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ABSTRACT
 

 The present paper is concerned with the frictionless contact problem between two electro-
elastic bodies in a bidimensional context. We consider a mixed formulation in which the 
unknowns are the displacement field, the electric potential field and the contact pressure. We 
use the mixed finite element method to approximate the solutions. Error estimates are derived 
on the approximative solutions from which the convergence of the algorithm is deduced under 
suitable regularity conditions on the exact solution. 
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INTRODUCTION 

 The piezoelectric effect was discovered in 1880 by Jacques and Pierre Curie; it 
consists the apparition of electric charges on the surfaces of some crystals after their 
deformation. The reverse effect was outlined in 1881; in the generation of stress and 
strain in crystals under the action of electric field on the boundary. A deformable 
material which undergoes piezoelectric effects is called a piezoelectric material. An 
elastic material with piezoelectric effect is called electro-elastic material, and the 
discipline dealing with the study of electro-elastic materials is the theory of electro-
elasticity. Their fundamentals were studied by Voigt (1910)  who provided the 
first mathematical model of a linear elastic material which takes into account the 
interaction between mechanical and electrical properties. General models for elastic 
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materials with piezoelectric effects can be found in Mindlin (1968), Mindlin (1972), 
Toupin (1963) and, more recently, in  Batra & Yang. (1995). The importance of this 
paper is to make the coupling of the piezoelectric problem and a frictionless contact 
problem without adhesion.

In this paper we consider unilateral contact problems between two electro-elastic 
bodies. The contact is frictionless and it is modelled with the nonlinear elastic-
piezoelectric constitutive law and Signorini’s condition. The variational formulations 
are derived in a form of a coupled system for the displacement-electric potential 
fields and the contact pressure. An existence and uniqueness result is recalled. 
Further, a discrete scheme is introduced based on the mixed finite element method 
to approximate the displacements fields, the electric potentials fields, and the contact 
pressure. Under appropriate regularity assumptions on the exact solution, optimal 
order error estimates are derived.

The paper is structured as follows. First, we establish the continuous mixed 
variational formulation of the considered problem. Next, we define two mixed 
finite element methods using quadratic finite elements with multipliers which are 
continuous and piecewise of degree two on the contact part. The difference between 
both approaches is that the non-interpenetration conditions are either of linear type 
(i.e. hold at the discretization nodes of the method) or of quadratic type (i.e. hold 
everywhere on the contact part). The link of the mixed methods with the corresponding 
variational inequality formulation is given. Finally, is concerned with the convergence 
study of the methods for which we prove identical convergence rates under various 
regularity hypotheses.  

  PROBLEM STATEMENT AND VARIATIONAL FORMULATION

We consider the following physical setting. Let us consider two electro-elastic bodies, 

occupying two bounded domains 1Ω , 2Ω  of the space 2,3).=(ddR  For 1,2,=  

the boundary Ω∂  of Ω  is assumed be “smooth”, and is the union of three non-

overlapping portions ,1Γ  2Γ  and ,3Γ  or into two disjoint parts aΓ  and ,bΓ  such 

that )( 1Γmeas >0, 0.>)( ameas Γ  The Ω  body is submitted to 0f  forces and 

volume electric charges of density 0q . The bodies are assumed to be clamped on 
.1Γ  The surface tractions 2f  act on .2Γ  We also assume that the electrical potential 

vanishes on aΓ  and a surface electric charge of density 2q  is prescribed on .bΓ  The 

two bodies can enter in contact along the common part ,== 3
2
3

1
3 ΓΓΓ  (see Figure 1).
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Fig.1.  Frictionless contact problem between two electro-elastic bodies 

 With these assumptions. The classical formulation of the mechanical problem 
of piezoelectric material, frictionless contact between two deformable bodies is the 
following

Problem  P.

