely is said to be a wide sense solution of
the fixed point equation.

Definition 2.14. Any X-valued random variable x(w) which satisfies
p{w: Flw,x(w)) = x(w)} =1 is said to be a random solution of the fixed point
equation or a random fixed point of F.

Remark 2.15. A random solution is a wide sense solution of the fixed point
equation. But the converse is not necessarily true. This is evident from the
following example as found under Remark 1 in Joshi & Bose (1984).

Example 2.16. Let X be the set of all real numbers and let £ be a non measurable
subset of X. Let F:QxX— X be random mapping defined as
Flw,x) = x>+ x — 1 forallw € .

In this case the real valued function x(w), defined as x(w) =1 for allw € Q is
a random fixed point of F. However the real valued function y(w) defined as

s = {7 2

weE
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is a wide sense solution of the fixed point equation F(w, x(w)) = x(w), without
being a random fixed point of F.

Before analyzing the main result, it would be better to state the deterministic
fixed point theorem of Gregus (1980).

Theorem 2.17. Gregus (1980) Let X be a Banach space and C a closed convex
subset of X. Let 7: C — C be a mapping satisfying

1Tx = Ty|| < allx = yll + pl[ Tx = x[| + p| Ty — ¥

for all x,y € C, where 0 <a < 1,p >0 and a+2p = 1. Then T has a unique
fixed point.

We now prove the random analogue of Gregus fixed point theorem.

RANDOM FIXED POINT

Theorem 3.1. Let X be a separable Banach space and (2, 5, 1) be a complete
probability measure space. Let

T:€Q x X — X be a continuous random operator such that
1T(w, x1) = T(w, x2)|| < a(w)[x1 = x| + p(w) [ T(w, x1) = x1]| + p(W)[|T(w, x2) = x2|

almost surely for all x;,x; € X, where a(w) and p(w), w € 2 are real valued
random variables such that 0 < a(w) < 1, p(w) > 0 satistying a(w) + 2p(w) < 1
almost surely then there exists a unique random fixed point of 7.

Proof. Let A = {w € Q : T(w, x) is a continuous function of x}
Gy = {w € Q2 | Tlw,x1) = Tw, 1)l| < alw)[xi = x2l| 4+ plw) | Tlw, x1) = 21| + plw) [ T(w, x2) = 2]}

and B={weN:aw)+2p(w) =1} N{weN:0 < a(w) < 1,p(w) > 0}.
Let S be a countable dense subset of X.

We will show that () (Cy,,, N4NB)= ) (C

51,52
X1,0€X 51,52€S8

mAmB)

Letwe ) (C

81,52
51,968

NAN B)then for all s;,s, € S,
[T(w, 1) = T(w, $2)[| < a(w)lls1 = s2f| + pW)[| T(w, 51) = s1]| + p(w) | T(w, 52) — 52| (3.1)

Let x1, x> € X, we have,
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1w, x1) = Tlw,x)l| <] 14 1T(w,51) = Tw, )| 4 [ T(w, 52) = T(w, x|

1417w, 2) = Tlw, xa)|

Tw,x) = T(w,51)
< T(w, x1) = T(w,51)

+aw)|s1 = 2]+ p(w)[T(w,51) = 1] + pw) [ T(w, 22) = 52]
< Tr1) = Tl )|+ 1T, 82) - T, )]

)
(
+aw)[lls = x|l + x = x| + 2 = ]
)llsr = x1 + lx1 = Tw,x)l| + | Tlw, x1) = Tlw,s1)]]
)

(
+p(
+p(w)llls2 = x| + 2 = Tlw, x)ll + | T(w, x2) = Tlw, 5]
<1+ p)IT(w,x1) = Tw,so)ll + (14 p(w)) [ T(w, 52) = Tlw, )|
Ha(w) +pW))llsr = xll + (aw) + pw)) |32 = 5|
ta)llx = xall +p(w) v = Tlw, )| + p(w)][ T(w, x2) = 2o (32)
Since for a particular w € Q, T(w, x) is a continuous function of x, so for any
e > 0, there exists 6;(x;) > 0; (i = 1,2) such that || T(w, x;) — T(w, s1)|| < €4 whenever
Ix1 = s1]] < 61(x1) and || T(w, x3) — T(w, $)|| < %Whenever [|x2 — $2]] < 62(x2).

