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Abstract
Estimating functions have been used in estimating parameters of many continuous time se-
ries models. However, this method has not been applied to models involving count data. In
this paper, we use quadratic estimating functions (QEF) to derive estimators for the joint es-
timation of the conditional mean and variance parameters of count data models, specifically
the basic zero-inflated Poisson (ZIP) model, ZIP regression model and integer-valued general-
ized autoregressive heteroscedastic model with ZIP conditional distribution. Results show that
the estimators derived from QEF method, which uses information from combined estimating
functions, is more informative than linear estimating functions (LEF) method that only uses
information from component estimating functions. Finally, we also fit the real data sets using
the ZIP models via QEF, LEF and maximum likelihood methods, and in so doing, demonstrate
the superiority of the QEF method in practice.
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1. Introduction
Count data are frequently encountered in many
biomedical, epidemiological, industrial and
public health applications. In practice, espe-
cially in the medical field, many count data sets
have a high frequency of zeroes. For example,
for diseases with low infection rates, the ob-
served counts typically contains a large num-
ber of zeroes, although the counts can also be
very large during the outbreak period. For such
data set, Lambert (1992) introduced a zero-
inflated Poisson (ZIP) regression model. His
study showed that the ZIP model is not only
easy to interpret, but also leads to more refined
data analysis as it can accommodate overdis-
persion.

Following the findings, many studies and
applications of the ZIP model have been con-
ducted. For instance, Baksh et al. (2011)
proposed the overdispersion test for the ZIP
model, while Zhu (2012) introduced the model
inspired by the generalized autoregressive con-
ditional heteroscedastic (GARCH) model. In
the GARCH model, the integer-valued case
with a conditional distribution has ZIP distri-
bution instead of normal distribution. It is

denoted as denoted as ZIPINGARCH (p, q),
where p and q are positive integers.

The maximum likelihood (ML) method
is commonly used for estimating the pa-
rameters of ZIP models when the distribu-
tion of the data is known. However, the
method does not always perform well un-
der certain circumstances, see for example,
Bahadur (1958), Crowder (1987) and Vinod
(1997). Furthermore, as pointed out by Nan-
jundan and Naika (2012), the ML estimator
of ZIP models does not have closed-form ex-
pression. Therefore, various estimation meth-
ods have been proposed as an alternative to the
ML method. Some of these are a recursive
technique based on the two-step least squares
estimator (Abaza, 1982), Monte Carlo EM
method (Chan and Ledolfer, 1995), method of
moments (Kharrati-Kopaei and Faghih, 2011)
and quasi-likelihood (Staub and Winkelmann,
2012).

The semiparametric approach based on
the theory of estimating functions (EF) (Go-
dambe, 1985) has been proposed to estimate
the parameters of time series models. The
EF approach uses the information based on
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the first two conditional moments, which is
known as linear estimating functions (LEF).
This method has been successfully applied
in continuous time series models, see Tha-
vaneswaran and Abraham (1988), Chandra
and Taniguchi (2001), Bera et al. (2006),
Merkouris (2007), Allen et al. (2013) and Tha-
vaneswaran et al. (2012 & 2015). Meanwhile,
the advantages of the LEF method have been
highlighted in many papers, Bera et al. (2006)
stated that the LEF approach is a sufficiently
flexible moment-based estimation method. It
is very useful in econometric applications. In
addition, Godambe and Heyde (2010) showed
that the LEF estimator yields asymptotically
the shortest confidence interval. Moreover, Ng
and Peiris (2013) found that the LEF method
is more computationally efficient and easy to
apply in practise than the ML method. They
also argued that the LEF method is easier to
evaluate, and estimates can be obtained with-
out the requirement of the assumption of the
distribution of errors.

Liang et al. (2011) extended the LEF
method to the quadratic estimating functions
(QEF) method, which involves the first four
conditional moments. Their results showed
that the QEF method is more informative than
the LEF method and gives lower standard er-
rors of the estimated parameters. Furthermore,
Thavaneswaran et al. (2015) showed that, this
extension leads to an improvement in terms
of the efficiency of resulting estimate. It has
standard asymptotic properties, such as con-
sistency and asymptotic normality. The QEF
method also removes the problem of identifi-
ability. On top of that, the Monte Carlo sim-
ulation results presented in Ng et al. (2015)
also showed that the QEF estimators outper-
form the LEF estimators in almost all cases
when applied on the autoregressive conditional
duration model.

To our knowledge, the QEF method has
never been applied to count data models.
Therefore, it is in our interest to investigate
the performance of the QEF method as an al-
ternative method in the parameter estimation
of these models. We have derived the opti-

mal estimating functions of QEF for the three
types of ZIP models, namely the basic ZIP, ZIP
regression and ZIPINGARCH(p, q) time se-
ries models. We also obtained the information
for these ZIP models and then compared them
with that from the LEF method. Concurrently,
the QEF, LEF and ML methods were applied
into real data sets to estimate the model param-
eters together with their respective standard er-
rors. The Akaike information criterion (AIC)
and Bayesian information criterion (BIC) val-
ues were calculated to determine the best fitted
model.

This paper is organized as follows: Section
2 discusses the theoretical basis for the QEF
and LEF methods. In Section 3, we use the
QEF method to derive the optimal estimating
functions and the information for the three ZIP
models. The applicability of the QEF method
on empirical examples is presented in Section
4. Finally, concluding remarks are given in
Section 5.

