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ABSTRACT

In this study, we extend the notion of multidimensional fixed point and coincidence 
point theorem to infinite dimensional product spaces. We also prove some theorems, 
which generalizes some results that are known in this field.
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INTRODUCTION

The concept of coupled fixed point was introduced in Guo & Lakshmikantham (1987). 
Then Gnana-Bhaskar & Lakshmikantham (2006) introduced a mixed monotony 
property for partially ordered metric spaces in 2006 and used it on the theory of coupled 
fixed points of contractive operators to prove some coupled fixed point theorems in 
partially ordered metric spaces. Then Lakshmikantham & Ćirić (2009) defined the 
g _ mixed monotony property and proved coupled coincidence point theorems for 
partially ordered metric spaces. Berinde & Borcut (2011) defined the notion of triple 
fixed point. Recently Roldán et al. (2012) obtained some existence and uniqueness 
theorems for nonlinear mappings with finite number of arguments. 

Many infinite dimensional structures are involved in the study of fixed point theory. 
For example, Fisher (1982) demonstrated some fixed point results concerning possibly 
infinite bounded subset of a complete metric space X and Achari (1986) verified some 
common fixed point theorems for a family of multifunctions on a non-empty complete 
metric space.

In this study we consider multivalued fixed points of infinite dimensional functions. 
Thus we further generalize some former results on coupled fixed point theory. Also 
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we apply our conclusion to a class of functional equations to show the existence and 
uniqueness of solutions.

PRELIMINARIES

Let  be a complete metric space,  be a nonempty set and  denote the set 
of all functions  . If either  is bounded or  is finite, then the function 

 with 

  
                                    

(1)

defines a metric on  . It is known that if  is complete, then  is also a 
complete metric space.

If  is unbounded and  is infinite, then for any different   and all   
we can pick  such that  for all  . Then  will not be a 
metric space, since for any  such that ( ) =n nh y h  and ( ) =n nk y k  for all n , 

( , ) =Yd h k ∞ . To avoid this situation, if necessary, one can consider bounded metrics 
equivalent to d  on X  such as { }min ( , ),1d x y  or ( , )

1 ( , )
d x y
d x y+ , which imposes a strict 

handicap on Lipschitz-like inequality to satisfy.

Definition 1. (Roldán et al., 2012). Let d  and ≤  be a metric and a partial order on a 
nonempty set X , respectively, Then ( , , )X d ≤  is referred as an ordered metric space.

Definition 2. (Roldán et al., 2012). Given an ordered metric space ( , , )X d ≤  and a 
mapping :g X X→ . X  is said to have sequential g − monotony property provided 
that, if ( )nx  is non-decreasing sequence and nx x→ , as n → ∞, then ngx gx≤  for all 
n , and if ( )nx  is non-increasing sequence and nx x→ , as n → ∞ , then ngx gx≤  for 
all n . X  is said to be have sequential monotony property, if it has sequential g −
monotony property, where g  is the identity map XI .

MAIN RESULTS

Definition 3. Let : YF X X→ , :g X X→  be functions. F  and g are said to be 
commuting if ( ) = ( )gF h F gh  for all Yh X∈

In Definition 3, gh  denotes the composition of g  and h , and ( )F h  denotes 
the value of h  under F . This convention will be thoroughly used for complicated 
expressions to be easily readable.

Moreover, we assume that a partition { , }A B  of Y  with possibly empty sets A  and 
B  is given and the sets

                                           (2)
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are readily defined.

The relation ≤  given on X , can be extended to YX  by

( ) ( )  for all  h k h y k y y Y≤ ⇔ ≤ ∈                                 (3)

be useful to define for each y Y∈  a partial order 
y≤  on X  such that for all 

1 2,x x X∈

1 2 1 2yx x x x≤ ⇔ ≤                                               (4)

if y A∈ , and

1 2 2 1yx x x x≤ ⇔ ≤
                                             

 (5)

if y B∈ . By these relations y≤ , we can define a partial order Y≤  on YX  such that for 
all , Yh k X∈

( ) ( )   for all   .Y yh k h y k y y Y≤ ⇔ ≤ ∈                            (6)

Definition 4. Let : YF X X→ , :g X X→  be functions. If the implication

( ) ( ) ( ) ( )ygh y gk y F h F k≤ ⇒ ≤
                                 

 (7)

is satisfied for all y Y∈  and for all , Yh k X∈  such that \{ } \{ }| = |Y y Y yk h , then F  is 
called finitely mixed g − monotone.