E), 6 = min <62(x2),2). For such a choice of
61,6, we get from (3.2), || T(w, x1) — T(w, x2)|| < (1 +p(w))§+ (1 +p(w))%

Now we choose §; = min(61 (x1)

+a(w) + p(w))ed + (a(w) + p(w))

A~ ™

+a()[xi = %2l + pT(w, x1) = x1]| + (W) [ T(w, x2) — x2]]
<e+ta(W)llxr — x2 + p(W)|T(w, x1) — xi

(W) T(w, x2) — X2
As e > 0 is arbitrary, it follows that
1T(w, x1) = T(w, x2)|| < a(w)[x1 = x| + p(w)[ T(w, x1) = x1]| + p(W)[|T(w, x2) = x2|

Therefore we ) Cyx,NANB which implies (| C;,,NANBC (] Cy,,NANB.
x| ,Xj_EX N ,SQES B X1 ,X2EX )
Again (] Cy,N4ANB C [ C,,NANB

x| \.\‘QEX 1 ,.Y2€S

So 1 CyxuNANB= () Cy,NANB.

X1,X€X 51,5€8

1,52
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Let N = ) G

S1,52 es

Thenu(N') =1

NAnNB,

1,52

So, for each w € N, T(w, x) is a deterministic operator satisfying Gregu$ (10).
Hence T has a unique random fixed point in X.

APPLICATION TO A RANDOM NONLINEAR
INTEGRAL EQUATION

Here we apply Theorem 3.1 to prove the existence of a solution in a Banach
space of a random nonlinear integral equation of the form:

x(t;w) = h(t;w) + /k(t,s;w)f(s,x(s; w))dpo(s) (4.1)

N

where

(vvi) S is a locally compact metric space with a metric 4 on S x S equipped
with a complete o- finite measure gy defined on the collection of Borel
subsets of S;

(viii) w € Q, where w is a supporting element of a set of probability measure
space (£, B, p);

(ix) x(#;w) is the unknown vector-valued random variable for each 7 € S;
(x) A(t;w) is the stochastic free term defined for ¢ € S;

(xi) k(t,s;w) is the stochastic kernel defined for ¢ and s in S and

(xii) f{z,x) is a vector-valued function of # € S and x.

The integral in equation (4.1) is interpreted as a Bochner integral Padgett
(1973).

We shall further assume that S is the union of a decreasing sequence of
countable family of compact sets {C,} such that for any other compact set in S
there is a C; , which contains it Arens (1946).

Definition 4.1. We define the space C(S,L,(£2,5, 1)) to be the space of all
continuous functions from S into L,(Q, 3, ) with the topology of uniform
convergence on compact sets of S that is for each fixed 7 € S, x(¢;w) is a vector
valued random variable such that

1) = / 3650 Pdw) < oo
Q
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It may be noted that C(S, L,(€, 3, u)) is locally convex space, whose topology
is defined by a countable family of semi-norms given by

[x(t; w)l,= sup||x(; W), 5,7 =1,2,...  Yosida(1965)
t

€Cn

Moreover, C(S,L,(2, 3, 1)) is complete relative to this topology, since
Ly(Q, B, p) is complete.

We further define BC = BC(S, L(Q2,3,1)) to be the Banach space of all
bounded continuous functions from S into L>(€2, 8, 1) with norm

[x(2; W)l o= supl|x(&; W) 1, (2,5
teS

Here the space BC C C is the space of all second order vector valued
stochastic process defined on S, which is bounded and continuous in mean
square. We will consider the function A(f;w) and f(¢, x(#;w)) to be in the space
C(S, Ly(9, 8, 1)) with respect to the stochastic kernel. We assume that for each
pair (2,5), k(t, s;w) € Lo (€, 8, 1) and denote the norm by

1kt s;@)lll = Ikt 559 L 0,0

= pu — esssuplk(t, s;w)|
weN

Let us suppose that (7, s;w) is such that [|[k(z,s;w)|[| - | x(s; W) |1, (0,5, 18 Ho-
integrable with respect to s for each # € S and x(s;w) in C(S, L,(Q2, 5, 1)) and
there exists a real valued function G defined py—a.e. on S, so that
G(S)[|x(s;w)ll 1, (0,5,) 1S Ho-integrable and for each pair (7,s5) € S x S,

1Kz, 1 0) = k(s 5 || - [12(et, ) y2,,0 < G123, ) 0,6,

to — a.e. Further, for almost all s € S, k(z,s;w) will be continuous in ¢ from S
into L (9, 8, ).

We now define the random integral operator T on C(S, L,(£2, 5, 1)) by

(1) (1) = / K(t,550)x(53 ) djao(5) (42)
S

where the integral is a Bochner integral. Moreover, we have that for each
tesS, (Tx)(t,w) € Ly(Q, 5, ) and that (Tx)(t;w) is continuous in mean square by
Lebesgue dominated convergence theorem. So (7x)(f;w) € C(S, Ly(2, 5, 1))

Definition 4.2. Lee & Padgett (1977) Let B and D be two Banach spaces. The
pair (B, D) is said to be admissible with respect to a random operator T(w) if
T(w)(B) C D.
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Lemma 4.3. Joshi & Bose (1984) The linear operator T defined by (4.2) is
continuous from C(S, L,(Q2, 8, 1)) into itself.