2. Parameter estimation methods
This section discusses the LEF and QEF esti-
mation methods.

2.1 Linear estimating functions
Godambe (1985) introduced the estimating
functions approach to estimate the parameters
of linear and non-linear time series models.

Let {yt} be a discrete time series pro-
cess depending on a vector parameter θ that
belongs to an open subset Θ of the p-
dimensional Euclidean space. Let �y

t−1 be the
σ-field generated by {y1, y2, ..., yt−1} for t ≥
1. Consider a q-dimensional vector ht =
ht(y1, y2, ..., yt−1,θ) for 1 ≤ t ≤ n which is
a martingale difference and let at−1 be p × q
matrices depending on {y1, y2, ..., yt−1}. Let
M be the set of p-dimensional estimating func-
tions gn(θ)

M = {gh(θ) : gh(θ) =
n∑

t=1

at−1ht}. (1)

An estimate of θ can be obtained by solving
the equation gh(θ) = 0. Godambe (1985)
assumed that the estimating functions gh(θ)

2
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are almost surely differentiable with respect to
the components of θ so that E

[
∂ht

∂θ
|�y

t−1

]
and

E
[
gh(θ)g′

h(θ)|�
y
t−1

]
are nonsingular for all θ

for each t ≥ 1. Moreover, the p × p matrix
E
[
gh(θ)g′

h(θ)|�
y
t−1

]
is assumed to be positive

for all θ. Therefore, the optimal g∗
h(θ) is given

by

g∗
h(θ) =

n∑
t=1

a∗
t−1ht

=
n∑

t=1

(
E

[
∂ht

∂θ
|�y

t−1

])′

×
(
E
{

hth′
t|�

y
t−1

})−1 ht,

and the corresponding optimal information
matrix is

Ig∗h(θ) =
n∑

t=1

(
E[

∂ht

∂θ
|�y

t−1]

)′

×
(
E
[
hth′

t|�
y
t−1

])−1

×
(
E[

∂ht

∂θ
|�y

t−1]

)
.

2.2. Quadratic estimating functions
Here we assume that the discrete time stochas-
tic process {yt} has the following conditional
moments that depend only on the parameters
θ. These are

µt(θ) = E[yt|�y
t−1],

σ2
t (θ) = E[(yt − µt(θ))

2|�y
t−1],

γt(θ) =
1

σ3
t (θ)

E[(yt − µt(θ))
3|�y

t−1],

κt(θ) =
1

σ4
t (θ)

E[(yt − µt(θ))
4|�y

t−1]− 3.

We intend to estimate the parameter θ us-
ing two classes of martingale differences

{mt(θ) = yt − µt(θ), t = 1, 2, ..., n} , (2)
{st(θ) = m2

t (θ)− σ2
t (θ), t = 1, 2, ..., n}, (3)

such that

〈m〉t = E[m2
t (θ)|�

y
t−1]

= σ2
t (θ),

〈s〉t = E[s2t (θ)|�
y
t−1]

= σ4
t (θ)(κt(θ) + 2),

〈m, s〉t = E[mt(θ)st(θ)|�y
t−1]

= σ3
t (θ)γt(θ).

The optimal estimating functions based on
the martingale differences mt(θ) and st(θ) are

g∗
m(θ) = −

n∑
t=1

∂µt(θ)

∂θ

mt(θ)

〈m〉t
,

g∗
s(θ) = −

n∑
t=1

∂σ2
t (θ)

∂θ

st(θ)

〈s〉t
,

respectively. The information associated with
g∗
m(θ) and g∗

s(θ) are given as

Ig∗m(θ) =
n∑

t=1

∂µt(θ)

∂θ

∂µt(θ)

∂θ′
1

〈m〉t
,

Ig∗s(θ) =
n∑

t=1

∂σ2
t (θ)

∂θ

∂σ2
t (θ)

∂θ′
1

〈s〉t
,

respectively. The optimal QEF and its cor-
responding information matrix are given by
Liang et al. (2011) in Theorem 1.

Theorem 1: In the class of all QEF of the form

GQ =

{
gQ(θ) =

n∑
t=1

(at−1mt(θ) + bt−1st(θ))

}
,

(a) the optimal estimating function is given by

g∗
Q(θ) =

n∑
t=1

(a∗
t−1mt(θ) + b∗

t−1st(θ)),

where a∗
t−1 = RtQt and b∗

t−1 = RtWt;

(b) the information matrix Ig∗Q(θ) is

Ig∗Q(θ) =
n∑

t=1

Rt

(
Nt

〈m〉t
+

Vt

〈s〉t
−Kt

)
;

(c) the gain in information Ig∗Q(θ)− Ig∗m(θ) is

Ig∗Q(θ)− Ig∗m(θ)

=
n∑

t=1

Rt

(
Nt

〈m, s〉2t
〈m〉2t 〈s〉t

+
Vt

〈s〉t
−Kt

)
;

(d) the gain in information Ig∗Q(θ)− Ig∗s(θ) is

Ig∗Q(θ)− Ig∗s(θ)

=
n∑

t=1

Rt

(
Nt

〈m〉t
+ VtRt

〈m, s〉2t
〈m〉t〈s〉t

−Kt

)
,
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where Rt =

(
1− 〈m, s〉2t

〈m〉t〈s〉t

)−1

,

Qt =

(
−∂µt(θ)

∂θ

1

〈m〉t
+

∂σ2
t (θ)

∂θ

〈m, s〉t
〈m〉t〈s〉t

)
,

Wt =

(
∂µt(θ)

∂θ

〈m, s〉t
〈m〉t〈s〉t

− ∂σ2
t (θ)

∂θ

1

〈s〉t

)
,

Nt =
∂µt(θ)

∂θ

∂µt(θ)

∂θ′ , Vt =
∂σ2

t (θ)

∂θ

∂σ2
t (θ)

∂θ′ and

Kt = Jt

(
∂µt(θ)

∂θ

∂σ2
t (θ)

∂θ′ +
∂σ2

t (θ)

∂θ

∂µt(θ)

∂θ′

)

with Jt =
〈m, s〉t
〈m〉t〈s〉t

.