Finitely mixed g − monotony property for F  means that, ( ) ( )gh y gk y≤  implies 
( ) ( )F h F k≤  for all y A∈  and all , Yh k X∈  such that \{ } \{ }| = |Y y Y yh k , and ( ) ( )gh y gk y≤  

implies ( ) ( )F h F k≥  for all y B∈  and all , Yh k X∈  such that \{ } \{ }| = |Y y Y yh k . These 
can be unified under one expression: ( ) ( )ygh y gk y≤  implies ( ) ( )F h F k≤  for all y Y∈  
and all , Yh k X∈  such that \{ } \{ }| = |Y y Y yh k . Moreover, for z y≠ , ( ) = ( )gh z gk z  and so 

( ) ( )zgh z gk z≤ . Thus F  has finitely mixed g − monotony property iff

( ) ( )Ygh gk F h F k≤ ⇒ ≤
                                       

 (8)

for all y Y∈  and all , Yh k X∈  such that \{ } \{ }| = |Y y Y yh k .

Definition 5. Let : YF X X→ , :g X X→ . If

( ) ( )Ygh gk F h F k≤ ⇒ ≤
                                       

 (9)

for , Yh k X∈ , then F  is said to be mixed g − monotone. 



An infinite dimensional fixed point theorem on function spaces of ordered metric spaces39

Example 6. Let [ 1,1]X Y= = −  and consider the partition { , }A B  of Y , where 
[ 1,0]A = −  and (0,1]B = . Define functions :g X X→ , ( )g x x= −  and : YF X X→ , 

{ }( ) sup ( ) :F h yh y y Y= ∈ . Then F  has mixed g − monotony property. We can 
observe for each , Yh k X∈  that Ygh gk≤  implies ( ) ( )yh y yk y≤ , which in turn gives 

( ) ( )F h F k≤ .

Clearly the mixed g − monotony property implies the finitely mixed g − monotony 
property. Moreover, in the case that Y  is finite, these two properties are equivalent. 
Indeed, if  and Ygh gk≤ , for each 0 i n≤ ≤  a function :ih Y X→  such 
that

( ), if <
( ) =

( ), if
j

i j
j

h y i j
h y

k y i j

⎧
⎨ ≥⎩

                                     (10)

gives 0 =h h , =nh k  and 1 \{ } \{ }| = |
i ii Y y i Y yh h−  for all i , 1 i n≤ ≤ . So we can apply 

finitely mixed g − monotony property n  times to get ( ) ( )F h F k≤ , since

( ) ( ) ( ) ( ) ( )0 1= = .nF h F h F h F h F k≤ ≤ ≤L                     (11)

Now we give an example of a function, which has finitely mixed g − monotony 
property, but does not have mixed g − monotony property.

Example 7. Let [0,1]X = ,  ,  , B = ∅  and Xg I= . Let hC  denote the set 
of cluster points of the sequence  , which is always nonempty by the Bolzano-
Weierstrass theorem. Define the function : YF X X→  as ( ) sup ( ) sup hF h h Y C= − . 
Note that, if \{ } \{ }| = |Y y Y yh k , then the sequences ( )( )h n  and ( )( )k n  can differ in only 
one term, and so h kC C= . In this case, Ygh gk≤  implies ( ) ( )F h F k≤  and thus F  
has finitely mixed g − monotony property. However F  does not have mixed g −

monotony property. Observe that Ygh gk≤  for the functions 
1, if 1

( )
0, if 1

n
h n

n

=⎧
= ⎨ >⎩

 and 
( ) 1k n =  for all   , while ( ) 1 0 1F h = − = and ( ) 1 1 0F k = − = . 

