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Abstract
Any variable in Intuitionistic Fuzzy Logic (IFL) is either a Realistic Fuzzy Tautology (RFT) with a Truth exceeding one half,

or a non-Realistic Fuzzy Tautology (nRFT) with a Truth less than or equal to one half. This results in a dichotomy somewhat
similar to that of the Excluded Middle in Ordinary Logic (OL) albeit allowing both Falsity and Hesitancy in addition to Truth
in an /FL variable. Consequently, many problems (and solutions) in Boolean logic can be fuzzified without any significant

change in their essence. We show herein that one such problem is that of Boolean satisfiability. We handle this problem by

converting a CNF expression into a disjoint DNF one, and solving the resulting two-valued Boolean equation. This solution

strategy is essentially retained in /FL, thanks to the RFT concept. All steps needed in the fuzzification process are proved,

and a demonstrative example illustrates the method in both crisp and intuitionistic fuzzy cases.
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1. Introduction

Boolean Satisfiability (SAT) is the problem of deciding
whether a propositional logic formula can be satisfied,
given suitable value assignments to the variables of the
formula. The SAT problem is the first problem proved to be
NP-complete. SAT has a potpourri of solution techniques,
notable among which are efficient search strategies in terms
of the Davis-Putnam algorithm and its successors (Biere et
al.,2009).

There are many extensions of SAT that either use the same
algorithmic techniques as used in SAT, or use SAT as a core
engine (Marques-Silva, 2008). These include problems of
hard combinatorics, test-pattern generation (Larrabee, 1992;
Stephen et al., 1996) and decision making (Lin et al., 2007;
Wei, 2010). Research concerning propositional (crisp) logic
is now being extended to fuzzy logic (Sen & Ray, 2013; Ma
& Zhan, 2014; Chauhan er al., 2014; ET et al., 2014; Davvaz
& Sadrabadi, 2014; Pant er al., 2015). SAT research is no
exception, as fuzzy approaches to it are emerging (Pedrycz
et al., 2002).

This paper presents a simple method for handling SAT via
Boolean-equation solving, and then adapting the solution to
IFL. Fuzzification of the method utilizes the fact that any
variable in IFL is either a Realistic fuzzy tautology (RFT)
with a Truth exceeding one half, or a non-realistic fuzzy

tautology (nRFT) with a Truth less than or equal to one
half (Rushdi et al., 2015). This fact results in a dichotomy
somewhat similar to that of ordinary logic (OL) despite
allowing both Falsity and Hesitancy in addition to Truth in
an /FL variable. Consequently, SAT solutions are fuzzified
without any significant change in their essence. Our solution
strategy is to first convert a conjunctive normal form (CNF)
into a disjoint disjunctive normal form (disjoint DNF), and
then solve the resulting two-valued Boolean equation. This
strategy is retained in /FL, thanks to the RFT concept.

The organization of the rest of this paper is as follows.
Section 2 derives exhaustive solutions of SAT via Boolean-
equation solving, and demonstrates this via a small example.
Section 3 reviews /FL and RFT. Section 4 surveys and proves
properties of RFT needed in adapting the method of Section
2 to IFL. Section 5 presents fuzzy satisfiability via Boolean-
equation solving and applies it to a fuzzified version of the
example in Section 2. Section 6 concludes the paper.

2. Handling SAT via Boolean-equation solving

This section reviews a method (Rushdi & Ahmad, 2016) for
handling SAT by solving the Boolean equation

fX) =1, ey

where f(X): B" — B is a switching function of n variables
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X = [X, X, .....XH]T, and B = {0, 1}. The method uses
orthogonalization techniques to convert a CNF-form f(X)
into a disjoint DNF. Since f(X) is typically in CNF form, we
address (1) in three stages, namely:

a. Converting f(X) from CNF into DNF.
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S3=X, VX, VXs, (3¢)

Sa=X, VX3V Xs. (3d)

We now multiply S; and S,, and disjoint the result (Rushdi &
Rushdi, 2017), namely,

b. Converting the DNF f(X) into a disjoint or orthogonal S, A S, =X, (X, V X5) VX,(X; V X3), (4a)

DNF.