3. Zero-inflated models
There are three types of ZIP models con-
sidered: basic ZIP, ZIP regression and
ZIPINGARCH(p, q) time series models. Let
us define the probability mass function (pmf)
of a zero inflated count data model as

f(y) =

{
ω + (1− ω)g(y) for y = 0,

(1− ω)g(y) for y = 1, 2, 3, . . . ,
(4)

where y is a count-valued random variable,
ω ∈ [0, 1] is a zero-inflation parameter (the
probability of a strategic zero), and g(·) is the
probability function of the parent count model.

The mean of the zero-inflated count data
model is

E(y) =
∞∑
y=0

yf(y) = (1− ω)Eg(y),

where Eg(y) denotes the mean of the parent
distribution. A full parametric zero-inflated
count data model is obtained once the prob-
ability function of the parent count model is
specified. For the next three subsections, we
will illustrate the three ZIP models.

3.1 Basic ZIP model
The pmf for this model can be obtained from
equation (4) by letting

g(y;λ) =
exp(−λ)λy

y!
, λ > 0,

with mean Eg(y) = λ, µ1(θ) = E
[
yt|�y

t−1

]
=

(1 − ω)λ and µ2(θ) = E
[
y2t |�

y
t−1

]
= λ(1 −

ω)(λ + 1). The parameter of interest for this
model is θ = (λ, ω)

′
. Following Kharrati-

Kopaei and Faghih (2011), we define two mar-
tingale differences, mt(θ) = yt − µ1(θ) and
St(θ) = y2t − µ2(θ), respectively. Using the
results, the elements of variance-covariance of
martingale differences are defined as

σ11 = V ar
[
yt|�y

t−1

]

= µ1(θ) (1 + λ)− (µ1(θ))
2 ,

σ12 = Cov
[
yty

2
t |�

y
t−1

]

= µ1(θ)
(
λ2 + 3λ+ 1− µ1(θ) (1 + λ)

)
,

σ22 = V ar
[
y2t |�

y
t−1

]

= µ1(θ)
(
λ3 + 6λ2 + 7λ+ 1− µ1(θ) (1 + λ)2

)
.

It is easily shown that 〈m〉t = σ11, 〈S〉t =
σ22 and 〈m,S〉t = σ12. The derivatives of
µ1(θ) and µ2(θ) with respect to θ are

∂µ1(θ)

∂θ
= (1− ω,−λ)

′
,

∂µ2(θ)

∂θ
=

(
(1− ω)(1 + 2λ),−(λ+ λ2)

)′
.

From Theorem 1, the optimal QEF for each pa-
rameter λ and ω are given by

g∗
Q(λ) = (1− ω)

(
1

σ11σ22 − σ2
12

) n∑
t=1

J1,t,

g∗
Q(ω) = λ

(
1

σ11σ22 − σ2
12

) n∑
t=1

J2,t,

respectively, where

J1,t =
(
−σ22 + σ12H1,t

)
mt(θ) +(

σ12 − σ11H1,t

)
St(θ),

J2,t =
(
σ22 −H2,tσ12

)
mt(θ) +(

σ11H2,t − σ12

)
St(θ),

with H1,t = 1 + 2λ and H2,t = 1 + λ.

The corresponding information matrix of θ
is

Ig∗Q(θ) =

[
IQλλ IQλω
IQωλ IQωω

]
,

where IQλλ =
n (1− ω)2 Et

Ft

, IQωω =
nλ2Lt

Ft

,

and symmetrical elements, IQωλ = IQλω =

4

where Rt =

(
1− 〈m, s〉2t

〈m〉t〈s〉t

)−1

,

Qt =

(
−∂µt(θ)

∂θ

1

〈m〉t
+

∂σ2
t (θ)

∂θ

〈m, s〉t
〈m〉t〈s〉t

)
,

Wt =

(
∂µt(θ)

∂θ

〈m, s〉t
〈m〉t〈s〉t

− ∂σ2
t (θ)

∂θ

1

〈s〉t

)
,

Nt =
∂µt(θ)

∂θ

∂µt(θ)

∂θ′ , Vt =
∂σ2

t (θ)

∂θ

∂σ2
t (θ)

∂θ′ and

Kt = Jt

(
∂µt(θ)

∂θ

∂σ2
t (θ)

∂θ′ +
∂σ2

t (θ)

∂θ
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∂θ′

)
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distribution. A full parametric zero-inflated
count data model is obtained once the prob-
ability function of the parent count model is
specified. For the next three subsections, we
will illustrate the three ZIP models.
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nλ (1− ω)Pt

Ft

such that Et = σ22 +

H1,t (H1,tσ11 − 2σ12) , Ft = σ11σ22 −
σ2
12, Lt = σ22 + σ11H

2
2,t − 2H2,tσ12, Pt =

−σ22 − σ11 (1 + 3λ+ 2λ2) + σ12 (2 + 3λ) .
For simplicity, we only compare the in-

formation for the parameter λ. Hence, the
information gain by estimating functions for
martingale differences, mt(θ) and St(θ) are
Imλλ = n(1−ω)2/σ11 and ISλλ = n(1−ω)2(1+
2λ)/σ11, respectively. It is noted that the value
of the denominator of IQλλ is small when the nu-
merator is large, leading to a greater value of
information gained when compared to Imλλ and
ISλλ, i.e, IQλλ > Imλλ and IQλλ > ISλλ. Hence, one
can say that, the combined estimating func-
tions is more informative than the individual
elements.

