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ABSTRACT

In this study, we extend the notion of multidimensional fixed point and coincidence
point theorem to infinite dimensional product spaces. We also prove some theorems,
which generalizes some results that are known in this field.
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INTRODUCTION

The concept of coupled fixed point was introduced in Guo & Lakshmikantham (1987).
Then Gnana-Bhaskar & Lakshmikantham (2006) introduced a mixed monotony
property for partially ordered metric spaces in 2006 and used it on the theory of coupled
fixed points of contractive operators to prove some coupled fixed point theorems in
partially ordered metric spaces. Then Lakshmikantham & Ciri¢ (2009) defined the
g — mixed monotony property and proved coupled coincidence point theorems for
partially ordered metric spaces. Berinde & Borcut (2011) defined the notion of triple
fixed point. Recently Roldan et al. (2012) obtained some existence and uniqueness
theorems for nonlinear mappings with finite number of arguments.

Many infinite dimensional structures are involved in the study of fixed point theory.
For example, Fisher (1982) demonstrated some fixed point results concerning possibly
infinite bounded subset of a complete metric space X and Achari (1986) verified some
common fixed point theorems for a family of multifunctions on a non-empty complete
metric space.

In this study we consider multivalued fixed points of infinite dimensional functions.
Thus we further generalize some former results on coupled fixed point theory. Also
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we apply our conclusion to a class of functional equations to show the existence and
uniqueness of solutions.

PRELIMINARIES

Let (X,d) be a complete metric space, ¥ be a nonempty set and X" denote the set
of all functions f:Y — X . If either X is bounded or Y is finite, then the function
d": X" xX" >R with

d" (h.k)= sug{d(my),k(y))} (1)

defines a metric on X" . It is known that if (X,d) is complete, then (X", d") is also a
complete metric space.

If X is unbounded and Y is infinite, then for any different y,,y,,...€Y andallne N
we can pick i,k €Y such that d(h,,k,)>n for all n. Then (X",d") will not be a
metric space, since for any i,k € X" such that A(y,)=h, and k(y,)=k, for all n,
d" (h,k) =0 To avoid this situation, if necessary, one can consider bounded metrics
equivalent to d on X such as min{d(x,y),1} or lf;f;{’;)
handicap on Lipschitz-like inequality to satisfy.

, which imposes a strict

Definition 1. (Roldén ef al., 2012). Let d and < be a metric and a partial order on a
nonempty set X , respectively, Then (X,d,<) is referred as an ordered metric space.

Definition 2. (Roldan et al., 2012). Given an ordered metric space (X,d,<) and a
mapping g: X — X . X is said to have sequential g —monotony property provided
that, if (x,) is non-decreasing sequence and x, — x, as 7 —> oo, then gx, < gx for all
n,and if (x,) is non-increasing sequence and x, — x, as n — o then gx < gx, for
all n. X is said to be have sequential monotony property, if it has sequential g—
monotony property, where g is the identity map 7, .

MAIN RESULTS

Definition 3. Let F: X" — X, g:X — X be functions. F and g are said to be
commuting if gF(h)= F(gh) forall he X*

In Definition 3, gh denotes the composition of g and %, and F(4) denotes
the value of /4 under F . This convention will be thoroughly used for complicated
expressions to be easily readable.

Moreover, we assume that a partition {4, B} of ¥ with possibly empty sets 4 and
B is given and the sets

Q,, ={r:Y—>YIT(A)gA and r(B)gB}
Q'A,B ={r:Y—>Y|T(A)gB and r(B)gA}

@
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are readily defined.

The relation < given on X, can be extended to X' by

h<k o h(y)<k(y) forall yeY 3)
be useful to define for each yeY a partial order < on X such that for all
x,x,€X

XS, X X Sx, 4)
if ye 4, and
XS, X, S X, Sx Q)

if ye B. By these relations <, we can define a partial order <, on X " such that for
all hke X7

h<, ke h(y)<, k(y) forall ye?Y. (6)
Definition 4. Let F: X" — X, g: X — X be functions. If the implication
gh(y) < gk(y)= F(h) <, F(k) (7

is satisfied for all ye Y and for all h,ke X" such that k Iy = B ly,y > then Fois
called finitely mixed g —monotone.

