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ABSTRACT

The present paper is concerned with the frictionless contact problem between two electro-
elastic bodies in a bidimensional context. We consider a mixed formulation in which the
unknowns are the displacement field, the electric potential field and the contact pressure. We
use the mixed finite element method to approximate the solutions. Error estimates are derived
on the approximative solutions from which the convergence of the algorithm is deduced under
suitable regularity conditions on the exact solution.
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INTRODUCTION

The piezoelectric effect was discovered in 1880 by Jacques and Pierre Curie; it
consists the apparition of electric charges on the surfaces of some crystals after their
deformation. The reverse effect was outlined in 1881; in the generation of stress and
strain in crystals under the action of electric field on the boundary. A deformable
material which undergoes piezoelectric effects is called a piezoelectric material. An
elastic material with piezoelectric effect is called electro-elastic material, and the
discipline dealing with the study of electro-elastic materials is the theory of electro-
elasticity. Their fundamentals were studied by Voigt (1910) who provided the
first mathematical model of a linear elastic material which takes into account the
interaction between mechanical and electrical properties. General models for elastic
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materials with piezoelectric effects can be found in Mindlin (1968), Mindlin (1972),
Toupin (1963) and, more recently, in Batra & Yang. (1995). The importance of this
paper is to make the coupling of the piezoelectric problem and a frictionless contact
problem without adhesion.

In this paper we consider unilateral contact problems between two electro-elastic
bodies. The contact is frictionless and it is modelled with the nonlinear elastic-
piezoelectric constitutive law and Signorini’s condition. The variational formulations
are derived in a form of a coupled system for the displacement-electric potential
fields and the contact pressure. An existence and uniqueness result is recalled.
Further, a discrete scheme is introduced based on the mixed finite element method
to approximate the displacements fields, the electric potentials fields, and the contact
pressure. Under appropriate regularity assumptions on the exact solution, optimal
order error estimates are derived.

The paper is structured as follows. First, we establish the continuous mixed
variational formulation of the considered problem. Next, we define two mixed
finite element methods using quadratic finite elements with multipliers which are
continuous and piecewise of degree two on the contact part. The difference between
both approaches is that the non-interpenetration conditions are either of linear type
(i.e. hold at the discretization nodes of the method) or of quadratic type (i.e. hold
everywhere on the contact part). The link of the mixed methods with the corresponding
variational inequality formulation is given. Finally, is concerned with the convergence
study of the methods for which we prove identical convergence rates under various
regularity hypotheses.

PROBLEM STATEMENT AND VARIATIONAL FORMULATION

We consider the following physical setting. Let us consider two electro-elastic bodies,
occupying two bounded domains ', (32 of the space R¢(d =2,3). For £=1,2,
the boundary 9Q)’ of ()’ is assumed be “smooth”, and is the union of three non-
overlapping portions I‘l‘]', 1"2[ and Ff, or into two disjoint parts Fj and Fb/ > such
that meas(I,)>0, meas(I'}) >0 The 3’ body is submitted to f, forces and
volume electric charges of density q(f. The bodies are assumed to be clamped on
I f. The surface tractions f. j acton I 2( . We also assume that the electrical potential
vanishes on l"(f and a surface electric charge of density q; is prescribed on sz . The

two bodies can enter in contact along the common part 1"31 = F32 =13, (see Figure 1).
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Fig.1. Frictionless contact problem between two electro-elastic bodies

With these assumptions. The classical formulation of the mechanical problem
of piezoelectric material, frictionless contact between two deformable bodies is the
following

Problem P.

For ¢ =1,2 ,findadisplacement field u’ : Q" — R, astress fieldc’ : Q" — S?,an

electric potential field ¢ : Q" — R and an electric displacement field D’ : Q' — R

such that
c'= Aa(u'€)+(6'f)*v¢”in , (1)
D' =E&'c(u')-B'Vep'in Q, 2)
Div o' +f, =0 in Q', 3)
divD" —g, =0in Q' 4)
u'=0on T}, ()
o' v =fjon I, (6)
o, =0, =-p,(u]D,on T;, 7

[u,]1<0,0,<0, [u,]Jo, =0on I3, (8)
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c.=c2=0onTj, )
@' =0on T, (10)
D'v' =g, onTj. (11)