For 1,2= , find a displacement field ,: dR→Ωu  a stress field σ dS→Ω: , an 

electric potential field R→Ω:ϕ  and an electric displacement field dR→Ω:D  

such that 

    σ =Aε )()( *∇+ ϕEu in ,           (1)

     )(= ∇− ϕε BE uD in Ω ,            (2)

    Div  σ 0=0+ f  in  Ω ,            (3)

     div 0=0− qD in Ω ,            (4)

     0=u  on ,2Γ                (5)

     σ  v = 2f on ,2Γ               (6)

     == 21 − ννν σσ p ([ νu ]), on ,3Γ           (7)

     ][ ≤νu  0, ≤νσ  0, 0=][ νν σu  on ,3Γ         (8)
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     σ =1
τ  σ 0=2

τ
on ,3Γ              (9)

     0=ϕ on ,aΓ                   (10)

     .D .v = 2q  on .bΓ                (11)

 First, equations (1) and (2) represent the electro-elastic constitutive law in which 
)(uε  denotes the linearized strain tensor, ϕ =)(E  - ∇ϕ  is the electric field, 

where ϕ  is the electric potential, A  is a given nonlinear function, E  represents 
the piezoelectric operator, *)(E  is its transpose, B  denotes the electric permittivity 
operator, and ),...,(= 1 dDDD  is the electric displacement vector. Details on the 
constitutive equations of the form (1) and (2) can be found, for instance, in Batra 
(1995), Bisenga et al.(2002). Next, (3) and (4) are the equilibrium equations for the 
stress and electric-displacement fields, respectively, in which “Div” and “div” denote 
the divergence operator for tensor and vector valued functions, respectively. Equations 
(5) and (6) represent the displacement and stress boundary conditions. Condition (7) 
represents the normal compliance conditions where νp  is a given positive function 
which will be described below and 21=][ ννν uuu +  stands for the jump of the 
displacement in normal direction: either contact (i.e. 0=][ νu ) or separation (i.e. 

0<][ νu ) are allowed, in other words ( 0][ ≤νu ) is the nonpenetration condition. 
Conditions (8) and (9) represent the Signorini contact condition without friction. 
Finally, (10) and (11) represent the electric boundary conditions, in which “.” denote 
the inner product on .dR

In order to proceed with the variational formulation, we need the following spaces: 

H� = {v� = (v�i ); v
�
i ∈ L2(Ω�)}, H� = {τ � = (τ �ij); τ

�
ij = τ �ji ∈ L2(Ω�)},

H�
1 = {v� = (v�i ); v

�
i ∈ H1(Ω�)}, H�

1 = {τ � = (τ �ij) ∈ H�; div τ � ∈ H�}.

The spaces H , H , 1H  and 1H  are real Hilbert spaces endowed with the inner 
products given by 

 
(u�,v�)H� =

∫
Ω�

u�.v�dx, (σ�, τ �)H� =

∫
Ω�

σ�.τ �dx,

(u�,v�)H�
1
=

∫
Ω�

u�.v�dx+

∫
Ω�

∇u�.∇v�dx,

(σ�, τ �)H�
1
=

∫
Ω�

σ�.τ �dx+

∫
Ω�

divσ�.Div τ �dx

 respectively. Here and below, we use the notation 
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∇u� = (u�
i,j), ε(u

�) = (εij(u
�)), εij(u

�) =
1

2
(u�

i,j + u�
j,i), ∀u� ∈ H�

1,

Divσ� = (σ�
ij,j), ∀σ� ∈ H�

1.  

 The associated norms on the spaces H , 
1H , H  and 

1H  are denoted by H
. , 

1
.

H , 
H

. , and 
1

.
H

 respectively.

For every element 1H∈v , we also use the notation v  for the trace of v  on 

Γ  and we denote by νv  and τv  the  normal and the  tangential  components of v  

on the boundary Γ  given by 

v�ν = v�.ν�, v�
τ = v� − v�νν

�.

Let Γ
′H  be the dual of dHH )(= 2

1

Γ
Γ

 and denote by 
Γ− ,

2
1,

2
1(.,.)  the duality 

pairing between 
Γ
′H  and 

Γ
H . For every element σ 1H∈  let σ v  be the element 

of Γ
′H  given by 

(σ v
1 1, ,
2 2

, ) = (
− Γ

v σ , ( )) (D
H

ivε +v σ
1, ) .

H
H∀ ∈v v

Denote by νσ  and στ  the normal and the  tangential traces of σ 1H∈ , 

respectively. If σ  is continuously differentiable on Γ∪Ω , then 

 
σ�
ν = (σ�ν�).ν�, σ�

τ = σ�ν� − σ�
νν

�,

(σ�ν�,v�)− 1
2
, 1
2
,Γ� =

∫
Γ�

σ�ν�.v�da

 for all ,1H∈v  where da is the surface measure element.