Finitely mixed g —monotony property for /' means that, gh(y) < gk(y) implies
F(h)< F(k) forall ye A andall h,ke X" suchthat & iy = Ky, -and gh(y) < gk(y)
implies F'(h) = F(k) forall ye B and all h,ke X" such that &l =kl . These
can be unified under one expression: gh(y) <, gk(y) implies F(h)< F(k) forall yey
and all h,ke X" such that #l,,,=kl,,,. Moreover, for z # y, gh(z) = gk(z) and so
gh(z) <, gk(z). Thus F has finitely mixed g —monotony property iff

gh<, gk= F(h)< F(k) (8)
forall ye ¥ andall h,ke X" suchthat k|, =k,
Definition 5. Let F: X' > X, g: X = X .If

gh<, gk= F(h)<F(k) )

for h,ke X" then F is said to be mixed g—monotone.
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Example 6. Let X =Y =[-1,1] and consider the partition {4,B} of Y, where
A=[-1,0] and B=(0,1]. Define functions g:X —>X, g(*)=—x and F:X' > X,
F(h)=sup{yh(y):y€Y}. Then F has mixed g—monotony property. We can
observe for each i,ke X" that gh <, gk implies yh(y) < yk(y), which in turn gives
F(h) < F(k).

Clearly the mixed g —monotony property implies the finitely mixed g —monotony
property. Moreover, in the case that Y is finite, these two properties are equivalent.
Indeed, if Y ={y,,...,y,}and gh<, gk, foreach 0<i<n afunction % :Y — X such
that

W(y,), if i<

h@)={ﬂ%x i (1)

gives hy=h, h,=k and h_ |, =hl,,,, forall i, 1Si<n.So we can apply
finitely mixed g —monotony property n times to get F'(h) < F(k), since

F(h)=F(h)<F(h)< < F(h)=F (k). (a1

Now we give an example of a function, which has finitely mixed g —monotony
property, but does not have mixed g —monotony property.

Example 7. Let X =[0,1],Y =N, A=N, B=( and g=1,. Let C, denote the set
of cluster points of the sequence (h(n))neN , which is always nonempty by the Bolzano-
Weierstrass theorem. Define the function F: X" — X as F(h)=suph(Y)—supC,.
Note that, if /|y, ,,= k|, , then the sequences (A(n)) and (k(n)) can differ in only
one term, and so C, = C, . In this case, gh <, gk implies F(#)<F(k) and thus F
has finitely mixed g —monotony property. However F does not have mixed g—
1, if n=1
nd

monotony property. Observe that gh <, gk for the functions A(n) = 0. if n>l a
, if n

k(n)=1 forall ne N, while F(h)=1-0=1and F(k)=1-1=0.

Definition 8. Let 0:Y - Y" , 7:Y =Y and ® = (o,7) . Assume that o, denote the
function o(y) € Y" foreach y e V. If

F(ho,) = ghz(y) (12)

for all he X" and all ye Y, h is called a ® - coincidence point of F and g. In
particular, in the case that g =1 ,1i.e. F(ho,)=hz(y), h is called a ® — fixed point
of F.

Example9.Let X =Y =N.Leto:N>N"  o(m)=c,:No>N,c (n)=m+n,7:N >N,
tm)=n+1,g:X —>X,g(n):”+1,F:NN—>N,F(h):min{n+h(n):neN},for
all mneNandheN" . Then h:N >N, h(y)=y>+1 is a @ — coincidence point of
F and 8, since F(ho,) =y’ +2y+3=ghr(y) forall y eN .
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Example 10. Let (Y,) be any abelian group and P(Y) denote the family of nonempty
subsets of Y . We consider functions from Y to P(Y), which also have been studied for
their own sake in the view of the fixed point theory, e.g. Fisher (1982), Achari (1986).
Let F:P(Y)" — P(Y) be defined as F(h)={x:xe h(x)} for all maps h:Y — P(Y).
Then for any subgroup of Y, the corresponding canonical map ¢:Y — P(Y) isa @ —
fixed point of F, where ® =(0,7),0:Y >Y", o(y) =0,:Y>Y,0,(2)= yz* for
ally,zeYandz:Y »Y ,7(y)=y", since F(qo,) ={x:xeq(yx*)}=q(y ) =qr(y)