First, equations (1) and (2) represent the electro-elastic constitutive law in which
g(u[) denotes the linearized strain tensor, E(goé) = - Vgol is the electric field,
where qp‘ is the electric potential, A’ is a given nonlinear function, £’ represents
the piezoelectric operator, (&€ ”)* is its transpose, 3° denotes the electric permittivity
operator, and D' = ( Df yens D;) is the electric displacement vector. Details on the
constitutive equations of the form (1) and (2) can be found, for instance, in Batra
(1995), Bisenga et al.(2002). Next, (3) and (4) are the equilibrium equations for the
stress and electric-displacement fields, respectively, in which “Div”” and “div”’ denote
the divergence operator for tensor and vector valued functions, respectively. Equations
(5) and (6) represent the displacement and stress boundary conditions. Condition (7)
represents the normal compliance conditions where P, is a given positive function
which will be described below and [uv] = ui +uf stands for the jump of the
displacement in normal direction: either contact (i.e. [¢,]=0) or separation (i.e.
[uv] < () are allowed, in other words ([uv] < 0) is the nonpenetration condition.
Conditions (8) and (9) represent the Signorini contact condition without friction.
Finally, (10) and (11) represent the electric boundary conditions, in which “.” denote
the inner product on [R¢ .

In order to proceed with the variational formulation, we need the following spaces:

H' = {v' = (v]); vi € L*(Q)}, #' = {7" = (7)), 7 = 7 € L*(Q")},

) @]

Hi = {v' = (v}); vf €e H'(Q)}, Hi={r"= (Té) e H'; divrt e H').

7

The spaces H', H', H 1[ and Hf are real Hilbert spaces endowed with the inner
products given by

(uz,vé)Hz:/ u vidz, (a’e,Te)Hz:/ o .rldz,
Ot Ot
(ug,vZ)H{.:/ ué.védaﬁl—/ Vu' Vo'dr,
ol ol

(0'8,7'8)7% —/ a’e.Tedx—l—/ diva’. Div r'dx
Qo Qo

respectively. Here and below, we use the notation
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1
Vu' = (uf ), e(u’) = (g5(u")), ey(u’) = 5(“5,3' +uf,), Yu' € Hy,

: ¢ l ¢ l

The associated norms on the spaces f7’, Hlf s Hé and Hf are denoted by “| byt s

HH/ ,and HHH‘ respectively.
) 1

3]
Hy
For every element vieH f , we also use the notation y‘ for the trace of v’ on

I'* and we denote by vﬁ and Vi the normal and the tangential components of y'

on the boundary 1°¢ given by

T L A A N
v,=v.V, V. =0 —u,U.

1

Let Hég be the dual of Hr‘ _y (I'")* and denote by ("'),liré the duality
2’2

pairing between 1 ;[ and H e For every element o' e 'Hf lets V' be the element

of H ;/, given by

05,0 1 el ’ .ol ( I

(v )y )_llrf =(°",e(v ))Hé +(Div°',v )HZ Vv eH,.
2’2

Denote by O‘f and Gf the normal and the tangential traces of c' EHé,

respectively. If 6 is continuously differentiable on QL UTY, then

S AN R A N SNy
o,=(cv)V', o. =0V —o,V,

(V' v") 11 = / o'vt vlda
22 e

‘ ‘ .
forall V' € H,, where da is the surface measure element.

To obtain the variational formulation of the problem (1)-(11), we introduce for the
displacement field the closed subspace of H 1/ , defined by

Véz{vZEHf; vezoonF‘{}.

Next, we define the convex cone of Lagrange multipliers denoted by A/ and

defined as follows:

M = {u € H—%(Fg);/ papdls > 0, forall ¢ € Hz(T's), 4 > 0}.
s
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Since meas(I'}') > 0, the following Korn’s inequality holds :

le(@*)lge > exllo e Vo €V, (12)

where Cx denotes a positive constant which may depends only on Q' R l"fZ (NecCas
& Hlavac ek, 1981). We endow /¢ with the inner product

(u’, v") e = (e(u'),e(v?))ye, Vul v €V (13)
and HHV‘ is the associated norm. It follows from Korn’s inequality (12) that the

norms ||| |le and ||HV, are equivalent on V' . Then (V[,H.HVZ) is a real Hilbert space.

Moreover, by the Sobolev trace theorem and (13), there exists a constant ¢, > 0,

depending only on Q, Fl(f and I’y such that

||'U£||L2(F3)d < Co||’UZ||w Vol e V.

