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ABSTRACT

A well-known finite difference scheme for the valuation of options from the Black-
Sholes equation is the Crank-Nicolson scheme. However, in the case of non-smooth 
payoffs, the Crank-Nicolson scheme is known to produce unwanted oscillations for 
the computed solution. As an alternative, Douglas scheme is generally recommended 
for better resolution of option price because it has fourth order accuracy in asset 
derivative. However, as noted by Shaw in his book, both these methods show 
“potentially nasty behavior when applied to simple option pricing”. We note that both 
the Crank-Nicolson scheme and the Douglas scheme use a trapezoidal formula for time 
integration which is known to produce unwanted oscillations in the computed solution. 
This works since the trapezoidal formula is only A-stable and not L-stable. Chawla 
and Evans proposed a new L-stable Simpson rule. We investigate the application of 
this L-stable third order rule for the time integration in the Black-Sholes equation 
after it has been semi-discretized in the asset derivative by Numerov discretisation. 
By numerical experimentation with real option valuation problems, we compare the 
performance of this new improved version of Douglas with both Crank-Nicolson and 
Douglas schemes. We also study the performance of this scheme for the valuation of 
the Greeks.
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INTRODUCTION

Let  denote the value of an option contingent on an asset with value  at time , 
volatility of the underlying , exercise price , expiration time , and risk-free interest 
rate . Then the celebrated Black-Scholes equationin Black & Scholes (1973) satisfied 
by the valuation of an option is described by

        (1)

This is a backward parabolic equation and, for a complete mathematical 
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specification, we need two boundary conditions

                                (2)

and a final condition on the payoff

                                                (3)

for given  and . .

Brennan & Schwartz (1978) were the first to describe the application of finite 
difference methods to option pricing. Geskec & Shastri (1985) give a comparison 
of the efficiency of various finite difference and other numerical methods for option 
pricing.

A well-known finite difference scheme for the valuation of an option from the 
Black-Sholes equation is Crank & Nicolson (1947); Shaw (1998) Chapters 13, 14, and 
15, pp. 258-305 and Wilmott et al. 1995. However for non-smooth payoff, the Crank-
Nicolson scheme is known to produce unwanted oscillations in the computed solution. 
As an alternative, Douglas scheme is generally recommended for better resolution of 
option price because it has fourth order accuracy in asset derivative. As noted by Shaw 
in his book Shaw (1998), both these methods show “potentially nasty behavior when 
applied to simple option pricing”. We note that both the Crank-Nicolson scheme and 
the Douglas scheme use a trapezoidal formula for the time integration. This is known to 
produce unwanted oscillations in the computed solution since the trapezoidal formula 
is only A-stable and not L-stable. As an alternative, three-time level version of the 
Douglas scheme is generally recommended; see Shaw (1998),  and  Smith (1985). The 
Crank-Nicolson scheme has a local truncation error of order , while 
the Douglas scheme has a local truncation error of order . However, if 
a larger time step is used, there is no significant improvement by using Douglas over 
Crank-Nicolson scheme. We also note that the three-time level Douglas is only second 
order in time and not self starting.

Chawla & Evans (2005) proposed a new L-stable Simpson rule. We investigate 
the application of this L-stable third order rule for the time integration of the Black-
Sholes equation after it has been semi-discretised in the asset derivative by Numerov 
discretisation (Numerov, 1924). By numerical experimentation with real option 
valuation problems, we compare the performance of this new improved version 
of Douglas with both Crank-Nicolson and Douglas schemes. We also study the 
performance of this scheme for the valuation of the Greeks. We assume no dividends 
are paid during the life of the option.

To develop finite difference methods for the numerical solution of the Black-
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Scholes equation, we first need transform it into a standard forward diffusion problem 
as in the following section.

THE LOG-TRANSFORMATION

With the transformations

                                           (4)

                             (5)

where  , the Black-Scholes equation is  transformed into the following standard 
forward diffusion equation

                        
(6)

With suitably selected  to represent  and  to represent , the boundary 
conditions are transformed into 

   (7)

     
 (8)

The final condition is transformed into the initial condition 

                                                (9)

where

                                 (10)

It is worth noting the well known property of the diffusion equation that in the case 
of double infinite domain the prescription of specific conditions at  is irrelevant 
since these cannot affect the solution in the finite part of the domain.