3.2 ZIP regression model
We consider the ZIP regression model. In
some cases, we may parameterize both λ and
ω in terms of exogenous explanatory vari-
ables, say x and z. Following the definition
given by Staub and Winkelmann (2012), we
assume that λ = exp(λ0 + λ1x) and ω =
exp(δ0 + δ1z)

1 + exp(δ0 + δ1z)
, where z can be identical

to x, overlap with x, or be completely distinct
from x.

The parameter is θ = (λ0, λ1, δ0, δ1)
′

and
the conditional expectation function of the cor-
responding ZIP model is given by

E(y | x, z) = exp(λ0 + λ1x)

1 + exp(δ0 + δ1z)
. (5)

Here, we let independent counts to be
yt, where t = 1, 2, . . . , n, with λt and ωt com-
ing from λ and ω as mentioned above. Hence,
the conditional mean, variance, skewness and
kurtosis are defined as

µt(θ) =
exp(λ0 + λ1xt)

1 + exp(δ0 + δ1zt)
,

σ2
t (θ) =

exp(λ0 + λ1xt)Tt

[1 + exp(δ0 + δ1zt)]2
,

γt(θ) =
1 + 3λtωt + λ2

tωt + 2λ2
tω

2
t

µt [1 + λtωt]
3
2

,

κt(θ) =
Ft

(1− ωt)λt (1 + ωtλt)
2 ,

respectively, where Ft = ωtλ
3
t (6ω

2
t − 6ωt + 1)+

6ωtλ
2
t (2ωt − 1) + 7ωtλt + 1 and Tt = 1 +

exp(δ0 + δ1zt) + exp(λ0 + λ1xt + δ0 + δ1zt).
The derivative of µt(θ) with re-

spect to each parameter is ∂µt(θ)/∂θ =

(B1, B2, B3, B4)
′
, where

B1,t =
exp(λ0 + λ1xt)

1 + exp(δ0 + δ1zt)
,

B2,t =
exp(λ0 + λ1xt)xt

1 + exp(δ0 + δ1zt)
,

B3,t =−
exp(λ0 + λ1xt + δ0 + δ1zt)

[1 + exp(δ0 + δ1zt)]2
,

B4,t =−
exp(λ0 + λ1xt + δ0 + δ1zt)zt

[1 + exp(δ0 + δ1zt)]2
.

Now, let Υt = 1/ (ηtσ
4
t (θ))Dt,

where ηt = κt(θ) + 2 − γ2
t (θ), and

Dt = −σ2
t (θ) (κt(θ) + 2− (1 + λtωt)) +

γtσt(θ)(Yt−µt(θ)) (1 + λtωt + (Yt − µt(θ)))−
σ3
t (θ)γt(θ) with t = 1, 2, · · · , n.

The optimal QEF for λ0, λ1, δ0 and δ1 are
respectively

g∗
Q(λ0) =

n∑
t=1

ΥtB1,t, g∗
Q(λ1) =

n∑
t=1

ΥtB2,t,

g∗
Q(δ0) =

n∑
t=1

ΥtB3,t, g∗
Q(δ1) =

n∑
t=1

ΥtB4,t.

The corresponding information matrix for
θ based on the QEF method is therefore

Ig∗Q(θ) =
n∑

i=1

(
1

σ3
t (θ)ηt

)

×
(

σt(θ)(κt(θ) + 2)W 2
t

−2γt(θ)Wt

)
Zt,

(6)

where

Zt =




B2
1,t B1,tB2,t B1,tB3,t B1,tB4,t

B2,tB1,t B2
2,t B2,tB3,t B2,tB4,t

B3,tB1,t B3,tB2,t B2
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B4,tB1,t B4,tB2,t B4,tB3,t B2
4,t
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The derivative of µt(θ) with re-

spect to each parameter is ∂µt(θ)/∂θ =

(B1, B2, B3, B4)
′
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B1,t =
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1 + exp(δ0 + δ1zt)
,

B2,t =
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[1 + exp(δ0 + δ1zt)]2
,
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.
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4
t (θ))Dt,
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σ3
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g∗
Q(λ0) =

n∑
t=1

ΥtB1,t, g∗
Q(λ1) =

n∑
t=1

ΥtB2,t,

g∗
Q(δ0) =

n∑
t=1

ΥtB3,t, g∗
Q(δ1) =

n∑
t=1

ΥtB4,t.