Definition 8. Let  ,  and  . Assume that  denote the 
function  for each  . If

                                                  (12)

for all Yh X∈  and all y Y∈ , h  is called a Φ − coincidence point of F  and g . In 
particular, in the case that = Xg I , i.e.  , h  is called a Φ − fixed point 
of F .

Example 9. Let  . Let  ,  ,  ,  , 
 ,  ,  ,  ,  , for 

all   and  . Then   ,   is a  coincidence point of 
  and  , since   for all  .
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Example 10. Let ( , )Y ⋅  be any abelian group and ( )P Y  denote the family of nonempty 
subsets of Y . We consider functions from Y  to ( )P Y , which also have been studied for 
their own sake in the view of the fixed point theory, e.g. Fisher (1982), Achari (1986). 
Let : ( ) ( )YF P Y P Y→  be defined as ( ) { : ( )}F h x x h x= ∈  for all maps : ( )h Y P Y→ . 
Then for any subgroup of Y , the corresponding canonical map : ( )q Y P Y→  is a Φ −
fixed point of F , where  ,  ,  ,   for 
all  and  ,  , since  .

Theorem 11. Let F  and g  be commuting. If Yh X∈  is a Φ − coincidence point of 
F  and g , then gh  is also a Φ − coincidence point of F  and g . 

Proof: Since F  and g  are commuting, ( ) = ( )gF h F gh  for all Yh X∈  and since h  is a 
Φ − coincidence point of F  and g , we have  for each y Y∈ . Thus

                                (13)

and also gh  is a Φ − coincidence point. 

Theorem 12. Given an ordered metric space ( , , )X d ≤ . Let : YF X X→  be a function 
with the mixed g -monotony property, where :g X X→  be a continuous map such 
that F  and g  be commuting and ( ) ( )YF X g X⊆ . Let  ,  ,   

 and  . Assume that   be a bijection and  . 
Suppose that there exists a constant [0,1)λ ∈  such that

( )( ), (k) ( , )Y
Ygh gk d F h F d gh gkλ≤ ⇒ ≤                       (14)

for all , Yh k X∈ , and also suppose that there exists a point 
0

Yh X∈ , which satisfies 
 for all y Y∈ . If X  has sequential g -monotony property or F  is 

continuous, then F  and g  have some Φ − coincidence point.

Proof: Since ( ) ( )YF X g X⊆ , there exists a point yx X∈  for each y Y∈ , such 
that  . By choice axiom, which is not needed in the case that g  is 
injective, there exists a function  , for which  for all 
y Y∈ . We now define 1

Yh X∈  such that  for all y Y∈ , so we have 

 
. We can similarly define a function 2

Yh X∈  such that 
 for all y Y∈ . Continuing this process, one can obtain a sequence 

( )nh  on YX  such that   for all  .

Now we show that 1n Y ngh gh− ≤  for each positive integer n .

We may easily point out that  for all y Y∈  by the 
hypothesis of the theorem and the definition of 1h . This implies that 0 1( ) ( )ygh y gh y≤  
for all y Y∈ , since  is surjective and since  and  by  , 
hence 1n Y ngh gh− ≤  for = 1n .
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Now assume as induction hypothesis that 1n Y ngh gh− ≤ , i.e. 1( ) ( )n z ngh z gh z− ≤  for 
all z Y∈ . We want to show that 1n Y ngh gh +≤ .

If  y A∈ , then ,( ) A BAσ ⊆ Ω  and so ( )y z Aσ ∈  for z A∈  and ( )y z Bσ ∈  for 
z B∈ . Thus 

( )zyσ≤  is identical to z≤  for all z . For ( )y z Yσ ∈  we can write 

1 ( )( ) ( )n y z n yy
gh z gh zσσ σ− ≤ , which gives that 1 ( ) ( )n y z n ygh z gh zσ σ− ≤  for all z Y∈   
Hence 

1n y Y n ygh ghσ σ− ≤ . Since F  has the mixed g − monotony property, thus 

1( ) ( )n y n yF h F hσ σ− ≤ .