SECOND ORDER CENTRAL DIFFERENCE SEMI-DISCRETISATION

For suitable positive integers ,  and step , define the spatial grid 
 where we have set , and 

For a positive integer , define the temporal grid , where 

 
In the following, we set  , and  etc.
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Now, a central difference discretisation of the transformed Black-Scholes 
differential equation in (6) is given by

           
 (11)

Consider the matrices 

  

Then the discretisation equations (11), together with the boundary conditions (7)–
(8) can be written in the matrix form

                                 
  (12)

We first note that the Crank-Nicolson scheme results  from time integration of (12) 
by the classical trapezoidal formula. This is given by

                 
(13)

where  denotes the identity matrix. This is the Crank-Nicolson (C-N) scheme for the 
transformed Black-Scholes equation.

FOURTH ORDER NUMEROV SEMI-DISCRETISATION

Consider the special second ordinary differential equation 

                                     (14)

For a positive integer , let  and set 

                                    (15)

A well known three-point fourth order discretisation of the differential equation in 
(14) is due to Numerov (1924) and is given by the following

  
 (16)

with the local truncation error given by
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                                       (17)

We now describe a fourth order special discretisation of (6) by the Numerov 
method. This method (16) can be written as

 (18)

For the differential equation in (6) this gives 

   (19)

In order to write this system in matrix form, it is useful to consider 

Then the semi-discretisation (19) for  together with the boundary 
conditions can be written in matrix form as

                        
 (20)

Employing the trapezoidal formula for the time integration of (20) we obtain

     (21)

This is the Douglas method for the diffusion equation (6). In comparison with the 
Crank-Nicolson method, the Douglas method is fourth order in asset and second order 
in time; its local truncation error is of order . To improve accuracy of 
the Douglas method we need to consider an excessively small time step, case in which 
both Crank-Nicolson and Douglas methods provide a stable solution.

Smith (1985) gives an example for the diffusion equation wherein Douglas method 
has better accuracy than the Crank-Nicolson method in the third or fourth decimal 
place for sufficiently small time step.

Unconditional stability of Douglas scheme

The Douglas method is unconditionally stable as shown below.

For homogeneous boundary conditions, the Douglas method (21) can be written 
as
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                                                 (22)

where the amplification matrix is given by

                                  (23)

The eigenvalues of  are known to be all positive (see Smith (1985)), and are 
given by

                                            (24)

where

                                     (25)

Since  we can write

                  (26)

 The eigenvalues of  are now given by(see Smith (1985))

                         
  (27)

It is easy to check that

                            (28)

and hence the Douglas method is unconditionally stable. However, it is worthy to note 
that for large we have  . This is due to the A-stability of the trapezoidal 
rule employed for time integration in the Douglas method and helps explain unwanted 
oscillations in the computed solution by the Douglas method, especially for large time 
steps.

IMPROVED DOUGLAS SCHEME

We now present the improved Douglas method by employing an L-stable third order 
time integration scheme for the time integration of (20).

For the numerical integration of the first order initial value problem 

                                        (29)

an optimal two-step fourth order is the Simpson rule 

                             
 (30)
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Here, for a positive time step  we have set  and 
 .

However, it is known that Simpson rule is unconditionally unstable; see, e.g., 
Lambert (1991) and Chawla & Evans (2005) who gave a new third order L-stable 
version of Simpson rule. This rule, compressed to a single interval, is described as 
follows. For half-step points, we set  etc. 

   
   (31)

                         
   (32)

As in Chawla & Evans (2005), we call this version of Simpson rule by LSIMP3. 
Now, employing LSIMP3 for the time, we have

  (33)

and 

                                        (34)

Since the matrices  and  commute, multiplying equation (34) by  and 
substituting for  from (33), and noting that , we obtain

                (35)

This is the improved Douglas method. The improved Douglas method is fourth 
order in asset and third order in time, and it can be shown to be unconditionally stable. 
Unconditional stability of the improved Douglas method means that we can afford 
to use relatively large time steps for integration, and since it is based on an L-stable 
version of Simpson rule, with a larger time step we can expect better stability than with 
the classical Douglas method. These ideas are illustrated in the section on numerical 
experiments.