c. Interpreting the disjoint DNF f(X) as a solution of [ (S1A S)ais = X, (Xo V XuX5) v (4b)

fX) =1]. Xo(X1 vV Xy Xs3),

In the disjoint-multiply procedure (DMP) (Rushdi & Ahmad, and similarly disjoint the product of S3 and S,:

2016), stages (a) and (b) above are swapped as shown by the S, A S, =X(X, V X3) VX (X, V X,), (5a)

following example. _
(S3 A S)ais = Xs(Xz V XoX3) V

Example 1: T (5b)

. . . X5 (X1V X1X,),

Consider a 5-variable 4-clause function, taken from

Steinbach & Posthoff (2015), namely Since the product of two disjoint DNFs is also a disjoint

F=SA S, ASsA S, @) DNF., v&./e péﬁor@ed the disjointing operatlo'n l')ef(?re furth.er
multiplication. Figure 1 demonstrates a multiplication matrix

where used to multiply (S; A S,)ais in (4b) with (S3 A Sy)qis in

SS=X, VX VXs, (3a) (5b). The result is the original f of (2) cast as a disjoint DNF.
Eight solutions result, and are reduced into 5 by combining

S =X, VX, VX, (3b)  certain terms to obtain the final set of solutions of Table 1.

XX, XXX XX XX Xo
XX XX Xy X N XX, X X XX, X5
XX, X5 X1 XXy Xs XXX, X5
X, X, KXz Xs XX, XX
XXX, _ XXX s

Fig. 1. Multiplication matrix for ( S; A S;)qis and (S3 A S4)4is- The symbol (-) for O expresses nRFT upon fuzzification

Table 1. A set of solutions of Example 1, where the values 1 and 0 are replaced by RFT and nRFT upon fuzzification

Variable form
Equational form
X1 | Xy | X3 | Xo | X5
X1 X, X5 =1 o |1 |0 |- -
X, X, X; = 1 0o o [- |- |o
X, XX, Xs =1 - 0 |1 |0 |1
X1 XXs =1 1 1 |- - 1
X1X4_X_5 = 1 1 - - 1 0
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3.Review of intuitionistic fuzzy logic and realistic tautology

There are two different notions of intuitionistic fuzzy
sets. The first is due to Takeuti & Titani (1984) and is
characterized as the first-order Godel logic (Metcalfe et
al., 2008). The second was developed by Atanassov (1986;
1999), and identifies with vague sets (Bustince & Burillo,
1996). Based on this second notion, variants of IFL were
developed by Atanassov & Gargov (1998). In any variant of
IFL, a variable X; is represented by its validity which is the
ordered couple

V(Xl) =< a;, bi >; (6)

where a; and b, are degrees of Truth and Falsity of X,
respectively, such that each of the real numbers a;, b;,
a; + b; € [0, 1]. Note that when a; + b; = 1, then IFL
reduces to ordinary fuzzy logic (OFL), in which a; alone
suffices as a representation for X;, since b; is automatically
determined by b; = 1 — a;. The condition {a; + b; < 1}
allows a degree of Hesitancy, Ignorance or Uncertainty when
one can designate a variable neither as true nor as false. The
complementation, conjunction (meet), and disjunction (join)
operations are defined herein, respectively, by:

VX)) = <ba; >, @)
V(X A X;) = <min (aq, a), max (by,

()]
by) >,
V(X; V X;) = <max (a,, ay), min (by,

©

b,) >.

With these definitions, IFL enjoys the usual properties of
idempotency, commutativity, associativity, absorption,
and distributivity (Rushdi et al., 2015). The conjunction
(X; A X;)and the disjunction ( X; V X; ) are not necessarily
of validities < 0,1 >,and < 1, 0 >, respectively. Instead, one
has

V( Xi A Xl) = < min (ai, bi); max (biv

) >, (10)

V(X; Vv X)) = <max (a; b;), min (b;,

) >. (1

Therefore, (X; A X;)and (X; V X;) are complementary in
the IFL sense (7). Now, we discuss the tautology concept.
Atanassov (1999) defined intuitionistic fuzzy tautology
(IFT) by:

{Xi =1FT} o {a; = b;}. (12)
Rushdi et al. (2015) introduced realistic fuzzy tautology
(RFT) as

{X; =RFT} & {a; > 0.5}. (13)