Theorem 11. Let F and g be commuting. If he X" is a ® — coincidence point of
F and g, then gh is also a @ — coincidence point of F and g.

Proof: Since F and g are commuting, gF(h) = F(gh) forall he X" andsince /4 isa
® — coincidence point of £ and g, we have F(ho ) = ghz(y) for each ye Y . Thus

F(gho,) = gF(ho,) = gght(y) (13)

and also gh is a @ — coincidence point.

Theorem 12. Given an ordered metric space (X,d,<).Let F: X" — X be a function
with the mixed g-monotony property, where g: X — X be a continuous map such
that F and g be commuting and F(X")c g(X). Let o:¥Y ->Y", o(y) =0, ,
o(AcQ,,and o(B)=Q, , . Assume that 7€Q, , be a bijection and ® = (o,7) .
Suppose that there exists a constant A e [0,1) such that

gh<, gk = d(F(h),F(k))<Ad" (gh,gk) (14)

for all h,ke X", and also suppose that there exists a point 4, € X", which satisfies
ghyt(y) <, F(hyo,)forall yeY.If X has sequential g-monotony property or F' is
continuous, then F and g have some @ — coincidence point.

Proof: Since F(X')c g(X), there exists a point x,€ X for each yeY, such
that g(x,) = F(h,0,) . By choice axiom, which is not needed in the case that g is
injective, there exists a function p:Y —> X , for which gp(y)=F(ho,) for all
ye Y. We now define 4 € X" such that h(y)=ptr'(y) forall yeY, so we have
ght(y)=gp(y)=F(ho,) . We can similarly define a function h,€ X " such that
gh,r(y)=F(ho,) for all ye Y . Continuing this process, one can obtain a sequence
(h,) on X" such that gh  7(y)=F (h,o,) forallneN.

Now we show that gh,_, <, gh, for each positive integer .

We may easily point out that ghz(y) <, F(ho,)=ght(y) for all yeY by the
hypothesis of the theorem and the definition of /. This implies that g, () <, gh ()
for all ye Y, since 7 is surjective and since 7(A)c A and 7(B)c Bby 7€, ,,
hence gh _, <, gh for n=1.
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Now assume as induction hypothesis that gh,_, <, gh, ,i.e. gh, ,(z)<. gh, (z) for
all ze Y. We want to show that gh, <, gh

n+l *

If yed, then 6(4)c€,, and so G ,(z)e 4 for ze A and G (z)e B for
ze B. Thus < o is identical to < for all z. For 6 ,(z)eY we can write
gh, 0,(2) Soy(z) fghncy(z), which gives that gh, 6 (z)<. gho (z) for all zeY.
Hence gh, 6, <, ghoc,. Since F has the mixed g-—monotony property, thus

Fh, o ,)<F(ho,)-

If ye B, then ¢ (z)e B for ze 4 and 6 (2)€ B for ze 4. Thus <
identical to > for all ze Y, where >_ denotes the inverse of <_. We can write

ghn_lcy(z) S ) gho ,(z) for 0 (2)eY, so gh, O (2)2. gho (z) forall zeY.

n v

Hence gho, }Sy gh, 6, and F(ho )<F(h, o ) by mixed g—monotony property.

is

Gy(z)

Using two inequalities for ye A and for ye B, it can be written as
F(h,_o,)<, F(ho ) forall yeY.Soweobtain ght(y) <, gh, (), since by the
definition of the sequence (/,) we have ght(y)=F(h, 0 ) and gh, t(y)=F(hGC ).
But gh,(y)<, gh,,,(y) forall yeY since T€ €2, , is bijective and < is identical to