If y B∈ , then ( )y z Bσ ∈  for z A∈  and ( )y z Bσ ∈  for z A∈ . Thus ( )zyσ≤  is 
identical to z≥  for all z Y∈ , where z≥  denotes the inverse of z≤ . We can write 

1 ( )( ) ( )n y z n yy
gh z gh zσσ σ− ≤  for ( )y z Yσ ∈ , so 1 ( ) ( )n y z n ygh z gh zσ σ− ≥  for all z Y∈ . 
Hence 1n y Y n ygh ghσ σ−≤  and 1( ) ( )n y n yF h F hσ σ−≤  by mixed g − monotony property.

Using two inequalities for y A∈  and for y B∈ , it can be written as 

1( ) ( )n y y n yF h F hσ σ− ≤  for all y Y∈ . So we obtain 
1( ) ( )n y ngh y gh yτ τ+≤ , since by the 

definition of the sequence ( )nh  we have 1( ) = ( )n n ygh y F hτ σ−  and 1 ( ) = ( )n n ygh y F hτ σ+ . 
But 1( ) ( )n y ngh y gh y+≤  for all y Y∈  since ,A Bτ ∈Ω  is bijective and y≤  is identical to 

( )yτ≤ , and now we have 1n Y ngh gh +≤ .

     We have shown that 1n Y ngh gh− ≤  for all positive integers n . Additionally we get 

1n y Y n ygh ghσ σ− ≤  or 1n y Y n ygh ghσ σ−≤ , when y A∈  or y B∈  respectively. In both 
cases we can compare the functions 1n ygh σ−  and n ygh σ  under the relation Y≤ . For 
each y Y∈  we may write

( )1 1( ), ( ) ( , )Y
n y n y n y n yd F h F h d gh ghσ σ λ σ σ− −≤

                 
 (15)

since we know by the hypothesis of the theorem that ( )( ), ( ) ( , )Yd F h F k d gh gkλ≤  for 
all , Yh k X∈  such that Ygh gk≤  (or Ygk gh≤ , since metric function is symmetric). 
Thus

( ) ( )
( )

( )
( )

( )

1 1 1

1 1

1 1

( ), ( ) = ( ), ( ) ( , )

= ( ), ( ) = ( ), ( )sup sup

( ), ( ) = ( , )sup

Y
n n n y n y n y n y

n y n y n n
z Yz Y y

Y
n n n n

z Y

d gh y gh y d F h F h d gh gh

d gh z gh z d gh z gh z

d gh z gh z d gh gh

σ

τ τ σ σ λ σ σ

λ σ σ λ

λ λ

+ − −

− −
∈∈

− −
∈

≤

≤

for all positive integers n  and y Y∈ . So

( )1 1( ), (y) ( , )sup sup Y
n n n n

y Y y Y

d gh y gh d gh ghτ τ λ+ −
∈ ∈

≤                   (16)

and since τ  is a bijection

( )1 1( ), ( ) ( , )sup Y
n n n n

y Y

d gh y gh y d gh ghλ+ −
∈

≤
                       

(17)
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Now,

1 1( , ) ( , )Y Y
n n n nd gh gh d gh ghλ+ −≤                               

 (18)

for all positive integers n . Thus we have the inequalities

2
1 1 2 1 0 1( , ) ( , ) ( , ) ( , )Y Y Y n Y

n n n n n nd gh gh d gh gh d gh gh d gh ghλ λ λ+ − − −≤ ≤ ≤ ≤L. . .2
1 1 2 1 0 1( , ) ( , ) ( , ) ( , )Y Y Y n Y

n n n n n nd gh gh d gh gh d gh gh d gh ghλ λ λ+ − − −≤ ≤ ≤ ≤L. . .   (19)

for all integers 0n ≥ , and by triangle inequality

1 1 2 1

1 1
0 1 0 1 0 1

1 1
0 1 0 1 0 11 1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

= (1 ) ( , ) = ( , ) ( , )
p n

Y Y Y Y
n n p n n n n n p n p

n Y n Y n p Y

n p Y n Y Y

d gh gh d gh gh d gh gh d gh gh

d gh gh d gh gh d gh gh

d gh gh d gh gh d gh ghλ λ
λ λ

λ λ λ

λ λ λ λ

+ + + + + − +

+ + −

− −
− −

≤ + + +

≤ + + +

+ + + ⋅ ⋅ ≤

L

L

L

. . .