We also introduce the spaces
Wt = {y*e H'(Q"); ¥ =0onT%},
W= {D"= (Df); D! € L*(Q), divD" € L*(Q")},
which are real Hilbert spaces with the inner products
(@ V) we = foo V' .V da,
(D, E")we = [, D".E'dz + [, div D". div E'dx.
The associated norms will be denoted by |. |W/, and |- |w‘ > respectively. Notice
also that, since meas(l"f) >0, the following Friedrichs-Poincaré inequality holds:

IV | r2eye = cpllv || gn Vi € W

where ¢, >0 is a constant which depends only on QY 1l

In order to simplify the notations, we define the product spaces

H, = H x H?, H=H"'xH?, Hi=HxH
V=VxV: W=W!'xW? W=Ww!x W2
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The spaces V, W and ) are real Hilbert spaces endowed with the canonical
inner products denoted by (.,.)y, (.,.), and (.,.)y,. The associate norms will be
denoted by |||\, |l}» and I[by > respectively. In the study of the Problem P, we

consider the following assumptions:

We assume that the elasticity operator A Q' xS 5 S? satisfies:

(a) There exists L 4¢ > 0 such that
A (2, &) — A2, &) < Laellér — &l
VELE €S ae e
(b) There exists m 4 > 0 such that
(A, &) — A'(2,&,)) - (&1 — &) > muel& — &
VELE €S ae x e Qh (14)
(c) The mapping z +— A(z, £) is Lebesgue measurable on Q°,
for any &€ € S
(d) The mapping = — A’(z,0) belongs to H'.

The piezoelectric tensor £ : Q' xS¢ — R satisfies:

(a) & = (efjk>7 efjk = efkj € L>(QY), 1 <45,k <d.
(b) Elo.t = 0.(EY*r Vo,7 €S, ae x € Q. (15)

The permittivity operator B’ : Q' xR? — R? verifies:

(a) B (z,E) = (bj;(®)E;) VE = (E;) € RY ae xecQ

(b) bf; = b, b5 € L(QF), 1<i,j<d.

(c) There exists mpge > 0 such that B’E.E > my |E|? (16)
VE = (E;) € R4, ae.x € Q.

The normal compliance functions p, :I; xR — R, satisfies:

((a) 3L, > Osuch that |p,(x, 1) — p,(x,r2)| < L,|r1 — 1o
Vry,re €ER, ae x €.
(b) (po(@,m1) = pu(@,72))(r1 —72) 2 0
Vry,re €ER, ae x €l';. (17)
(¢) The mapping « — p,(x,r) is measurable onI's, Vr € R.
L (d) py(x,7) =0, forall »r <0, ae. x €l
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The following regularity is assumed on the density of volume forces, traction,
volume electric charges and surface electric charges:

f e H', f5e XI5 q¢5el*QY), ¢ e L*I}). (18)

Using the Riesz’s theorem, we define the linear mappings f = (f l,f 2) eV and
e  as follows:

2 2
f o)y = /fe-vgdx—k /fé-'vfda YVveV,
( )V ; o 0 4_21 - 2

2 2
_ 00 g 00
(q,C)w—;/ﬂeqoc dz ;/ngzg da YCeW.

For the Signorini Problem, we use the convex subset of admissible displacements
given by

U= {v=(v",v*)€V;[v,]<0 on T3 }.

Let us denote by T : V xV — R the normal compliance functional given by
jl/c(ua ’U) - / pu([ul/])[vu] da.
I's

By a standard procedure based on Green’s formula, we derive the following
variational formulation of the mechanical problem (1)--(11).

Problem P" .

Find a displacement field u:(ul,uz)eV, an electric potential field
o= (p',¢p°) €W, such that

D (Ae(u),e(v —u)ye + ) ((E) V' e(vf =)

2
=1 —1 (19)
+juc<u> v - u) > <f7 v — U)V Yv € U,

2

D> BV, V) e = > (Ee(u), Ve ) e = (0. 8)w Vo €W (20)

=1 (=1

Let us introduce the functional space ¥V =V x W, that is a Hilbert space endowed
with the inner product
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(ﬂ” @)V - (U7U)V + (907 ¢)W7 u= (u790)7 U= (Uv ¢) € Va

the corresponding norm is denoted by ||},

Forany & = (u, ), ¥ = (v,¢) € V, and forany 1€ M, we define

[\

a(@,0) = ) (A'e(u’),e(v))ue + ) (€)' Ve ()

/=1 =1
5 1)
+D BV Ve ) e — > (E'e(u), V) i,
/=1 =1
b(anu) = / ,u[uu]dFS (22)
s

Using (19)-(22) and from (7), we get
a(il, %) +b(V,~0,) = (f,7),, VVeV,

where JNF =(f,q)eV-

Using now (7) and (9), we deduce that

bu,o,)=0.
On the other hand, obviously [#,]<0 on I. From g e M and (8), we deduce
b(u, 1) <0,

resulting in b(u, 1 —A) <0, forall g e M, with 1 =—0,. Thus, we can write the

following mixed formulation of Problem P.