Unconditional stability of improved Douglas scheme

We next discuss unconditional stability of the improved Douglas method. For 
homogeneous boundary conditions, the improved Douglas ( ) method (35) can be 
written as
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                                                 (36)

with

                 (37)

As in section (5.1), since  , we can write 

                                    (38)

and the eigenvalues of  are given by

                            
 (39)

where

                 (40)

        (41)

Since 

         (42)

   (43)

it follows that

                        (44)

Thus the improved Douglas method is unconditionally stable. However, for the 
improved Douglas method that for large , we have  .

This is due to the L-stability of the LSIMP3 rule employed for time integration in 
the improved Douglas method and helps explain more stable approximations obtained 
by the improved Douglas method in comparison with the Douglas method for large 
time steps.

THE GREEKS

 The delta of an option is defined by

                                                       (45)



An improvement of the douglas scheme for the Black-Scholes equation113

For a European call and put, the delta is given respectively by

                                (46)

where  is as given by

For numerical computation of the delta from the values of the option at the interior 
points we obtain

                                                (47)

The gamma for a call is given by

                                         
(48)

For numerical computation of the gamma, at the interior points we use the 
approximation

                                             
   (49)

The theta for a call is given from the Black-Scholes equation by

                            (50)

 Substituting for  and , then the theta is given by

                      
 (51)

For numerical computation, having computed  and , we compute theta using 
the Black-Scholes equation

                                
  (52)

The computation of these Greeks is illustrated in the following section.

NUMERICAL EXPERIMENTS

In this section we present some comparisons and show the advantage of using the 
improved Douglas method over the usual Douglas method. For this purpose, we 
consider the valuation of some European options and the calculation of the Greeks. For 
all the following computations we take 
and  .
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Problem 1. We consider the valuation of a European put  with 
payoff

                                       (53)

and boundary conditions

                       (54)

In transformed coordinates, the payoff is

                             
  (55)

and the boundary conditions become

                    (56)

We note here that having calculated the value of a put, then the value of a call 
C(S,t) can be calculated using the put-call parity

                                      (57)

The exact values of European call and put are given (Wilmott et al., 1995) by

                          (58)

                      (59)

where

 
                    

 (60)

                                   
  (61)

 We computed the value of the put by the Crank-Nicolson method, the Douglas 
method and by the improved Douglas method. The computed values are displayed 
in Figure 1. The improved accuracy and stability of the improved Douglas method, 
especially close to the exercise price, is clear from Figure 1.
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Fig. 1. Problem 1 European put

Problem 2. Consider the valuation of a cash-or-nothing call  with payoff, where  is the 
Heaviside unit step function. At expiration, if , then the payoff is; otherwise the payoff 
is zero. The boundary conditions are 

                   (62)

In terms of the transformed coordinates, the payoff is 

                                     
 (63)

and the boundary conditions are 

                   
 (64)

The exact value of the cash-or-nothing call is given (Wilmott et al., 1995) by

                              (65)

Where  is as given above.

We computed the value of the CON by the Crank-Nicolson method, the 
Douglas method and by the improved Douglas method. The computed values are 
displayed in Figure 2. The superior accuracy and stability of the improved Douglas 
method close to the exercise is clear from Figure 2.
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Fig. 2. Problem 2 Cash-or-nothing call

Problem 3. We consider the calculation of the delta for the European call. The delta 
computed by the Crank-Nicolson, the Douglas method and the improved Douglas 
method are shown versus the exact value in Figure 3. Superior approximation provided 
by the improved Douglas method is clear from Figure 3.

Fig. 3. Problem 3 Delta for call

Problem 4. We consider the calculation of the gamma for the European call. The 
gamma computed by the Crank-Nicolson, the Douglas method and the improved 
Douglas method are shown versus the exact value in Figure 4. Superior approximation 
provided by the improved Douglas method is clear from Figure 4.
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Fig. 4. Problem 4 Gamma for call

Problem 5. We consider the calculation of theta for the European call. The theta 
computed by the Crank-Nicolson, the Douglas method and the improved Douglas 
method are shown versus the exact value in Figure 5. Superior approximation provided 
by the improved Douglas method is clear from Figure 5.

Fig. 5. Problem 5 Theta for a call
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