Note that an RFT is necessarily an /[FT, while an IFT might
not be an RFT. If b; = 1 — a;, then the RFT reduces to the
Fuzzy Tautology given by Lee (1972). A related definition in
Rushdi ez al. (2015) is that of non-realistic fuzzy tautology (
nRFT), namely

{X; =nRFT} & {a; <0.5}. (14)
For convenience, we restate (13) and (14) as

V(RFT) = <G,l>, G>05, 1<05 (15)
V(nRFT )= <Lu>, L <0.5. (16)

As a result, an IFL variable is either an RFT or an nRFT; a
dichotomy somewhat similar to that of ordinary logic (OL)
despite (a) allowing both Falsity and Hesitancy in addition
to Truth in an /FL variable, and (b) allowing a variable and
its complement to be of the opposing types or to be both
nRFT, but disallowing them to be both RFT. The RFT value
is characterized by Truth, Falsity, and Hesitancy which
€ (0.5,1.0], [0.0,0.5), and [0.0, 0.5), respectively, while the
nRFT value is characterized by Truth, Falsity and Hesitancy,
which € [0.0,0.5], [0.5,1.0], and [0.5, 1.0], respectively.

4. Some properties of realistic fuzzy tautology

We list, explain and prove certain (mostly new) properties of
general RFT and nRFT concepts. Additional more specific
results could be obtained for RFT and nRFT variables with
specific Truth and Falsity values.

Property 1: The conjunction of any [FL variable and an
nRFT is an nRFT.
Proof: Truth (X; A nRFT) =

min (Truth (X;), Truth (nRFT)) <

0.5, and hence (X; A nRFT) is an

nRFT.

Property 2: The disjunction of an RFT. and any IFL variable
is an RFT.

Proof: Truth (RFT Vv X; ) =
max (Truth (RFT), Truth (X;)) >
0.5, and hence (RFT V X; ) is an
RFT.
Property 3: If a variable is an RFT then its complement is
an nRFT.
Proof: {X; =RFT} o {V(X;)=<G,l>
1<05}) o (VX)) =<[,6>1<
0.5,} » {X; = nRFT}.
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The converse is not necessarily true. Let X; = nRFT such
that V(X;) = < 0.3,0.4 >. Hence, V(X;) = < 0.4,0.3 >,
which does not mean that X; is an RFT. Hence, it is possible
that both a variable and its complement are nRFT, but it is
not possible that both a variable and its complement are RFT.

Property 4: The conjunction of a variable and its complement
is an nRFT, but their disjunction is not necessarily an RFT.

Proof: There are three possibilities

o The variable is RFT, hence its complement is nRFT and
their conjunction is nRFT while their disjunction is RFT.

o The variable is MRFT, hence its conjunction with its
complement is "RFT, while the disjunction of the variable
and its complement is the same type as the complement.

o Both the variable and its complement are "RFT, hence both
their conjunction and disjunction are nRFT.

Property 5: A product (term) that has at least one opposition
(one pair of complementary literals) is definitely an nRFT.
Proof: In the product P = T A X; A X;, the conjunction
(X; A X;) of complementary literals is an nRFT, and the
conjunction of the IFL variable T and this nRFT is an nRFT
. The product P is definitely an nRFT irrespective of the
validities of T, X;, and X;.

Property 6: The conjunction of some variables is RFT if and

only if each of the variables is RFT, namely
T(n): {A]l=; X; = RFT} & {X;, = RFT,1 <

17
k<n}, n=>1 17

Proof: This set of theorems {T(n), n = 1} is proved by
mathematical induction via

o Proof of the base case T(1) which is trivially true since

{X1 = RFT} & {X, = RFT}. (18)
o Proof of the inductive case:

T »TU+1),l =1. (19)
For convenience, we first prove T(2), namely

{X1 A X, =RFT} & {min (a,a,) >

0.5} & {a; > 05, a, > 05} & (20)

(X, = RFT,X, = RFT}.

Then we prove (19) by introducing Y, = /\%lei, =1,
and noting that T () and T (! + 1) are

T(l): {Y, =RFT} o {X, =RFT,1 <k<

21
=1 @D
T(L+1): {Y;4y = RFT} & {X, = RFT,1 <

(22)
k<(+1)}, l1>1.