Problem PZ .
Find ¥ €V and 4 €M guch that
a(l,v)+b(¥,2)=(f,7),, VveV, (23)
b(v,u-A)<0, YueM. (24)
The functional V' > (]7, V),, is linear and continuous on V. The bilinear form
a(.,.) is symmetric, continuous and J/ —elliptic.

The existence and uniqueness of solution to (23)--(24) have been stated in
Haslinger et al. (1996). We recall this result in the following lemma.

Lemma 1 Problem P,’; admits a unique solution (17, ﬂ,)e)}x M , where

— 1 _ 2
A=-0,=-0,.
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Remark 1 Let (7, 1) be the solution of problem P.,.

Then (24, A) is the saddle-point of the functional £(.,.) over V) x M where
L, ) =5 al7,) = (7,7), +b(F, )

Moreover 7 is the solution of the following elliptic variational inequality :

ueV, a,v-u)=(f,v-u),, Vv e V.
It is also a solution of the minimization problem

ueV, Jw)=minJ W),

vey

where
I B ~ -
j(v)=5a(v,v)—(f,v)v-

MIXED FINITE ELEMENT APPROACH

In this section, we suppose for the sake of simplicity, that each subdomain Q', ¢ =1,2
is a polygon and that I, is a straight line segment parallel to the x, -axis. The vertices
of the contact region T, are {c,,c,}. We denote by T ]f a triangulation of Q' made
of elements which are triangles (or quadrilateral) with a maximum size /, satisfying
the usual admissibility assumption, i.e. the intersection of two different elements are
either empty, a vertex, or a whole edge. Let 42 =max(%,,A,) . In addition, T hf is
assumed regular, hence there exists a constant ¢ independent of the discretization
parameter , satisfying

. Pk
min—=2=¢>0, /=12
KeTz K

where Ok is the diameter of the inscribed circle in K. We suppose that the end
points ¢, and €, of the contact zone I’; are common nodes of the triangulations

T, and T 7 and that the one-dimensional traces of triangulations of 7, and 7, on
I'; are uniformly regular. The set of nodes on I’; belonging to triangulation 7~ }f is
denoted th and generally we have Z; + Zi. Let Vh (Q( ) and Wh (Q’ ) consist of
continuous and piecewise affine functions on )’ , respectively, that is,

Vi) = {vh € [C@)]%5 vl € (PU(K))?, VK € Ty, vl =0},

Wi (Q) = {‘wa € C(9); Spi,u( € Pi(K), VK € T, @fﬂrg = O}a
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where C(&) and P,(K) denote the space of continuous functions on Q' and the
space of the polynomials with the global degree one on K, respectively. We define
the spaces

Vi, = Vi(QY) x Vi (Q2), Wy, = Wi(QY) x Wi(Q?), Vi = Vi, x W,

Next, we define the space X, of continuous functions as follows:
X, = {wh € C(T3); Jv, € V, such that ¢y, = [vs,] on I‘3} ,

piecewise polynomial of degree one on the mesh of QO on T7.
We introduce the projection operator 7z, on X Iy defined for any function
y e L'(Ty) by:
Ty e X, .[r (”h‘//_‘//)ﬂ/1dr3=0 Vi, € X, (25)
3

Let us now approximate the closed convex cone Af by a subset of X,. We
introduce the set X, (I';) where nonnegativity holds everywhere on I7 :

Xn(Ts) = {pn € Xpn; pn >0 on I's},

which corresponds to convex constraints of quadratic type. We then define another
set denoted by X, (2;’1) where nonnegativity holds every where on th which leads
to convex constraints of linear type:

X, ()=, € X5 1,(x)20 Vxex))

Next, we define the positive polar cones A, (I;) and A , (Z,) of X,(T;) and
X, (Z)). respectively:

Ap(T3) = {Hh € Xp; / ppn >0, Y, € Xh(Fs)}>
I's

An(Z]) = {Hh € Xn; / pypn >0, Vi, € Xh(zi)}-

I's

From the inclusion X, (I';) < X, (2} ), by polarity it follows that A ) c A (T)-

We then choose a discretized mixed formulation which uses either A ,(I) or

A h(Zf,) as an approximation of A. The discretization of (23)-(24) is defined in a
standard way:
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Problem an
Find #, € V, and A, € A, such that

a(ﬁh, f)h) + b(f}h, Ah) = (f, @h)v, Vf)h c Vh, (26)
b<ﬂha My, — Ah) < 07 vp’h € Ah? (27)

where A, =Ah(r3)or/\h =Ah(22), ?=1 or2.

In order to prove the existence and the uniqueness of the saddle-point of (26)-(27),
it is only necessary to verify that

{w, € Xn; b0, py,) =0, Vo, € Vy} = {0},

which is obvious. As a consequence, we obtain the following statement (Coorevits

et al., 2002):

Lemma 2 Let Ah:Ah(r3) or A=A, (Zi), ¢ =1 or 2. Then there exists a unique
~ h . . ~

solution (i, A,) to Problem P> and it satisfies (i, 1,) € V, X A,.

We are now interested in obtaining a uniform inf-sup condition for b(.,.) over
V, x X, . The result is given in the following lemma. The proof of the lemma is
the same as in the case of linear finite elements with continuous linear multipliers
(Haslinger et al., 1996) and consists in proving the stability of the projection operator

‘- 1
7, inthe pr2 (T,) — norm.

Lem.n¥a 3 Suppose that rlf ~I[; =g for £=12. Then the following inf-sup
condition holds:

inf sup b(’f”’;’*l > >0, (28)
“n=En TV ”ﬂh”H_E(r})'”vh”v
where £ is independent of .
Proof. Let v € L’ (I;) . Then we have
1
l7l sy <z, YveH @) @)

1
Forany u, € X, , there exists v e HE(E) such that

1

||l//||H%(F3) =1 and J.r3/‘h‘//dr3 = ||ﬂh||H_5(r3)- (30)
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We then consider an extension operator R, from X , into V,(Q") satisfying
1
Ry, |r y, and ”RhV/h ”(H Loy’ sc ”‘//h ||H5(r3) SV, €X . (31

Let 7, = ((v},,v1):0) €V withv, =R (7,y) and v} =0 According to (29)
and (31), we have

”Vh <Cz ”R (7711‘//)”“1 (Q/)) ”‘//”H Sm=c . (32)
Combining (25), (30) and (32), we obtain
L Hyat ~ J;}ﬁlhﬂ'h‘//dr

3 =
7l [l

< sup b(/r‘ha;h).

vhth ||Vh

2
H (1"3

Then the inf—sup condition (28) is proved.

Lemma 4 Let A=A, (T}) or A, A(Z ) with /=1 or 2 and let (uh, )EV X
A, be the solution of (26)-(27). Then y, is also solution of the variational inequality:
i, ek, a(i,v,-i,)=(f.v,~i,),, V7v,ek,, (33)

where K, = K, (T}) if A=A, (I, K, = K, (Z,) if A=A, () with
Kn(L's) = {0n = (vn,n) € Vi; mpfvn] <0onls}, (34)

Kp(3h) = {0 = (vn, n) € Vi (malon]) () <0, Va € X}}. (35)

Proof. Let us first notice that K, (I';) and K, (Z}) depend on ¢ which has
been omitted to lighten the notations. Taking £, =0 and 4, = 24, in (27) leads to
b(u,,,)=0 andto

b(an, o) = / pplup, ]dl's = / pnmplup, 1dls <0, Vi, € Ay,
I's

I's

The latter inequality implies by polarity that —,[u, ] e A: ( the notation A;
stands for the positive polar cone of A, ).

Then if A=A, ([}) then A, = X,(I},) since X,(I}) is a closed convex
cone. Hence —rm,[u,, ]e X, (Iy) and u, € K,(T,). Consequently (26) and
b(u,,,)=0 lead to

a(ii, i) = (f,i,), (36)
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and for any v, € K, (I';), we get
aliin, ) — (. Bn)y = —/ Anlvp,1dls = —/ AnTplvp, Jdls > 0, (37)
I's

I's
owing to 4, € A, (I3),

Putting together (36) and (37) implies that #, is a solution to the variational
inequality (33) ( with K, = K, (I';) ) which admits a unique solution according to
Stampacchia’s theorem.