To obtain the variational formulation of the problem (1)-(11), we introduce for the 
displacement field the closed subspace of ,1H  defined by 

V � =
{
v� ∈ H�

1; v
� = 0 on Γ�

1

}
.

 Next, we define the convex cone of Lagrange multipliers denoted by M  and 
defined as follows: 

 
M =

{
µ ∈ H− 1

2 (Γ3);

∫
Γ3

µ.ψdΓ3 ≥ 0, for all ψ ∈ H
1
2 (Γ3), ψ ≥ 0

}
.
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Since 0>)( 1Γmeas , the following Korn’s inequality holds : 

      ‖ε(v�)‖H� ≥ cK‖v�‖H�
1

∀v� ∈ V �,           (12)

 where Kc  denotes a positive constant which may depends only on ,Ω  1Γ  (Ne c as 
& Hlavá c ek, 1981). We endow V  with the inner product 

   (u�,v�)V � = (ε(u�), ε(v�))H� , ∀u�,v� ∈ V �,              (13)

 and 
V

.  is the associated norm. It follows from Korn’s inequality (12) that the 

norms 
1

.
H  and 

V
.  are equivalent on V . Then ).,(

V
V  is a real Hilbert space. 

Moreover, by the Sobolev trace theorem and (13), there exists a constant >0c  0, 
depending only on ,Ω  1Γ  and 3Γ  such that 

 ‖v�‖L2(Γ3)d ≤ c0‖v�‖V � ∀v� ∈ V �.

 We also introduce the spaces 
 

W � =
{
ψ� ∈ H1(Ω�); ψ� = 0 on Γ�

a

}
,

W� =
{
D� = (D�

i ); D
�
i ∈ L2(Ω�), divD� ∈ L2(Ω�)

}
,

 which are real Hilbert spaces with the inner products 

(ϕ�, ψ�)W � =
∫
Ω� ∇ϕ�.∇ψ�dx,

(D�,E�)W� =
∫
Ω� D

�.E�dx+
∫
Ω� divD

�. divE�dx.

The associated norms will be denoted by W
|.|  and ,|.|

W  respectively. Notice 

also that, since >)( ameas Γ 0,  the following Friedrichs-Poincaré inequality holds: 

 
‖∇ψ�‖L2(Ω�)d ≥ cF‖ψ�‖H1(Ω�) ∀ψ� ∈ W �,

 where 0>Fc  is a constant which depends only on ,Ω  .aΓ

In order to simplify the notations, we define the product spaces 

H1 = H1
1 ×H2

1 , H = H1 ×H2, H1 = H1
1 ×H2

1,

V = V 1 × V 2, W = W 1 ×W 2, W = W1 ×W2.
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 The spaces ,V  W  and W  are real Hilbert spaces endowed with the canonical 
inner products denoted by ,(.,.)V  ,(.,.)W  and .(.,.)W  The associate norms will be 

denoted by ,. V  ,. W  and  ,. W respectively. In the study of the Problem P, we 

consider the following assumptions: 

We assume that the  elasticity operator dd SS →×Ω:A   satisfies: 

 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) There exists LA� > 0 such that
‖A�(x, ξ1)−A�(x, ξ2)‖ ≤ LA�‖ξ1 − ξ2‖
∀ ξ1, ξ2 ∈ S

d, a.e. x ∈ Ω�.
(b) There existsmA� > 0 such that

(A�(x, ξ1)−A�(x, ξ2)) · (ξ1 − ξ2) ≥ mA�‖ξ1 − ξ2‖2
∀ ξ1, ξ2 ∈ S

d, a.e. x ∈ Ω�.
(c) The mapping x �→ A�(x, ξ) is Lebesgue measurable on Ω�,

for any ξ ∈ S
d.

(d) The mapping x �→ A�(x,0) belongs to H�.

  (14)

 The piezoelectric tensor  dd RS →×Ω:E  satisfies: 

{
(a) E � = (e�ijk), e

�
ijk = e�ikj ∈ L∞(Ω�), 1 ≤ i, j, k ≤ d.