Lemma 4.4, Joshi & Bose (1984) and Lee & Padgett (1977) If T is a continuous
linear operator from C(S, L,(£2, 5, 1)) into itself and B, D C C(S, L,(2, 8, 1))
are Banach spaces stronger than C(S, L,(2, 8, 1)) such that (B, D) is admissible
with respect to 7, then T'is continuous from B into D.

Remark 4.5. Joshi & Bose (1984) The operator T defined by (4.2) is a bounded
linear operator from B into D.

A random solution of the equation (4.1) will mean a function x(f;w) in
C(S, Ly(92, 8, v)) which satisfies the equation (4.1) u — a.e.

We are now in a position to prove the following theorem.

Theorem 4.6. We consider the stochastic integral equation (4.1) subject to the
following conditions

(a) B and D are Banach spaces stronger than C(S, Ly(€2, 3, 1)) such that
(B, D) is admissible with respect to the integral operator defined by (4.2);

(b) x(t;w) — f(t,x(t;w))is an operator from the set

0(p) = {x(t;w) : x(t;w) € D, ||x(t;w)| ,< p} into the space B satisfying
(2, 21 (150)) = [, x2(60)) [ < a(w) X1 (5, 0) = xa(850)

+p(w) [[lx1(fw) = A, x1 (50)) [ pHIx2 (W) = St x2(850))| ) (4.3)

for x| (f;w), x2(t;w) € Q(p), where 0 < a(w) < 1 and p(w) > 0 are real
valued random variable satisfying a(w) 4+ 2p(w) = 1 almost surely.

() h(t;w)eD
Then there exists a unique random solution of (4.1) in Q(p), provided
c(w)

1 —p(w)

norm of T(w).

< 1and ||h(t;w)]| p+(1 + c(w))|If(£;0)]| 3< p(1 — c(w)) where ¢(w) is the

Proof. Define the operator U(w) from Q(p) into D by

(Ux)(t:) = h(1;0) + / k(1,51 0)f(s, x(5: ) dpo(s)
S
Now [|(Ux) ()| p< [15(5:0) [+l I x(5:)) 15

< Iz W) p+e(@)IAE 0) | gte(@)If(, x(5 ) = f(150)| 5
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Then from the condition (4.3) of this theorem

(1, x(50)) =f50)[lp < al@)llx(G )l p+p(@)lllx(5w) = A1, x(50)p
()5 0)lp
< a(@)[x(6 ) p+p@)x(5w)lp
+p(W) (1, x(1;w)) = 1155 0)[| p+2p(W) /(1 0) [

AP 2 Ol

= p+2p(w)1 = p(W)If(5;0)l| 5 (4.4)

Hence ||f(t, x(t;w) — f(1;0))|| ;<

Therefore by (4.4)

O < 1D+ e o+ 2 A0,

c(w)
I =p(w)

< 1Az 0)Ip+(1 + (W) IA(70)[| g+e(w)p

< 1Az W)l p (@) A5 0| ptc(w)p +

(% 0)ll 5

<p

Hence (Ux)(t;w) € Q(p). Then for x;(f;w),x2(t;w) € Q(p), we have by
condition (b)

1(Ux1)(8;w) = (Ux2)(5;0) ] p

{ (£, 55W) s, x1(5;w)) = (s, %2(s;w))]dpao ()
< (@)L x1(10)) = [t xa2(150)) |

< a(w)llxi(6w) = x2(50)lp

+p() [Ilx (1w) = (Ux1) (W) | pHx(fw) = (Ux2) (150)l] )

¢(w)
I =pw)

Hence by Theorem 3.1 there exists a random fixed point x(¢,w)of U(w), which is

D

Since

< 1. Thus U(w) is a contractive nonlinear operator on Q(p).

the random solution of the equation (4.1).

Example 4.7. Consider the following nonlinear stochastic integral
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o.¢] e—l—S
x(tw) = —————dfs
) = [ S e
Comparing with (4.1) we see that

h(t;w) =0, k(t,sw) = %e*’*s, fls,x(s;w)) = m

By routine calculation, it is easy to show that (4.3) is satisfied with a(w) = 5

1
and 0 < p(w) < "

Comparing with integral operator equation (4.2), we see that of norm of 7T(w)

is c(w) = 3

Also we see that

¢(w)

1 —p(w)
satisfied and hence there exists a random fixed point of the integral operator T

< 1. So all the conditions of Theorem 4.6 are

satisfying (4.2).
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