= )’ and now we have gh <, gh

n+l *

We have shown that gh _, <, gh, for all positive integers »n . Additionally we get
gh, 0,5, gho, or gho <, gh 0, when ye A or ye B respectively. In both
cases we can compare the functions gh, 6, and gh,c, under the relation <, . For
each ye Y we may write

d (F(hn_lcy),F(hnc},))S rd" (gh, 0 ,,gho ) (15)

since we know by the hypothesis of the theorem that d (F(h), F(k))<\d" (gh, gk) for
all h,ke X" such that gh <, gk (or gk <, gh, since metric function is symmetric).
Thus

d (ght(y).gh,.t(»)=d(F(h_o,).F(ho,))<\d" (gh, 0 ,,2h0,)
= Asupd (gh,HG ,(2),gh,0 ,(2) )= A su;(>y)d (th (2),gh, (Z))
zEGy

zeY

<Asupd (gh,.,(2),gh,(z))=Ad" (gh,.,.gh,)

zeY

for all positive integers n and ye Y . So
supd (gh,T (). gh,.t(y))<Asupd” (gh, . gh,) (16)
yeY yeY

and since T is a bijection

supd (gh,(»),gh,..(y))<\d" (gh, . gh,) (17)

yeY
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Now,

d'(gh,.gh,.,)<Ad" (gh, ,.gh,) (18)
for all positive integers n . Thus we have the inequalities
d"(gh,.gh,.)<Ad" (gh,_..gh,) <A'd" (gh, ;. gh, ) <...<\"d" (ghy, gh) (19)
for all integers 7 =0, and by triangle inequality

d'(gh,.gh,. ) <d" (gh,.gh, ) +d" (gh,,.gh,,)++d" (gh,,.gh,,)
<\'d” (ghy,gh)+N""'d" (ghy, gh )+ +A"""d" (ghy, gh)
=N A+ A+ d (ghy.gh) = N A4 (ghy gh) < 2=d” (ghy.gh)

for all integers p=1 and n>0.
Now we are able to show that (gh, ) is a Cauchy sequence. Let € > 0. Choose an
integer n, such that 2= 4" (gh,,gh ) <e . Since

dY(ghn ’ghn+p) S %dY(ghO’ghl) S %dy(ghO’ghl) <€ (20)

for n=n, and p =1, (gh,) is a Cauchy sequence. The completeness of (X,d) implies
that of (X",d"), and there exists a h€ X" such that gh, — &, as n — o Then, for
all yeY, gh,(y) > h(y),as n— o on (X,d), since d(gh,(»),h(y))<d" (gh,,h)
by the definition of d" .

On the other hand if v: Y — Y is any function, then the inequality

d" (hv,kv) = supd (hv(y),kv(y)) = supd (h().k(y)) <supd (h(y).k(y))=d" (h.k) (21)

yeYy yev(Y) yeYy

is true for any 4,k € X". Since in particular d" (ghn, ghﬁp) >d" (ghnu, gh u) ,(gh,)

n+p

is also a Cauchy sequence on X" . Say ghv >k e X" asn — oo . Again,
d(gh,v(y),hu(y))<d" (gh,v,hv) (22)
and gh,U(y) > k(y),asn— oo forall yeY . Since
d(k(y),ho(y)) <d(k(y),gh,o(y))+d (gh,v(y),hv(y))
<d"(k,ghv)+d" (gh,v,hv)
< dY(k,ghnU) +dy(ghn,h) <¢

forall yeY and ¢ >0, k(y)=ho(y) forallyeY , so k =hv . Hence gh,v = hv | as

n— -
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Now for v=tr we have ghr7(y)—>hr(y), as n—> , or equivalently
gh,..7(y) > hr(y) , as n— oo and since g is continuous ggh,,,7(y) — ghz(y) , as
n— . As F and g are commuting

ggh,. v (y)=gF(h,c,) = F(gho)) (23)

and also for any y € Y and for v = o, , we can write gh,c, — ho,,asn—©.