(b) E �σ.τ = σ.(E �)∗τ ∀σ, τ ∈ S
d, a.e. x ∈ Ω�.          (15)

 The permittivity operator  dd RR →×Ω:B  verifies: 

⎧⎪⎪⎨
⎪⎪⎩

(a) B�(x,E) = (b�ij(x)Ej) ∀E = (Ei) ∈ R
d, a.e. x ∈ Ω�.

(b) b�ij = b�ji, b
�
ij ∈ L∞(Ω�), 1 ≤ i, j ≤ d.

(c) There existsmB� > 0 such that B�E.E ≥ mB� |E|2
∀E = (Ei) ∈ R

d, a.e. x ∈ Ω�.

 (16)

 The  normal compliance functions  +→×Γ RR3:νp  satisfies: 
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a) ∃Lν > 0 such that |pν(x, r1)− pν(x, r2)| ≤ Lν |r1 − r2|
∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(b) (pν(x, r1)− pν(x, r2))(r1 − r2) ≥ 0
∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) The mapping x �→ pν(x, r) is measurable onΓ3, ∀r ∈ R.
(d) pν(x, r) = 0, for all r ≤ 0, a.e. x ∈ Γ3.

(17)
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The following regularity is assumed on the density of volume forces, traction, 
volume electric charges and surface electric charges: 

           f �0 ∈ H�, f �2 ∈ L2(Γ�
2)

d, q�0 ∈ L2(Ω�), q�2 ∈ L2(Γ�
b).            (18)

Using the Riesz’s theorem, we define the linear mappings Vfff ∈),(= 21  and 
∈  as follows: 

       

(f ,v)V =
2∑

�=1

∫
Ω�

f �0 · v� dx+
2∑

�=1

∫
Γ2

f �2 · v� da ∀v ∈ V ,

(q, ζ)W =
2∑

�=1

∫
Ω�

q�0ζ
� dx−

2∑
�=1

∫
Γ�
b

q�2ζ
� da ∀ζ ∈ W.

 

For the Signorini Problem, we use the convex subset of admissible displacements 
given by 

 
Uad =

{
v = (v1, v2) ∈ V ; [vν] ≤ 0 on Γ3

}
.

Let us denote by R→× VV:cjν  the normal compliance functional given by 

jνc(u,v) =

∫
Γ3

pν([uν])[vν] da.

 By a standard procedure based on Green’s formula, we derive the following 
variational formulation of the mechanical problem (1)--(11). 

Problem PV .

 Find a displacement field ,),(= 21 Vuuu ∈  an electric potential field 
,),(= 21 W∈ϕϕϕ  such that 

2∑
�=1

(A�ε(u�), ε(v� − u�))H� +
2∑

�=1

((E �)∗∇ϕ�, ε(v� − u�))H�

+jνc(u,v − u) ≥ (f ,v − u)V ∀v ∈ Uad,

(19)

2∑
�=1

(B�∇ϕ�,∇φ�)H� −
2∑

�=1

(E �ε(u�),∇φ�)H� = (q, φ)W ∀φ ∈ W. (20)

Let us introduce the functional space ,= W×VV  that is a Hilbert space endowed 
with the inner product 
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(ũ, ṽ)V = (u, v)V + (ϕ, φ)W , ũ = (u, ϕ), ṽ = (v, φ) ∈ V ,

 the corresponding norm is denoted by .. V
For any ,(=~ ϕuu ), ,),(=~ V∈φvv  and for any ,M∈µ  we define 

a(ũ, ṽ) =
2∑

�=1

(A�ε(u�), ε(v�))H� +
2∑

�=1

((E �)∗∇ϕ�, ε(v�))H�

+
2∑

�=1

(B�∇ϕ�,∇φ�)H� −
2∑

�=1

(E �ε(u�),∇φ�)H� ,

              (21)

 

        b(ũ, µ) =

∫
Γ3

µ[uν]dΓ3.                (22)
 

Using (19)-(22) and from (7), we get 

 ,~,)~,~(=),~()~,~( VV ∈∀−+ vvfvbvua νσ
 where V∈),(=~ qf f .

Using now (7) and (9), we deduce that 
=),~( νσub  0 .

 On the other hand, obviously 0][ ≤νu  on   .3Γ  From M∈µ  and (8), we deduce 

 ),~( ≤µub 0,

 resulting in ),~( ≤− λµub  0, for all ,M∈µ  with .= νσλ −  Thus, we can write the 

following mixed formulation of Problem  P. 