If A=A, (Z,) is treated similarly to the previous one.

ERROR ESTIMATES

Now we intend to analyze the convergence of both quadratic finite element approaches:
discrete non-interpenetration condition of quadratic type (34) or of linear type (35).
Before considering separately both methods, we begin with a common result.

Theorem 1 Set A=A, (I';) and let (17 , k) € V x M be the solution of (23)-(24). Suppose
3 3
that 77 e (H 2(QY) > x(H2(Q%)° with 0<77<1. Let ([.2,)€V, XA, be

the solution of (26)-(27). Then there exists a constant C > 0 independent of 4 and #
such that

=l + I = Ml ) < CHE s,

Proof. Let us denote by 7 the ellipticity constant of a(.,.) on ). Let v, € V,,
then by (23), (24), (26) and (27), it follows that

vl =l < ali— tn, @ — o) + a(i, O, — ) — alin, o, — )

S a(& — ﬁh, ﬁ, — ’[Jh) — b(f}h — fl,h, )\) + b({)h — th, )\h),

hence, we obtain
v la—in|]* < a(i—in, @—10p) — b(Oh— T, A=) —b(a—1in, X — Ap).

The continuous and discrete complementary conditions imply
b(ii, A) = b(iin, Ap) = 0. (38)

Hence
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Y — s < ali — i, @ — ) — b(On — Uy X — Ap) + bliin, A)
+b(@i, Ap).

Using the continuity of the bilinear form, we obtain

er @ = anlly, <@ —anlly @ = ol + 1A - Anll-4 g, 1% = Onll

(39)
+ b(p, X) + b(a, Ap).
Using (23), (26) and from ), c V, we get

a(ﬂ — ﬂh, ’lN)h) = b(fih, >\h — A)
Consequently, for any v, €V, and any 4, € X,

b(On, An — ) =
<

a(ﬂ—ﬂh,f}h)—i- b(f}h,k—,uh)
ca (11 = anlly + A = nll -y g, ) 15lly

This estimate and the inf-sup condition (28) allow us to write

160 = anll 3 ey < €51 = 0l + I =l )

By the triangular inequality we come to the conclusion that

1A= Ml gy < (o=l + i A= pll, g0 ) o)

As a consequence ( Ciarlet 1991; Crouzeix & Thome, 1987), we have

inf [|@ — || < Ch2* lalls 4,

UpEVh

(41)
and 1
it A=l < CRE il
(42)
Since [u,]<0 and A, €A, with A =A, (I;), we deduce
b(a, Ap) <0. (43)

Using (25), (27) and (38), we have

/ n-mp[up, 1dls = / pnlun, 1dls = b(y,, pn) = (U, ptn — Ap) < 0.
Fg FS
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It follows that
—mplun] € A}, (44)

where

h= {&L € Xy; Enpndl's >0, Yy € Ah}.

s

From (44) and since 2> 0, we deduce
b(tn, A) < / A ([un 1 = mlup, 1) dls. (45)
I's

The projection operator i defined in (25) has the following approximation
property: for any 0 < s <3 we have ( Ciarlet, 1991)

_1 s
e |l = mnpll mg oy + = mnpll g2y < P il ooy » (46)
H™2(T3) ) (I')

forall g€ H*(T}). Let p"=3_ ¢, using (25) and from u;, |r3 € X, we obtain
/ A (ul, — mpul,) dls = / (mA) (ul, — mpull)dls =0, @7)
F3 F3

o _ . 3-0 _
where 7,v,, =m,[v,, ] with v, =0.

Now, by (45) and (47) it follows that

b(ip, A) < /F Aul, — mpul )dDs

< [ A= md e, — md,

< [ A= mA (G, )~ maluf, — )y
+/F ()\—Wh)\)( u,, —7Th'u, )ng

S P (uhu wy) = mu(wh = ) |2y

L3(T3)"

Then, the approximation (46) and the trace theorem yield:

i 2) < RNy [~ 3+ Ay @

1 (T's) (I's)’
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Let us note that the trace theorem implies for any s > 0