The corresponding information matrix for
θ based on the QEF method is therefore

Ig∗Q(θ) =
n∑

i=1

(
1

σ3
t (θ)ηt

)

×
(

σt(θ)(κt(θ) + 2)W 2
t

−2γt(θ)Wt

)
Zt,

(6)

where

Zt =




B2
1,t B1,tB2,t B1,tB3,t B1,tB4,t

B2,tB1,t B2
2,t B2,tB3,t B2,tB4,t

B3,tB1,t B3,tB2,t B2
3,t B3,tB4,t

B4,tB1,t B4,tB2,t B4,tB3,t B2
4,t




and Wt =
exp (λ0 + λ1xt + δ0 + δ1zt)

exp (δ0 + δ1zt)
.
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For the purpose of comparison, we focus
only on the parameters λ0 and λ1 with the
information gained by the use of estimating
functions based on the single element of mar-
tingale differences, mt(θ) = yt − µt(θ) and
st(θ) = m2

t (θ) − σ2
t (θ). For mt(θ), the in-

formation matrices based on the parameter λ
are

Imλ0λ0
=

n∑
i=1

B2
1,t/σ

2
t (θ),

and

Imλ1λ1
=

n∑
i=1

B2
2,t/σ

2
t (θ).

While for st(θ), we have

Isλ0λ0
=

n∑
i=1

�tW 2
t B

2
1,t,

and

Isλ1λ1
=

n∑
i=1

l�tW 2
t B

2
2,t,

where �t = [1/{σ4
t (θ) (κt(θ) + 2)}]. Through

the derivation of the information matrix in
equation (6), we have the following results,
where IQλ0λ0

> Imλ0λ0
and IQλ0λ0

> Isλ0λ0
as well

as IQλ1λ1
> Imλ1λ1

and IQλ1λ1
> Imλ1λ1

. Therefore,
for the ZIP regression model, we can conclude
that the information acquired using the QEF
method is more informative than that of its lin-
ear components.

3.3 ZIPINGARCH(p, q) time series model
In this last part, we focus on the model ana-
logues to the GARCH(p, q) model with its
conditional distribution following ZIP. The
model is denoted as ZIPINGARCH(p, q) . Let
yt denote a count time series with excess ze-
roes conditional on �y

t−1 and modeled by

p
(
yt|�y

t−1

)
=

{
ω + (1− ω) e−λt(θ) for yt = 0,

(1− ω) e−λt(θ)[λt(θ)]yt

yt!
for yt > 0.

Here, λt(θ) is the intensity parameter
based on the baseline Poisson distribution and
ω is the zero-inflated parameter with λt(θ) de-
fined by Zhu (2012) as

λt(θ) = α0 +

p∑
i=1

αiyt−i +

q∑
j=1

βjλt−j(θ).

Suppose that the observations Y =
(y1, y2, . . . , yn) are generated from the model.
Then, θ = (ω, α0, α1, . . . , αp, β1, β2, . . . , βq)

′ .
The mean, variance, skewness and kurtosis of
yt conditional on �y

t−1 are

µt(θ) = (1− ω)λt(θ),

σ2
t (θ) = (1− ω)λt(θ)(1 + ωλt(θ)),

γt(θ) =
ω(2ω + 1) [λt(θ)]

2 + 3ωλt(θ) + 1

[(1− ω)λt(θ)]
1/2 [1 + ωλt(θ)]

3/2
,

κt(θ) =
Tt

(1− ω)λt(θ) [1 + ωλt(θ)]
2 ,

respectively, where Tt = ω(6ω2 − 6ω +
1) [λt(θ)]

3+6ω(2ω−1) [λt(θ)]
2+7ωλt(θ)+1.

By taking mt(θ) = yt−µt(θ) and st(θ) =
m2

t (θ)−σ2
t (θ), we have 〈m〉t = σ2

t (θ), 〈s〉t =
σ4
t (θ)(κt(θ) + 2) and 〈m, s〉t = σ3

t (θ)γt(θ).
For the derivatives of the µt(θ) and σ2

t (θ) with
respect to θ, we have

∂µt(θ)

∂θ
=




−λt(θ), (1− ω)
∂λt(θ)

∂α0

, . . . ,

(1− ω)
∂λt(θ)

∂αp

, (1− ω)
∂λt(θ)

∂β1

, . . .,

(1− ω)
∂λt(θ)

∂βq




′

,

=

(
A1,t, A2,t, A(3,1),t, . . . ,

A(3,p),t, . . . , A(4,1),t, . . . , A(4,q),t

)′

,

∂σ2
t (θ)

∂θ
=




−λt(θ)(1 + 2ωλt(θ)), Ct
∂λt(θ)

∂α0

,

. . . , Ct
∂λt(θ)

∂αp

,

Ct
∂λt(θ)

∂β1

, . . . , Ct
∂λt(θ)

∂βq

),




′

,

=

(
S1,t, S2,t, S(3,1),t, . . . , S(3,p),t,

. . . , S(4,1),t, . . . , S(4,q),t

)′

,

where Ct = (1 − ω)(1 + 2ωλt(θ)). Now,

let Am
k,t =

−Ak,t

〈m〉t
, Sm

k,t =
Sk,t〈m, s〉t
〈m〉t〈s〉t

,

P v
k,t =

Ak,t〈m, s〉t
〈m〉t〈s〉t

, and Qv
k,t =

−Sk,t

〈s〉t
and

Bt =

(
1− 〈m, s〉2t

〈m〉t〈s〉t

)−1

.
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From Theorem 1(a), a∗
t−1 and b∗

t−1 are
given in matrix form by

a∗
t−1 = Bt



Am

1,t + Sm
1,t, . . . , A

m
(3,1),t + Sm

(3,1),t,

. . . , Am
(3,p),t + Sm

(3,p),t, A
m
(4,1),t+

Sm
(4,1),t, . . . , A

m
(4,q),t + Sm

(4,q),t


 ,

b∗
t−1 = Bt



P v
1,t +Qv

1,t, . . . , P
v
(3,1),t +Qv

(3,1),t,

. . . , P v
(3,p),t +Qv

(3,p),t, P
v
(4,1),t+

Qv
(4,1),t, . . . , P

v
(4,q),t +Qv

(4,q),t


 .