Problem  P
V
m .

 Find   V∈u~  and M∈λ  such that 

     ,~,)~,~(=),~()~,~( VV ∈∀+ vvfvbvua λ            (23)

       ),~(vb ≤− λµ  0 , .M∈∀µ                                    (24)

The functional V)~,~(~ vfv  is linear and continuous on .V  The bilinear form 

(.,.)a  is symmetric, continuous and −V elliptic. 

The existence and uniqueness of solution to (23)--(24) have been stated in  
Haslinger et al. (1996). We recall this result in the following lemma. 

Lemma 1 Problem P V
m  admits a unique solution Mu ×∈V),~( λ , where 

.== 21
νν σσλ −−  
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 Remark 1 Let ),~( λu  be the solution of problem  P .V
m  

Then ),~( λu  is the saddle-point of the functional (.,.)L  over M×V  where   

 ),~()~,~()~,~(
2
1=),~( µµ vbvfvvav +− VL

 Moreover u~  is the solution of the following elliptic variational inequality : 

.~,)~~,~()~~,~(,~ VV V ∈∀−≥−∈ vuvfuvuau

 It is also a solution of the minimization problem 

~(min=)~(,~
~

vuu
v
JJV

V∈
∈ ),

 where 

 .)~,~()~,~(
2
1=)~( VJ vfvvav −

   MIXED FINITE ELEMENT APPROACH

 In this section, we suppose for the sake of simplicity, that each subdomain 1,2=,Ω  
is a polygon and that 3Γ  is a straight line segment parallel to the 1x -axis. The vertices 
of the contact region 

3Γ  are },{ 21 cc . We denote by hT  a triangulation of Ω  made 
of elements which are triangles (or quadrilateral) with a maximum size h  satisfying 
the usual admissibility assumption, i.e. the intersection of two different elements are 
either empty, a vertex, or a whole edge. Let ),(max= 21 hhh . In addition, 

hT  is 
assumed regular, hence there exists a constant c  independent of the discretization 
parameter h  satisfying   

>min c
hK

K

hK
≥

∈

ρ
T

0, 1,2=

where Kρ  is the diameter of the inscribed circle in K . We suppose that the end 
points 1c  and 2c  of the contact zone 3Γ  are common nodes of the triangulations 

1
hT  and 2

hT  and that the one-dimensional traces of triangulations of 1
hT  and 2

hT  on 

3Γ  are uniformly regular. The set of nodes on 3Γ  belonging to triangulation hT  is 
denoted hΣ  and generally we have 21

hh Σ≠Σ . Let )(ΩhV  and )(ΩhW  consist of 
continuous and piecewise affine functions on Ω  , respectively, that is, 

 

Vh(Ω
�) =

{
v�
h ∈

[
C(Ω�)

]2
; v�

h|K ∈ (P1(K))2, ∀K ∈ T �
h , v�

h|Γ�
1
≡ 0

}
,

Wh(Ω
�) =

{
ϕ�
h ∈ C(Ω�); ϕ�

h|K ∈ P1(K), ∀K ∈ T �
h , ϕ�

h|Γ�
a
≡ 0

}
,
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where )(ΩC  and )(1 KP  denote the space of continuous functions on Ω  and the 
space of the polynomials with the global degree one on K , respectively. We define 
the spaces 

Vh = Vh(Ω
1)× Vh(Ω

2), Wh = Wh(Ω
1)×Wh(Ω

2), Vh = V h ×Wh.

 Next, we define the space hX  of continuous functions as follows: 

 
Xh =

{
ψh ∈ C(Γ3); ∃vh ∈ Vh such that ψh = [vhν] on Γ3

}
,

 piecewise polynomial of degree one on the mesh of Ω  on 3Γ .

We introduce the projection operator hπ  on 
hX , defined for any function 

)( 3
2 Γ∈ Lψ  by: 

                    ( ) .0=, 3
3

hhhhhh XdX ∈∀Γ−∈ ∫Γ
µµψψπψπ              (25)

Let us now approximate the closed convex cone M  by a subset of .hX  We 
introduce the set )( 3ΓhX  where nonnegativity holds everywhere on 3Γ  : 

Xh(Γ3) = {µh ∈ Xh; µh ≥ 0 on Γ3} ,

 which corresponds to convex constraints of quadratic type. We then define another 
set denoted by )( hhX Σ  where nonnegativity holds every where on hΣ  which leads 
to convex constraints of linear type: 

{ }0,)(;=)( hhhhhh xxXX Σ∈∀≥∈Σ µµ }.