A s < C ||U|| 3
Puttlng (48) al‘ld (4 9) and using the trace theorem giVes

~ 1 ~ ~ ~ ~
b, A) < el i =l [l + B s

1
The result is now a consequence of (39)-(43) and (50) with ab < ﬂa2 + ﬁbz » f>0.

Theorem 2 Set A=A, (Zf, ), ¢ =1 or 2 and let (u k)e VY x M be the solution
3

of (23)-(24). Suppose that i € (H' >(Q)) x(H (@) with 0<zy<1. Let

(L7 wo ) €V, xA, be the solution of (26)-(27). Then there exists a constant C > 0

independent of 4 and # such that

@ —anlly + X=Xl 1 < Ch3*3 s, . (51)

H™3(rs) = §+n

1
Proof. Using (39), (40) (41), (42) and estimate ab < fa’ +—b*, B>0
leads to the bound 4p

N

la=dinlly + IA=Mall -y ) SCLRE il + (max(b(@ An), 0) o)

+ (max(biin, A),0)2 1.

The proof consists of estimating b(/,1,,) and b(if, ,L).
Step 1. Estimation of b(u, A ).

Let us denote by 1 ]i the Lagrange interpolation operator of order one on the mesh
of Q' on I;.

So, there is a constant ¢ > 0 satisfying forall 4 e H’ (F3) ( Ciarlet, 1991)
i = il oy + 2% i = il 3 ) < B (53)
K tht L2(I'3) K tpt H%(Fg) >C 2 Hs(T'3)
forall ue H* (F3 ) We write

b(ﬂ,Ah) :/ )\h[uy]—iﬁ[uy])df3+/ Ahiﬁ[uy]drg.
I's T's

Obviously i,f[uv] <0 on I5. From 2, eAh(Zi), i,f[ll,,] €A h(Z;i)* and (53),
we deduce
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b(it, An) < / An ([ ][ 1) dT's
I's

IN

/ A ([ 15, ) dTs +
I's
IN= 0l g A=y

Using again the approximation properties of 7, implies

(@, M) < / A (w1 — i [, 1) dTs +

I's

1
Ch2+n ||A_Ah||H—%(F5) ||[u1’]”H1+"(F3) ’ (54)

The remaining integral term is estimated using (53):
jrj»([uv] =iy, 0)dT; <M lu]=i0Tw, ]

v, ]

L2(ry)

<ch'™ (55)

H (1)) ”}” ||L2(r3) :
Putting (54) and (55) and using the trace theorem, we get

b M) < Ol (5571 = Ml + 1 Nl ) 56)

H 2(T
Step 2. Estimation of b(u,,, A).

Let X ,f (T,) be the space of the piecewise continuous functions on I’y which are
constant on the meshes of Q' on L. Define Hf, as the projection operator for the
r (I;) inner product on X ]f (T)- Such an operator satisfies the following estimate

forany 0<r<1;:

||H - Hfzﬂ“[ﬁ(p?’) S ch’ HMHHT(Fg) ) v,u e’ (F3) ' (57)

According to Lemma 4, we have 7,[u,,](a) <0 forany a € .. This implies
that

1T, (mhlwn]) <0 onTy
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As a consequence
b(tp, A) = / Alup, 1dls
I's
= / A ([wp, ] = mhlup, 1) dU's + / A (Wh[uhu] - Héﬂ'h[uhu]) dl's
I's s
+ / AT 7 [, 1dT s
I's

< / A ([ ] — mufen, 1) dTs + / A (] — Ty, 1) s,
I's I's

The term L 7»([“ wl— 7, ])dF 5 has already been estimated in Theorem 1 and
3

bounded in (50), hence we obtain

bin, A) < ek = gl il g+ B [, gy

+ / A (ol ] — T, 1) dTs.
I's

The remaining term is developed as follows:

/r3 A (mulwn] = T malun, 1) dT'y
_ /F (]~ ) = 0 (o] — L)
T /F N (f = 1) T
- /F A= T (matn] = F 1) = T (] = L)) '
+ /F 3 (A= TI,A) ([wn] — I0j [us,]) dTs.