Now, if F' is continuous, then

F(ho,)= F(lim gh,o,) = lim F(gh,o,) = lim ggh, ,(y) = ghz(y). (24)
Thus F(ho,) = ghr(y) forall y e Y. So i be a ® —coincidence point for F and g .

We complete the proof by considering the case, where X has sequential g-monotony
property.

We know that gh, <, gh

n+l 2

and so gh, (y)<, gh,(y)forallnandyeY .
If yeA, then ze Ao (z)€A . So the inequality gh,0,(2) S gh,.,0,(2)

can be written as gh,o,(2)<, gh,,,0,(2) . If ye B, then ze A< 7 ,(2) € B and so
gh,o,(2) e gh,,,0,(z) becomes gh,,,0,(z) <, gh,0,(z) . Then we deduce that

gh,o,(2) < gh, ,0,(2), ifeither y,z€ A or y,z €B
25
gh,o,(z) 2 gh,,0,(2),ifeither ye A, zeB or ye B, ze A ()

From the fact that gh, > h , as n >, gh,o (z) >ho,(z) , as n — « for all
¥,z €Y and by sequential g —monotony property

ggh.o (2) < ghay(z), if either y,z€ A or y,z €B
) 26
ggh,o,(z) 2 gho (z), if either ye A, zeB or ye B, ze A (26)

for all neN . This means that, ggh,o, <, gho, , while y € A and gho, <, ggh,o,,
while y € B . In both cases ggh,o, and gho, are comparable under <, . Then

d(F(gh,c,).F(ho,))<Ad" (ggh,o,.gho ) 7)

since F has mixed g — monotony property. Now gh,c, —ho, , as n—> o0 and g is
continuous, so ggh,o, — gho, , as n— o, and d(F(gh,,O'},),F(hO'y))—>0 , as
n — co. This yields again

F (hO'y) =lim F( ghna).) =lim gF (h"ay) =limggh,  t(y) = glimgh,  t(y) = ght(y), (28)

which completes the proof.
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Theorem 12 does not guarantee uniqueness. For example, if 7 and g are constant
mappings with the same constant value, then the hypothesis of the theorem is satisfied,
but each point of X" is a @ — coincidence point.

Theorem 13. Under the hypothesis of Theorem 12, assume that for each h,ke X"
being @ —coincidence point of F and g, there is a g€ X " such that gg is
comparable with both g/ and gk under the relation <, . Then there is a unique point
se X" satisfying gs =s and being a ® — coincidence point of ' and g .

Proof: Let /1 and k be two @ — coincidence points of F and g . Assume that there

existsa g€ X' such that gg is comparable with both gh and gk under the relation

<,

Say g, := ¢ and by the similar way used in the proof of Theorem 12 we obtain a
sequence (4,,4,,...) on X' such that 84,.,7(y) = F(q,0,) for all positive integers
n. Since gg is comparable with gh, gh<, gq, or gq, <, gh and considering the
case gq, <, gh,

89, <y 8h = 84q,(2) <, gh(z), for all zeY
= 849,0,(2) <, (., 8ho (2), for all y,zeY
y

{gqoay(z) <. gho(z), if yeA

. , forall y,zeY
gho (2)<. 24,0,(2), if yeB Y

o, %<, gho,,6 ifyeA
:{g% y =1 810, Y ,forall yeY

gho, <, gq,0,, ifyeB

F(go)<F(ho,), ifyeA
{ (@o,) = Fiho,) Y ,forall yeY

F(ho,)<F(q,0,), ifyeB
= F(q,0,)<, F(ho ), forall yeY
= gq,7(y) <, ghr(y), forall yeY
= 89,(y) <, gh(y), forall yeY
= gq, <, gh

by the mixed g —monotony property. Continuing this process yields gg, <, gh for
all n eN. Moreover, we see that

gqno-y SY gho-} or ghay SY gqno-y (29)

for all positive integers n and ye Y. On the other hand if gh<, gg,, similarly
gh<, gq, forall n €N and
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either gg,0, <, gho, or gho, <, gq,0, (30)

forall ye A.Thus, in all cases gg,0, and gho, are comparable under the relation

<, , and by hypothesis of existence theorem

d(84,.7(y).ght(y))=d(F(q,0,).F(ho,)) < Ad" (3q,0,.ghc,) < Ad" (gq,.gh). (31)