 Next, we define the positive polar cones Λ )( 3ΓhË  and Λ )( hh Σ  of )( 3ΓhX  and 
( hhX Σ ). respectively: 

Λh(Γ3) =
{
µh ∈ Xh;

∫
Γ3

µhψh ≥ 0, ∀ψh ∈ Xh(Γ3)
}
,

Λh(Σ
�
h) =

{
µh ∈ Xh;

∫
Γ3

µhψh ≥ 0, ∀ψh ∈ Xh(Σ
�
h)
}
.

From the inclusion )()( 3 hhh XX Σ⊂Γ , by polarity it follows that Λ )( ⊂Σhh  Λ )( 3Γh
.

We then choose a discretized mixed formulation which uses either Λ )( 3Γh  or 
Λ )( hh Σ  as an approximation of Λ. The discretization of (23)-(24) is defined in a 
standard way: 
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Problem P h
m  

 Find hhu V∈~  and λ h ∈ Λ h such that 

                    a(ũh, ṽh) + b(ṽh,λh) = (f̃ , ṽh)V , ∀ṽh ∈ Vh,           (26)

     b(ũh,µh − λh) ≤ 0, ∀µh ∈ Λh,            (27)

 where Λ =h  Λ )( 3Γh or Λ =h Λ )( hh Σ , 1=  or 2.

In order to prove the existence and the uniqueness of the saddle-point of (26)-(27), 
it is only necessary to verify that 

{
µh ∈ Xh; b(ṽh,µh) = 0, ∀ṽh ∈ Vh

}
= {0},

 which is obvious. As a consequence, we obtain the following statement (Coorevits 
et al., 2002): 

Lemma 2 Let Λh=Λh
)( 3Γ  or Λh=Λh )( hΣ , 1=  or 2.  Then there exists a unique 

solution ,~( hu  λh) to Problem  P ,h
m  and it satisfies ,~( hu  λh) h ×∈V Λh.

We are now interested in obtaining a uniform inf-sup condition for (.,.)b  over 
hh X×V . The result is given in the following lemma. The proof of the lemma is 

the same as in the case of linear finite elements with continuous linear multipliers 
(Haslinger et al., 1996) and consists in proving the stability of the projection operator 

hπ  in the −Γ )( 3
2
1

H norm. 

Lemma 3 Suppose that ∅Γ∩Γ =31
 for 1,2= . Then the following inf-sup 

condition holds: 

      >~.
)~,(supinf

)3(2
1~

β
µ

µ
µ

≥
Γ

−∈∈
V

V hHh

hh

hhvhXh v
vb

 0,     (28)

 where β  is independent of .h  

 Proof. Let )( 3
2 Γ∈ Lψ . Then we have 

      (, 3
2
1

)3(2
1

)3(2
1 Γ∈∀≤

ΓΓ
Hc

HHh ψψψπ  ).   (29)

 For any hh X∈µ , there exists )( 3
2
1

Γ∈ Hψ  such that 

    .=and1=
)3(2

1
3

3
)3(2

1

Γ
−

ΓΓ
Γ∫ HhhH

d µψµψ    (30)
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We then consider an extension operator hR  from hX  into )(ΩhV  satisfying 

1
2 21 1 ( )( ( ))3 3

| = and , .h h h h h h h hHH
R R c Xψ ψ ψ ψ ψΓ ΓΩ

≤ ∀ ∈     (31)

Let =~
hν  ((v ,1

h v V∈),0)2
h   with v )(= ψπη hh R  and v 0=3−

h . According to (29) 

and (31), we have 

                  *
1 22 ( ( ))

( )h h hv HH
c R cν π ψ ψ

Ω
≤ ≤ 1 ( )32

Γ  *= .c            (32)

Combining (25), (30) and (32), we obtain 

 

.~
)~,(sup~=~

1
~

3
3

3
3

)3(2
1

*
VVVV h

hh

hhvh

hh

h

h

Hh v
vbdd

c
µ

ν

ψπµ

ν

ψµ
µ

∈

ΓΓ

Γ
− ≤

ΓΓ
≤

∫∫

 Then the supinf−  condition (28) is proved. 