. . .

. . .

for all integers 1p ≥  and 0n ≥ .

     Now we are able to show that ( )ngh  is a Cauchy sequence. Let > 0ε . Choose an 
integer 0n  such that 0

0 11 ( , ) <
n Yd gh ghλ
λ ε− . Since

0

0 1 0 11 1( , ) ( , ) ( , ) <
nnY Y Y

n n pd gh gh d gh gh d gh ghλ λ
λ λ ε+ − −≤ ≤

           
 (20)

for 0n n≥  and 1p ≥ , ( )ngh  is a Cauchy sequence. The completeness of ( , )X d  implies 
that of ( , )Y YX d , and there exists a Yh X∈  such that ngh h→ , as n → ∞ . Then, for 
all y Y∈ , ( ) ( )ngh y h y→ , as n → ∞  on ( , )X d , since ( )( ), ( ) ( , )Y

n nd gh y h y d gh h≤  
by the definition of Yd .

     On the other hand if  is any function, then the inequality

 
 
(21)

is true for any . Since in particular  ,   
is also a Cauchy sequence on  . Say  , as  . Again,

                                (22)

and  , as  for all  . Since

for all  and  ,   for all  , so  . Hence  , as 

 .
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Now for  we have  , as  , or equivalently 

 
, as  and since  is continuous  , as 

 . As  and  are commuting

                              (23)

and also for any  and for  , we can write  , as  .

     Now, if  is continuous, then

    (24)

Thus  for all  . So  be a  coincidence point for  and  .

     We complete the proof by considering the case, where  has sequential -monotony 
property.

     We know that  , and so  for all  and  .

If  , then  . So the inequality   
can be written as  . If  , then  and so   

 becomes  . Then we deduce that

 

 

        

(25)

     From the fact that  , as  ,  , as  for all  

 and by sequential g − monotony property

  

               

(26)

for all  . This means that,  , while  and  , 
while  . In both cases  and  are comparable under  . Then

                    
 (27)

since  has mixed  monotony property. Now  , as   and  is 
continuous, so  , as   , and  , as 

. This yields again

  (28)

which completes the proof.
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     Theorem 12 does not guarantee uniqueness. For example, if F  and g  are constant 
mappings with the same constant value, then the hypothesis of the theorem is satisfied, 
but each point of YX  is a Φ − coincidence point. 

Theorem 13. Under the hypothesis of Theorem 12, assume that for each , Yh k X∈  
being Φ − coincidence point of F  and g , there is a Yq X∈  such that gq  is 
comparable with both gh  and gk  under the relation Y≤ . Then there is a unique point 

Ys X∈  satisfying =gs s  and being a Φ − coincidence point of F  and g . 

Proof: Let h  and k  be two Φ − coincidence points of F  and g . Assume that there 
exists a Yq X∈  such that gq  is comparable with both gh  and gk  under the relation 

Y≤ .

Say 0 :=q q  and by the similar way used in the proof of Theorem 12 we obtain a 
sequence 1 2( , , )q q K. . .  on YX  such that  for all positive integers 
n . Since gq  is comparable with gh , 0Ygh gq≤  or 0 Ygq gh≤  and considering the 
case 0 Ygq gh≤ ,

by the mixed g − monotony property. Continuing this process yields n Ygq gh≤  for 
all   . Moreover, we see that

                               (29)

for all positive integers n  and y Y∈ . On the other hand if 0Ygh gq≤ , similarly 

Y ngh gq≤  for all  and 
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                        (30)

for all  y A∈ . Thus, in all cases  and   are comparable under the relation 

Y≤ , and by hypothesis of existence theorem

   (31)

Since  is bijection, supremum on the left side yields

1( , ) ( , ).Y Y
n nd gq gh d gq ghλ+ ≤                                  

 (32)

Additionally since [0,1)λ ∈ , this means that ( , ) 0Y
nd gq gh → , as n → ∞ . Hence 

ngq gh→ , as n → ∞ . It can be similarly shown that ngq gk→ , as n → ∞ .