Next, we apply Cauchy-Schwartz inequality to deduce
/ A (malwn, 1 =10 mhlwp, 1) dTs
I's
< AT 2 ] (raleen] = T 1) = T (] = T ) | oy,

+ / (A =T ((Twn] = [w,]) — I, ([wn] — [w,])) dl's
I's

+ / (A= TI5A) ([w,] — 1T, [u,]) dTs.
I's
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Therefore by (57), we get

A (1T 1) s <
I's
C H)\—Hé)\HLQ(FS) Hﬂ'h[uhu]_[uhu] HLQ(FS)

+ / (A =TA) ([ ] = [w,]) =TT, ([wp,] — [w,])) dTs
s

+ / (A=ILA) ([w,] — 1T [w,]) dLs.
I's

Now, we use (46), (49), (57) and the trace theorem yield:

/ A (malun,] — I mylup,]) dUy < CRY HQH%Jm (Hwh[uy]—[uulllm(m
Iy
S (% B 79 R T T P |

HORE il il + (A=) (fd ~ )

3

~ 1 ~ ~ ~
<C lly, (B3 = @l + 2 ], )
+ / (A=TILA) ([w, ] - 115w, ) dTs. (59)
I's

Using again the approximation properties of H;i gives

Jry A =TA) ([w,1-115[w,]) dTs
< AT ey [l =TT T 2
< Ch'*n H)‘”Hn(rg) H[uv]HHl(Fg) :

Here, we observe a loss of optimality when approximating the function
[u,]e H""(T;) with I1,[u,]. As a consequence

blain, N) < C iy, (W37 = anlly + 5 ally., ) - o0)

Step3. End of the proof.
The estimate (51) of the theorem is proved by combining (52), (56) and (60) with

1
ab < fa* +—Db*,> 0.
B 45 B
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Theorem 3 Set Ah=Ah (Ef7 ), ¢ =1 or 2 and let (17, k) ) x M be the solution of

3 3

~ S 3 1
(23)-(24). Suppose that i (H”+2 Q) x (H”+2 (%) with — <7 <1.Assume
that the set of points of I’y where the change from [u,]<0 to [u,]=0 occurs
is finite. Let (ﬁh,Xh)E VX An be the solution of (26)-(27). Then there exists a

constant (' > () independent of /z and % such that

1 -
I = nlly + A= Al g, < CHE alls - (6D

Proof. Consider again estimate (59) and suppose now that 1. n<1.Let N(h)
represent as in the previous theorem the number of (I D)—segments denoted 7;

( <i< N(h)), of the triangulation of Q' on I, where the change from [u, ] <0 to
[u,]=0 occurs.

The integral term in (59) is now estimated as follows:

/ (A=) ([w,] — I [w,]) dl's = — / ALl [u, 1dT;
I's

N(h)
< Z/ || [TT, [, 1] dT's
- T;

< hZ [RY[Faeg 18 A C70 | p

<h Z [R /PR
=1

I's

(T) - (62)

From the definition of the segment 7;, we deduce that

IM ey < 272 A O3 (1

and

1
0n-t
c 2wy

< hn;HDl[u ]

|D'[u, ]

L2(T;)
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So

/ (A=IIA) ([w,]-1T)[w,]) L
I's

N(h)
1
< hz e H)‘Hcov"—%(n) h HDl[uleLw(Tn
i=1
N(h)
S h1+277 Z ||A||CO,77 Z( H[U’V]Hcln 2 (Ty)
< N Ay My,

S N(h)h1+2n ||A||H7I(F3) ||[uV]||H1+77(F3) ) (63)

where the embedding properties of Sobolev and Holder spaces (Zhong, 1993) have
been used. If N (/) is uniformly bounded in /4, we obtain thanks to the trace theorem,
(58), (59) and (63):

biin, A) < el (B )1a =l +h 42 falls,, ) o

The remaining integral term in (54) is estimated as

[ At = i) vy = - [ Xt
Fg FS

N(h
/ IA| ‘zh[uy]| dl's

(h)

| A

=1
N(h)

loe

The latter term has already been estimated in (62). Hence, from (54), we deduce
- - 1 -
bt M) < il (B3 IX = Nl gery) + 22l 3,,) - 65)

Finally, the estimate (61) of the theorem is proved by combining (52), (64), (65)
1
and by using ab < pa’ +Eb2’ S >0.
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CONCLUSION
In this paper we present a mixed variational formulation for frictionless contact problems
between two electro-elastic bodies, in which the unknowns are the displacement field, the
electric potential field and the contact pressure. We have proposed and studied two mixed
finite element methods, in which the discrete non-interpenetration conditions are either an

exact non-interpenetration condition “A, =A, (I3)”or only a nodal condition “A,=A, (Zf1 )

” and proved that they can lead to optimal convergence rates under reasonable hypotheses.
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