Lemma 4  Let Λh=Λh )( 3Γ  or Λh=Λh )( hΣ  with 1=  or 2 and let ( hu ë,~ λ ) hh Ëë ×∈V  
Λh be the solution of (26)-(27). Then hu~  is also solution of the variational inequality: 

   ,~,)~~,~()~~,~(,~
hhhhhhhhh KvuvfuvuaKu ∈∀−≥−∈ V

      (33)

 where )(= 3Γhh KK  if Λh=Λh ( 3Γ ), )(= hhh KK Σ  if Λh=Λh )( hΣ  with 

 Kh(Γ3) = {ṽh = (vh, ϕh) ∈ Vh; πh[vhν] ≤ 0 on Γ3} ,        (34)

Kh(Σ
�
h) =

{
ṽh = (vh, ϕh) ∈ Vh; (πh[vhν]) (a) ≤ 0, ∀a ∈ Σ�

h

}
.  (35)

  Proof. Let us first notice that )( 3ΓhK  and )( hhK Σ  depend on  which has 
been omitted to lighten the notations. Taking 0=hµ  and hh λµ 2=  in (27) leads to 

0=),( hhb λu  and to 

 
b(ũh, µh) =

∫
Γ3

µh[uhν]dΓ3 =

∫
Γ3

µhπh[uhν]dΓ3 ≤ 0, ∀µh ∈ Λh.

 The latter inequality implies by polarity that ][ hh u ∈− νπ Λ*
h  ( the notation Λ*

h  
stands for the positive polar cone of Λh  ). 

Then if Λh=Λh )( 3Γ  then Λ )(= 3
* Γhh X  since )( 3ΓhX  is a closed convex 

cone. Hence )(][ 3Γ∈− hhh Xνπ u  and (~
3Γ∈ hh Ku ). Consequently (26) and 

0=),~( hhub λ  lead to 

         V)~,~(=)~,~( hhh ufuua        (36)
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 and for any (~
3Γ∈ hh Kv ), we get 

a(ũh, ṽh)− (f̃ , ṽh)V = −
∫
Γ3

λh[vhν]dΓ3 = −
∫
Γ3

λhπh[vhν]dΓ3 ≥ 0,  (37)

 owing to λ ∈h  Λ ( 3Γh ),

Putting together (36) and (37) implies that hu~  is a solution to the variational 
inequality (33) ( with )(= 3Γhh KK  ) which admits a unique solution according to 
Stampacchia’s theorem.

If Λh=Λh )( hΣ  is treated similarly to the previous one.

 ERROR ESTIMATES

 Now we intend to analyze the convergence of both quadratic finite element approaches: 
discrete non-interpenetration condition of quadratic type (34) or of linear type (35). 
Before considering separately both methods, we begin with a common result. 

Theorem 1  Set Λh=Λh )( 3Γh  and let (u ,~ λ) M×∈V be the solution of (23)-(24). Suppose 

that 12
3

((~ Ω∈
+η

Hu )) 22
3

3 (( Ω×
+η

H ))3  with <<0 η 1. Let ( hu ,~
λ ) hh ×∈V Λh  be 

the solution of (26)-(27). Then there exists a constant 0>C  independent of h  and u~  
such that 

 
‖ũ− ũh‖V + ‖λ− λh‖H− 1

2 (Γ3)
≤ Ch

1
2
+η ‖ũ‖ 3

2
+η .

Proof.  Let us denote by γ  the ellipticity constant of (.,.)a  on .V  Let hhv V∈~ , 
then by (23), (24), (26) and (27), it follows that 

γ ‖ũ− ũh‖2 ≤ a(ũ− ũh, ũ− ṽh) + a(ũ, ṽh − ũh)− a(ũh, ṽh − ũh)

≤ a(ũ− ũh, ũ− ṽh)− b(ṽh − ũh,λ) + b(ṽh − ũh,λh),

hence, we obtain 

γ ‖ũ−ũh‖2 ≤ a(ũ−ũh, ũ−ṽh)− b(ṽh−ũ, λ−λh)−b(ũ−ũh,λ− λh).