Thus, the optimal estimating functions for
each component of θ are

g∗
Q(ω) =

n∑
t=1

( (
Am

1,t + Sm
1,t

)
mt(θ)

+
(
P v
1,t +Qv

1,t

)
st(θ)

)
,

g∗
Q(α0) =

n∑
t=1

( (
Am

2,t + Sm
2,t

)
mt(θ)

+
(
P v
2,t +Qv

2,t

)
st(θ)

)
,

g∗
Q(αi) =

n∑
t=1




(
Am

(3,i),t + Sm
(3,i),t

)
mt(θ)

+
(
P v
(3,i),t +Qv

(3,i),t

)
st(θ)


 ,

for i = 1, 2, . . . , p, and

g∗
Q(βj) =

n∑
t=1




(
Am

(4,j),t + Sm
(4,j),t

)
mt(θ)

+
(
P v
(4,j),t +Qv

(4,j),t

)
st(θ)


,

for j = 1, 2, . . . , q.

The corresponding information matrix of
the optimal QEF for θ is a (p+ q + 2)× (p+
q + 2) matrix with the elements are given by

Iωω =
n∑

t=1

Bt

[
A2

1,t

〈m〉t
+

S2
1,t

〈s〉t
−2A1,tS1,tξt

]
,

Iα0α0 =
n∑

t=1

Bt

[
A2

1,t

〈m〉t
+

S2
2,t

〈s〉t
−2A2,tS2,tξt

]
,

Iαiαi
=

n∑
t=1

Bt




A2
(3,i),t

〈m〉t
+

S2
(3,i),t

〈s〉t
−2A(3,i),tS(3,i),tξt


 ,

Iβjβj
=

n∑
t=1

Bt




A2
(4,j),t

〈m〉t
+

S2
(4,j),t

〈s〉t
−2A(4,j),tS(4,j),tξt


 ,

Iωα0 =
n∑

t=1

Bt




A1,tA2,t

〈m〉t
+

S1,tS2,t

〈s〉t
−
(

A1,tS2,t+
S1,tA2,t

)
ξt


 ,

Iωαi
=

n∑
t=1

Bt




A1,tA(3,i),t

〈m〉t
+

S1,tS(3,i),t

〈s〉t
−
(

A1,tS(3,i),t+
S1,tA(3,i),t

)
ξt


,

Iωβj
=

n∑
t=1

Bt




A1,tA(4,i),t

〈m〉t
+

S1,tS(4,i),t

〈s〉t
−
(

A1,tS(4,i),t+
S1,tA(4,i),t

)
ξt


,

Iα0αi
=

n∑
t=1

Bt




A(3,i),tA2,t

〈m〉t
+

S(3,i),tS2,t

〈s〉t
−
(

A2,tS(3,i),t+
S2,tA(3,i),t

)
ξt


,

Iα0βj
=

n∑
t=1

Bt




A(4,j),tA2,t

〈m〉t
+

S(4,j),tS2,t

〈s〉t
−
(

A2,tS(4,j),t+
S2,tA(4,j),t

)
ξt


,

Iαiβj
=

n∑
t=1

Bt




A(3,i),tA(4,j),t

〈m〉t
+

A(3,j),tS(4,j),t

〈s〉t
−
(

A(3,i),tS(4,j),t+
S(3,i),tA(4,j),t

)
ξt


,

with the symmetrical elements, Iωα0 = Iα0ω,
Iωαi

= Iαiω, Iωβj
= Iβjω, Iα0αi

= Iαiα0 ,
Iα0βj

= Iβjα0 , Iαiβj
= Iβjαi

and ξt =
〈m, s〉t
〈m〉t〈s〉t

.

Again, we compare the information only
for parameter λt(θ). Using estimating func-
tions based on mt(θ) = yt − µt(θ), the in-
formation matrix Ig∗m(θ) is computed with the
elements

Imα0α0
=

n∑
t=1

A2
2,t/σ

2
t (θ),

Imαiαi
=

n∑
t=1

A2
3,t/σ

2
t (θ),

and

Imβjβj
=

n∑
t=1

A2
4,t/σ

2
t (θ).

Similarly, the information matrix Ig∗s(θ) for

7
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)
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= Iβjαi

and ξt =
〈m, s〉t
〈m〉t〈s〉t

.

Again, we compare the information only
for parameter λt(θ). Using estimating func-
tions based on mt(θ) = yt − µt(θ), the in-
formation matrix Ig∗m(θ) is computed with the
elements

Imα0α0
=
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=
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component st(θ) are

Isα0α0

n∑
t=1

DtS
2
2,t,

Isαiαi
=

n∑
t=1

DtS
2
3,t,

and

Isβjβj
=

n∑
t=1

DtS
2
4,t

where Dt = [1/ (σ4
t (θ)(κt(θ) + 2))].