Since 7 is bijection, supremum on the left side yields

d'(gq,...gh) <\d" (gq,.gh). (32)

Additionally since A€ [0,1), this means that d Y(gqn,gh) — 0, as 7 —><o. Hence
gq, —> gh, as n — . It can be similarly shown that gq, — gk, as n — .

Consequently gh = gk for any two @ — coincidence points 4 and k of F and
g.If h isa ®—coincidence point of F' and g, then gh is so, thus gh= ggh. So
gs =s for at least one @ — coincidence point of F and g. On the other hand, let
5,,5,€ X" be ® — coincidence points of F and g such that gs, =s, and gs, =s, .
Then gs, = gs, andso s, =s,.

Let ge X" . We can define a function ¢"e X" such that ¢"(y)=F(go _, ).
Then, Theorem 13 holds also under the following alternative hypothesis: For each
h,ke X" being @ — coincidence point of F and g, there exists g€ X " such that
g~ is comparable with both gh and gk under the relation <, . For g, := ¢, we can
begin a similar proof by g4,7(y) = F(q,0,)=F(q0,)= q'7(y) is comparable with
ght(y)under <.

Corollary 14. In addition to the hypothesis of Theorem 13, if gh = gk implies h =k
for all @ — coincidence points 4 and k of F' and g, then there is exactly one @ —
coincidence point of ' and g .

Corollary 15. Besides the hypothesis of Theorem 13, assume also that so is
comparable to so, under <, forall y,ze Y. Then se X" is a constant function.

Proof: Say M = sup d(S(J’),S(Z)). For any bijection 7 , M = supd(sr(y),sr(z)) )

y,zeY y,z€Y
Let so, and so, be comparable, so either so| <, so_ orso, <, so, ,andsince gs =s,
¥ z y z z y

either gso, <, gso_or gso, <, gso, . By the hypothesis of the existence theorem

d(st(y),s7(2))=d(gst(y). gs7(2))=d (F(say),F(saz))

< )udy(gsay ,850,) = ﬂdy(say,saz) = Asupd (say(w),so;(w))

weY

< Asupd(s(y),s(z))<Ad" (gso,,gs0,) = Ad" (so,,50)

y,ze¥
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which yields by taking supremum that

sup d (s(y),s(z)) = sup d(sz(y),s7(z))

y,zeY y,zeY

< Asupd(s(y),s(2)).

y,z€Y

Then, since 0<A <1, s(y)=s(z) forall y,ze Y.

Considering the case g = I, the facts obtained about ® — coincidence points can
be restated for @ — fixed points.

Corollary 16. Given an ordered metric space (X,d,<) and a non-decreasing
function F:(X",<,)—(X,<). Let ®=(o,7) , where 7€Q,; is a bijection,
oYY o(y)=0,,0(A)c Q,zand o(B) QAB . Suppose that there exists a
constant A [0,1) such that

h<, k=>d(F(h),F(k))<Ad" (h,k) (33)

forall h,ke X", and there exists a point hye X" such that A7(y) <, F(ho,) forall
ye Y . If F is continuous or X has sequential monotony property, then F has at
least one @ — fixed point.

If, in addition, there exists g€ X" such that ¢ is comparable with both /4 and &
under the relation <, for each @ —fixed point 4,ke X" of F, then there exists a
unique @ — fixed point 5 of F'.

Moreover, also if so | is comparable with so_ under <, forall y,ze Y, then s is
a constant function.