Consequently =gh gk  for any two Φ − coincidence points h  and k  of F  and 
g . If h  is a Φ − coincidence point of F  and g , then gh  is so, thus =gh ggh . So 

=gs s  for at least one Φ − coincidence point of F  and g . On the other hand, let 

1 2, Ys s X∈  be Φ − coincidence points of F  and g  such that 1 1=gs s  and 2 2=gs s . 
Then 1 2

=gs gs  and so 1 2=s s .

Let Yq X∈ . We can define a function Yq X∗ ∈  such that  . 
Then, Theorem 13 holds also under the following alternative hypothesis: For each 

, Yh k X∈  being Φ − coincidence point of F  and g , there exists Yq X∈  such that 
q∗  is comparable with both gh  and gk  under the relation Y≤ . For 0 :=q q , we can 
begin a similar proof by  is comparable with  

 under ≤ .

Corollary 14. In addition to the hypothesis of Theorem 13, if =gh gk  implies =h k  
for all Φ − coincidence points h  and k  of F  and g , then there is exactly one Φ −
coincidence point of F  and g . 

Corollary 15. Besides the hypothesis of Theorem 13, assume also that  is 
comparable to  under Y≤  for all ,y z Y∈ . Then Ys X∈  is a constant function. 

Proof: Say ( )
,

= ( ), ( )sup
y z Y

M d s y s z
∈

. For any bijection  ,  . 

Let  and  be comparable, so either  or  , and since =gs s , 
either  or  . By the hypothesis of the existence theorem



 Ali Mutlu and Utku Gürdal 46

which yields by taking supremum that 

Then, since 0 < 1λ≤ , ( ) = ( )s y s z  for all ,y z Y∈ .

Considering the case = Xg I , the facts obtained about Φ − coincidence points can 
be restated for Φ − fixed points.

Corollary 16. Given an ordered metric space ( , , )X d ≤  and a non-decreasing 
function : ( , ) ( , )Y

YF X X≤ → ≤ . Let  , where  is a bijection, 
,  ,  and  . Suppose that there exists a 

constant [ )0,1λ ∈  such that

( )( ), ( ) ( , )Y
Yh k d F h F k d h kλ≤ ⇒ ≤                             (33)

for all , Yh k X∈ , and there exists a point 0
Yh X∈  such that  for all 

y Y∈ . If F  is continuous or X  has sequential monotony property, then F  has at 
least one Φ − fixed point.

     If, in addition, there exists Yq X∈  such that q  is comparable with both h  and k  
under the relation Y≤  for each Φ − fixed point , Yh k X∈  of F , then there exists a 
unique Φ − fixed point s  of F .

     Moreover, also if  is comparable with  under Y≤  for all ,y z Y∈ , then s  is 
a constant function. 

Example 17. Let = [0,1]X  given with usual metric and =Y  . Then YX  corresponds 
to the set of all sequences on [0,1]. Assume that =A  , =B ∅  and   
for all y Y∈ . For any constant c , 0 1c≤ ≤ , define the function : YF X X→  by 

( )
=1 3

( ) = n

h n c
nF h +∞Σ . Then,

  ( ) ( ) ( ) 1 1
=1 =1 =1 23 3 3

( ), ( ) = ( ) ( ) = ( , )suph n c k n c Y
n n nn n n

n

d F h F k h n k n d h k+ +∞ ∞ ∞

∈
Σ − Σ ≤ − ⋅Σ ⋅

N
  (34)

for all , Yh k X∈ . Also it is clear that F  is a non-decreasing function and the 
space [0,1]  is sequential monotone. Consider 0

Yh X∈  as the constant function 
 

0 : [0,1]h →N , 0 ( ) = 0h n . So  for all  , since   
so that =n≤ ≤ . Hence F  has at least one Φ − fixed point. Indeed for the constant 
function : [0,1]s →N  , ( ) =s n c  for all  , then

   
 

                
(35)
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This Φ − fixed point is unique, since the function q , defined as { }( ) = min ( ), ( )q n h n k n  
is comparable with both h  and k  under the relation ≤  , and by the fact that   
for all ,y z ∈  since  , we again see that s  is a constant function. 