From the information using the QEF
method and information via its compo-
nents mt(θ) and st(θ), it is clear that
IQα0α0

> Imα0α0
, IQα0α0

> Isα0α0
, IQαiαi

>

Imαiαi
, IQαiαi

> Isαiαi
, IQβjβj

>

Imβjβj
, and IQβjβj

> Isβjβj
.

Therefore, we can suggest that the QEF is
more informative than the component estimat-
ing functions for the ZIPINGARCH(p, q) time
series model.

4. Applications
This section discusses the applications of the
QEF method on the ZIP models using two real
data sets.

4.1 Basic ZIP model
By adopting a count data time series
from the Forecasting Principles site at
http://www.forecastingprinciples.com, the
data represent 144 monthly counts of arson in
the 13th police car beat in Pittsburgh, Pennsyl-
vania, USA from January 1990 until December
2001. The data have 54 zeroes, i.e. 37.5% of
the series. The plot of data is given in Figure
1.
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Fig. 1. Monthly counts of arson in the 13th police car beat in Pittsburgh from January 1990
until December 2001

We fitted the basic ZIP model on the data
and estimated the parameters using QEF, LEF
and ML methods. Using R-CRAN program-
ming language, the ML estimates can be ob-
tained by maximizing the likelihood of the

model through a nlminb function, while for
QEF and LEF methods, their estimates were
obtained by solving their respective simultane-
ous optimal estimating functions via a nleqsv
function.

Table 1. Parameter estimates, AIC and BIC for basic ZIP model. Values in parenthesis are
standard errors of parameter estimates

Method λ̂ ω̂ AIC BIC
QEF 1.156(0.031) 0.075(0.015) 455.82 621.03
LEF 1.159(0.054) 0.089(0.018) 458.14 627.35
ML 1.158(0.032) 0.083(0.018) 458.68 624.28

8



Nurul N. Mohamad, Ibrahim Mohamed , Ng Kok-Haur, Mohd S. Yahya 22

Table 1 reports the estimated parameters,
estimated standard errors, AIC and BIC for
ZIP models using three different estimation
methods. We observe that the standard er-
rors of QEF estimates are lower than those of
LEF and ML estimates. In addition, the basic
ZIP model with QEF estimates gives the low-
est AIC and BIC values. This indicates that a
model with QEF estimates gives a better model
fit for arson data than the model with LEF and
ML estimates.

To assess the performance of these QEF
estimates to LEF and ML estimates, a simu-
lation study was carried out. We use a block
bootstrap method provided by R-CRAN pro-

gramming language: tseries package and ts-
bootstrap command with m=20 blocks to form
a new series and estimate the model param-
eters of the new series using QEF, LEF and
ML methods. The procedure is repeated for
nb=500 replications and the summary statis-
tics: mean, bias, standard error (SE) and root
mean squared error (RMSE) for each param-
eter are computed. The simulation results are
shown in Table 2. We observe that the QEF
estimates give lower estimated bias than LEF
and ML estimates. In addition, the estimated
SEs based on simulation are consistent with
the empirical results for all three methods as
shown in Table 1.

Table 2. Simulation results based on bootstrap method for basic ZIP model

Method Estimated parameter Mean Bias SE RMSE
QEF λ̂ 1.192 0.037 0.031 0.048

ω̂ 0.079 0.004 0.014 0.015
LEF λ̂ 1.227 0.068 0.053 0.086

ω̂ 0.079 0.010 0.017 0.020
ML λ̂ 1.196 0.038 0.033 0.051

ω̂ 0.077 0.006 0.019 0.020

In order to check the model ade-
quacy for the basic ZIP model based
on QEF estimates, the Pearson residual
is computed which is defined as εt =(
yt − (1− ω̂)λ̂

)
/

√
λ̂(1− ω̂)(1 + λ̂). We

found that the mean and variance of Pearson
residuals are 0.083 and 0.956, respectively.
These values are relatively close to zero and
unity indicates that the data is adequately fitted
to the model. The Ljung-Box (LB) test results

as given in Table also indicated that there is
no significant serial correlation in the resid-
ual. This shows that the data fit well using the
basic ZIP model with estimated parameters,
λ̂ and ω̂, say ZIP (λ̂, ω̂). Furthermore, Fig-
ure 2 shows that the cumulative periodogram
plot (see Brockwell and Davis (1991)) does
not cross the dotted line. Therefore, we can
conclude that, the basic ZIP model via QEF
estimates gives a better fit for the arson data.

Table 3. Diagnostics for basic ZIP model

LB30(εt) LB30(ε
2
t )

χ2 23.6 30.4
p-value 0.785 0.477

4.2 ZIP regression model
For the ZIP regression model, we consider data

from the National Medical Expenditure Sur-
vey concerning medical care utilization by the

9
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Fig. 2. Cummulative periodogram plot

older American conducted in 1987 and 1988
in the United States. The data set included
4406 people above the age of 66 years that
were covered by medicare. The data is avail-
able at http://qed.econ.queensu.ca/jae/1997-

v12.3/deb-trivedi/. The number of patients
with chronic conditions (x) and the number of
doctor visits in a hospital (y) were the only two
variables included from the data (Figure 3).
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Fig. 3. Number of doctor visits in hospital versus number of patients (≥ 66 years) with chronic
conditions

The estimated parameters together with
their standard errors using all three methods
are shown in Table 4. It is clear that the es-
timates using the QEF method give the low-
est standard errors when compared to the other
two methods. Furthermore, the QEF method
produces lower AIC and BIC values than LEF
and ML methods. This indicates that the ZIP

regression model using QEF estimates gives
the best model. For the simulation study, we
use the same procedure as described in Sec-
tion 4.1 (see Table 5). We obtain the same
conclusion as discussed in Section 4.1. First,
QEF estimates give the smallest bias. Second,
the standard errors based on the simulation are
consistent with the empirical results in Table 4.