Now, since Yi+1 = Y1 A Xi11, 1 21, then by virtue of (20)

and (21), the LHS of (22) is given by

{Y41 = RFT} & {Y, = RFT, X}, =
RFT} & {({X, = RFT,1 <k <1}, X;4; =
RFT} &

{Xi = RFT,1 <k < (L + 1)} & the RHS of (22). QED.
A corollary of (17) is
{N-, X; = nRFT} & {At least one X, =

(23)
nRFT,1 <k <n},

n=>1.
Property 7: The disjunction of several variables is nRFT if
and only if each of the variables is nRFT, namely

D(n):  {ViLX; =nRFT} & {X, =

(24)
nRFT,1 <k<n}, n=>1.

Proof: These theorems {D(n), n = 1} are again proved by
mathematical induction in a fashion dual to that of the former
theorem. A corollary of (24) is that a DNF is an RFT iff at
least one of its terms is an RFT:

{VIL, P, = RFT} < {At least one P, =

(25)
RFT,1 <k <n},

n=>1.

Property 8: Two disjoint products cannot be both RFT.

Proof: Two products P and T are disjoint iff one of them,
say P has a complemented literal X;, and the other product
T has the un-complemented literal X; of the same variable.
The conjunction (P A T ) is of the form G A X; A X; and
hence is definitely an nRFT (Property 5). Therefore, the two
products P and T cannot be both RFT (Property 6).

Property 9: A disjoint DNF has at most one RFT term.

Proof: A disjoint DNF consists of products such that no two
of them are simultaneously RFT.

Property 10: If a disjoint DNF is RFT, then it has exactly one
RFT term. Moreover, this particular term has a Truth exactly
equal to that of the DNF.

Proof: A disjoint DNF has at most one RFT term (Property
9). An RFT DNF has at least one RFT term (Corollary of
Property 7). Therefore, a disjoint RFT DNF has exactly
one RFT term. This particular term has the maximum
Truth among the Truths of the DNF terms, and is the only
candidate for matching the Truth of the DNF, being the only
term of Truth exceeding 0.5. Falsity of this term is not known
exactly, but must be greater than or equal to that of the DNF.

5. Fuzzy satisfiability via Boolean-equation solving

The satisfiability equation (1) is now replaced by the
requirement that f(X) be an RFT of a validity

VX)) = <ay, by >, (26)
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with ap > 0.5. When f(X) is written as a disjoint DNF, a
specific solution of (26) is that a single term T; of this disjoint
DNF be an RFT of a validity

V(T) = <ar, by >, (27)
with a Truth

ar = 4, (28)
and a Falsity by such that

bf <br <1-—ay. (29)

Now, each of the variables X, either

- Appears un-complemented in the term T;, and hence X}, is
RFT of validity < ay, by >suchthata, > arandb, < br.

- Appears complemented in the term T;, and hence X}, is RFT
of wvalidity < by, aj > such that b, > a; and a, < by,
where the variable X, is nRFT of validity < ay, by, >.

- Does not appear at all in the term T}, and hene it is unspecified
beyond being an IFl Variable.

Example 1 (revisited):

The satisfiability equation (1) is now replaced by the
requirement that f(X) defined by (2) and (3) be an RFT of
validity

V(f(X)) = <0.6,03 >, (30)

A solution of (30) is obtained if a term in Table 1 is an
RFT of a Truth = 0.6 and Falsity in [0.3, 0.4]. The solution
making the term X;X,X; an RFT means that X, and Xs
are unspecified, while each of X;, X,, and X5 is an RFT,
with b; = 0.6, a, = 0.6, and b; = 0.6, while each of
a,, by, and as is in the interval [0.3, 0.4]. Other solutions
corresponding to other terms in Table 1 can be deduced
similarly.

6. Conclusions

Propositional logic is sound, decidable, compact, consistent
and complete under plausible axioms (Paul Williams, 2009).
According to the Excluded Middle principle, any variable
in this logic is either 1 or 0. A slightly richer system applied
herein to Boolean satisfiability is IFL equipped with RFT,
in which any variable is either RFT or nRFT. The Excluded
Middle concept is retained despite the fuzzification
characterizing a variable by three entities (two of which are
independent), namely Truth, Falsity, and Hesitancy. Further
study for the IFL system equipped with RFT is warranted to
determine its similarities and subtle differences with crisp
logic, and to explore its other potential applications.
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