APPLICATION

As stated in Bellman & Lee (1978), many functional equations arising in dynamic 
programming have the form 

( )( )( ) = max , , ( , )
q

g p G p q g T p q                                 (36)

where p  and q  are state and decision vectors, g  is the optimal return function and T  
is transformation of the process. Here we give an existence and uniqueness theorem, 
as an application of Corollary 16, for a special case of these equations, in which the 
function G  is independent of state, i.e. constant in the first argument.

Theorem 18. Let U  and V  be Banach spaces, Y U⊆  and Z V⊆ . Also let X ⊆ R  
be a bounded subset and :T Y Z Y× → , and :H Z X X× →  be functions. Suppose 
that the following conditions hold:

     i) There exists a bijection :f Y Z→  such that ( ) ( )1 2 2 1, ( ) = , ( )T y f y T y f y  for 
all 1 2,y y Y∈ .

     ii) There exists a λ ∈R  such that ( , ) ( , )0 < < 1H z b H z a
b a λ−

−≤  for all z Z∈  and , ,a b X∈
a b≠ .

Then the functional equation

( )( )( ) = , ( , )sup
z Z

h y H z h T y z
∈

                                    (37)

has a unique solution. 

Proof: Let d  denote the standard metric on the bounded set RX ⊆  , ordered with the 
usual order ≤ . Define : YF X X→  as ( )( )1( ) = , ( )sup

z Z

F h H z h f z−

∈
. Say =A Y  and 

=B ∅ . So y≤  is identical to ≤  for all y Y∈ . For all y Y∈ , we define :y Y Yσ →  
with ( )( ) = , ( )y y T y f yσ ′ ′  for all y Y′∈ . By the selection of  the sets A  and B , it is 
clear that ( ) ,A BAσ ⊆ Ω  and ( ) ,

'
A BBσ ⊆ Ω .

     Let , Yh k X∈  such that Yh k≤ . Since ( ) ( ), ,0 H z b H z a

b a

−
−≤  for all z Z∈ , ,a b X∈ , H  

is non-decreasing in second argument, so that

  ( ) ( )( )( ) ( )( )1 1= , , ( ) ( ).sup sup
z Z z Z

F h H z h f z H z k f z F k− −

∈ ∈
≤ ≤

       
(38)

Hence : ( , ) ( , )Y
YF X X≤ → ≤  is non-decreasing, and since
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 ( )( ) ( )( ) ( ) ( ) { }1 1 1 1, ( ) , ( ) ( ) ( ) ( ) ( )sup

y Y

H z h k z H z h f z k f z h f z k y h yλ λ− − − −

∈

⎡ ⎤− ≤ − ≤ −⎣ ⎦
  
(39)

for all z Z∈  from (ii), we have

                 ( ) ( )( ) ( )( )
{ }

1 1( ), ( ) = , ( ) , ( )sup sup

( ) ( ) = ( , ).sup

z Z z Z

Y

y Y

d F h F k H z k f z H z h f z

k y h y d h kλ λ

− −

∈ ∈

∈

−

≤ −

Define 0 :h Y X→  as the function with the constant value inf X . Then 

( )0 0( )yh y F h σ≤  for all y Y∈ . Finally, X  has the sequential monotony property, 
since it is endowed with the standard metric.

Thus all hypotheses related to existence in Corollary 16 are satisfied for  , 
and F  has a Φ − fixed point h , where  . Now we have

 
  
(40)

So there exists a function :h Y X→  such that ( )( )( ) = , ( , )sup
z Z

h y H z h T y z
∈

. In 
addition, this function is unique by Corollary 16, since for any pair , Yh k X∈ , and 
the function q  defined as { }( ) := max ( ), ( )q y h y k y  is comparable with both h  and 
k  under the relation Y≤ . 
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