10
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Table 4. Parameter estimates, AIC and BIC for the ZIP regression model. Values in parenthesis
are standard errors of parameter estimates

Method λ̂0 λ̂1 δ̂0 δ̂1 AIC BIC
QEF 0.531 (0.010) 0.119 (0.015) 0.125 (0.081) 0.189 (0.013) 1258.36 1425.98
LEF 0.541 (0.014) 0.117 (0.021) 0.129 (0.086) 0.193 (0.015) 1262.23 1428.33
ML 0.532 (0.013) 0.121 (0.018) 0.127 (0.081) 0.190 (0.013) 1260.11 1426.05

Table 5. Simulation results based on bootstrap method for ZIP regression model

Method Estimated parameter Mean Bias SE RMSE
λ̂0 0.547 0.016 0.010 0.019

QEF λ̂1 0.122 0.003 0.016 0.017
δ̂0 0.183 0.058 0.081 0.100
δ̂1 0.188 0.001 0.013 0.014
λ̂0 0.559 0.018 0.015 0.023

LEF λ̂1 0.127 0.010 0.021 0.024
δ̂0 0.237 0.108 0.087 0.174
δ̂1 0.186 0.007 0.015 0.016
λ̂0 0.552 0.020 0.013 0.024

ML λ̂1 0.129 0.008 0.019 0.021
δ̂0 0.246 0.119 0.082 0.145
δ̂1 0.188 0.002 0.013 0.015

4.3 ZIPINGARCH(p, q) time series model
For this model, a similar data set as men-
tioned in Section 4.1 was used. We obtain
the parameter estimates, standard errors and
AIC and BIC values for ZIPINGARCH (1, 1)
model via QEF, LEF and ML estimates (see
Table 6). The standard errors of the QEF es-
timates give comparable results with the ML
method, but they are lower than the LEF
method. The ZIPINGARCH (1, 1) model us-
ing QEF method gives the lowest AIC and BIC
values compared to the LEF and ML methods.
The same procedure as outlined in Section 4.1
was used. The simulation results can be found

in Table 7. The QEF estimates give lower esti-
mated bias than LEF and ML estimates. We
also observe that estimated SEs and RMSEs
based on QEF estimates are lower than that
LEF and ML estimates. The estimated SEs
based on the simulation are agreed in agree-
ment with the empirical results for all three
methods as shown in Table 6. The mean and
variance of Pearson residuals are close to zero
and unity which are 0.039 and 0.992, respec-
tively, indicating the adequacy of the model.
The results of the LB test suggest that there is
no significant serial correlation in the residuals
(Table 8).

Table 6. Parameter estimates, AIC and BIC for ZIPINGARCH(1, 1) model. Values in paren-
thesis are standard errors of parameter estimates

Method α̂0 α̂1 β̂1 ω̂ AIC BIC
QEF 0.277 (0.007) 0.089 (0.015) 0.217 (0.049) 0.214 (0.017) 394.16 405.36
LEF 0.281 (0.012) 0.084 (0.023) 0.233 (0.067) 0.208 (0.019) 397.23 408.37
ML 0.279 (0.007) 0.087 (0.014) 0.213 (0.051) 0.214 (0.017) 396.15 406.63
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Table 7. Simulation results based on bootstrap method for ZIPINGARCH(1,1) model

Method Estimated parameter Mean Bias SE RMSE
α̂0 0.289 0.012 0.007 0.014

QEF α̂1 0.094 0.005 0.015 0.016
β̂1 0.226 0.008 0.047 0.048
ω̂ 0.210 0.004 0.017 0.018
α̂0 0.296 0.014 0.012 0.019

LEF α̂1 0.109 0.025 0.024 0.034
β̂1 0.245 0.012 0.067 0.068
ω̂ 0.198 0.010 0.018 0.021
α̂0 0.290 0.011 0.008 0.013

ML α̂1 0.095 0.008 0.015 0.016
β̂1 0.237 0.024 0.049 0.054
ω̂ 0.199 0.015 0.018 0.023

Table 8. Diagnostics for ZIPINGARCH(1,1) model

LB30(εt) LB30(ε
2
t )

χ2 25.4 24.22
p-value 0.705 0.762

This means that the ZIPINGARCH(1,1) model
via QEF estimates fit appropriately with the

data. The cumulative periodogram plots fur-
ther support the model’s accuracy (Figure 4).

Fig. 4. Cummulative periodogram plot

5. Conclusions
This paper considers the QEF method for es-
timating the parameters of ZIP models. We
have shown the superiority of the QEF method
compared to the LEF method, theoretically.

Results also show that the information gain
using the QEF method are more informative
than that LEF method for the count data in
ZIP models. Through the empirical studies,
it is found that the ZIP models via QEF esti-

12
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mates provide a better fit than the LEF and ML
estimates. Hence, from the findings, the QEF
method could serve as an alternative parameter
estimation method in estimating the parame-
ters for this class of count data models.
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