Example 17.Let X =[0,1] given with usual metricand ¥ = N. Then X" corresponds
to the set of all sequences on [0,1]. Assume that A=N, B= and r=0, =1,
for all ye Y. For any constant ¢, 0<c<1, define the function F:X" — X by
F(h)=X 2% Then,

3"

oo h(n)+e zoc k(n)+c

d (F(h),F(k))= ==

< sup|h(n)—k(n)|-Z;_ St d’ (hk) (34)

n n=1 3n
3 neN

for all h,ke X". Also it is clear that F is a non-decreasing function and the
space [0,1] is sequential monotone. Consider 4, € X' as the constant function
hy :N—[0,1], hy(n)=0. So hz(y)=0<, F(ho,) forallne€N , since ne A=NN
so that < =<. Hence F has at least one ® —fixed point. Indeed for the constant
function s:N —[0,1] , s(n)=c foralln € N, then

F(so,)=F(s)=X,_ 2 =208 L= =s7(n) (35)

=1 3n



47 An infinite dimensional fixed point theorem on function spaces of ordered metric spaces

This @ — fixed pointis unique, since the function ¢ , definedas g(n) = min{A(n),k(n)}
is comparable with both /2 and & under the relation <, and by the fact that so = 5o
forall y,zeNsince o, =0, =1, we again see that 5 is a constant function.

APPLICATION

As stated in Bellman & Lee (1978), many functional equations arising in dynamic
programming have the form

g(p)=maxG (p.4.2(T(p.)) (36)

where p and ¢ are state and decision vectors, g is the optimal return function and 7'
is transformation of the process. Here we give an existence and uniqueness theorem,
as an application of Corollary 16, for a special case of these equations, in which the
function G is independent of state, i.e. constant in the first argument.

Theorem 18. Let U and V' be Banach spaces, Y cU and ZcV .Alsolet X cR
be a bounded subset and 7:YxXZ — Y ,and H:ZXX — X be functions. Suppose
that the following conditions hold:

i) There exists a bijection f:Y — Z such that 7(y,, f(»,))=T (»,, f(»,)) for
all y,y,e?Y.

ii) There existsa A € R such that 0 < ZE2-1ED <) < forall ze Z and a,be X,
a#b.

Then the functional equation

h(y)=supH (z,h (T(y,z))) (37)

zeZ

has a unique solution.

Proof: Let d denote the standard metric on the bounded set X — R, ordered with the
usual order <. Define F: X" — X as F(h)=sup H(Z,h(f’] (z))) Say A=Y and
zeZ

B=@.So < isidentical to < forall yeY.Forall yeY,wedefinec :¥ >V
with 6 (") =T (y, f()")) forall y’e Y. By the selection of the sets 4 and B, it is
clear that 6 (4)c Q, , and 6 (B)cQ, ,-

Let i,ke X" such that 2 <, k. Since OSW forall ze Z, a,be X, H
is non-decreasing in second argument, so that

F(h)= sup H (' ()< sup H Ek(F @) Fk).  68)

Hence F:(X",<,)— (X,<) is non-decreasing, and since
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H (e @)1 @ @) (7 @)1 @)] < hsup{k) -h0)} (39)

for all ze Z from (ii), we have
d (F(h),F(k))= sup H (z,k (r (z)))— sup H (z, h(r (z)))

<Asup k(1) ~ h(») }=Ad" (k).

yeY

Define f,:Y — X as the function with the constant value inf X . Then
hy(y)< F(ho ) forall yeY. Finally, X has the sequential monotony property,
since it is endowed with the standard metric.

Thus all hypotheses related to existence in Corollary 16 are satisfied for 7 =1, ,
and F has a @ — fixed point /1, where ® = (o, 7) . Now we have

F(ho,)= sg)H(z,hay (f—l (z))) = SlelgH(Z,hT (y,f (f -1 (z)))) =ht(y). (40)

So there exists a function A:Y — X such that A(y)=supH (z,h(T (r,2) )) In
addition, this function is unique by Corollary 16, since for ifﬁy pair ke X", and
the function ¢ defined as ¢(y):= max{A(y),k(y)} is comparable with both 4 and
k under the relation <, .
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