 The continuous and discrete complementary conditions imply 

        b(ũ,λ) = b(ũh,λh) = 0.            (38)

 Hence 
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γ ‖ũ− ũh‖2V ≤ a(ũ− ũh, ũ− ṽh)− b(ṽh − ũ,λ− λh) + b(ũh,λ)

+b(ũ,λh).

Using the continuity of the bilinear form, we obtain 

c1 ‖ũ− ũh‖2V ≤‖ũ− ũh‖V ‖ũ− ṽh‖V + ‖λ− λh‖H− 1
2 (Γ3)

‖ũ− ṽh‖
+ b(ũh,λ) + b(ũ,λh).

 (39)

 

Using (23), (26) and from ,VV ⊂h  we get 

a(ũ− ũh, ṽh) = b(ṽh,λh − λ).

 Consequently, for any hhv V∈~  and any hh X∈µ  

b(ṽh,λh − µh) = a(ũ− ũh, ṽh)+ b(ṽh,λ− µh)

≤ c2
(
‖ũ− ũh‖V + ‖λ− µh‖H− 1

2 (Γ3)

)
‖ṽh‖V .

This estimate and the inf-sup condition (28) allow us to write 

‖λh − µh‖H− 1
2 (Γ3)

≤ c3
(
‖ũ− ũh‖+ ‖λ− µh‖H− 1

2 (Γ3)

)
.

 By the triangular inequality we come to the conclusion that 

‖λ− λh‖H− 1
2 (Γ3)

≤ c4

(
‖ũ− ũh‖V + inf

µh∈Xh

‖λ− µh‖H− 1
2 (Γ3)

)
.       (40)

 As a consequence ( Ciarlet 1991; Crouzeix & Thome, 1987), we have 

      
inf

ṽh∈Vh

‖ũ− ṽh‖ ≤ Ch
1
2
+η ‖ũ‖ 3

2
+η ,           (41)

 and 

     
inf

µh∈Xh

‖λ− µh‖H− 1
2 (Γ3)

≤ Ch
1
2
+η ‖ũ‖ 3

2
+η .

        (42)

Since 0][ ≤ηu  and λh ∈Λh  with Λh=Λh ( 3Γ ), we deduce 

           b(ũ,λh) ≤ 0.            (43)

Using (25), (27) and (38), we have 

 ∫
Γ3

µh.πh[uhν]dΓ3 =

∫
Γ3

µh[uhν]dΓ3 = b(ũh, µh) = b(ũh, µh − λh) ≤ 0.
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 It follows that 

         −πh[uhν] ∈ Λ∗
h,             (44)

 where 

   Λ∗
h =

{
ξh ∈ Xh;

∫
Γ3

ξhµhdΓ3 ≥ 0, ∀µh ∈ Λh

}
.  

From (44) and since λ 0≥ , we deduce 

    b(ũh,λ) ≤
∫
Γ3

λ ([uhν] − πh[uhν]) dΓ3.          (45)

 The projection operator hπ  defined in (25) has the following approximation 
property: for any 30 ≤≤ s  we have ( Ciarlet, 1991) 

      h− 1
2 ‖µ− πhµ‖H− 1

2 (Γ3)
+ ‖µ− πhµ‖L2(Γ3)

≤ chs ‖µ‖Hs(Γ3)
,      (46)

for all ( ).3Γ∈ sHµ  Let −′ 3= , using (25) and from ,|
3 hh X∈Γνu  we obtain 

    

∫
Γ3

λ
(
u�

hν − πhu
�
hν

)
dΓ3 =

∫
Γ3

(
πhλ

)(
u�′

hν − πhu
�′
hν

)
dΓ3 = 0,         (47)

 where ][= νν ππ hhhh vv  with 0=3−
hv .

Now, by (45) and (47) it follows that 

 
b(ũh,λ) ≤

∫
Γ3

λ(u�′
hν − πhu

�′
hν)dΓ3

≤
∫
Γ3

(λ− πhλ)(u
�′
hν − πhu

�′
hν)dΓ3

≤
∫
Γ3

(λ− πhλ)
(
(u�′

hν − u�′
ν )− πh(u

�′
hν − u�′

ν )
)
dΓ3

+

∫
Γ3

(λ− πhλ) (u
�′
ν − πhu

�′
ν )dΓ3

≤ ‖λ− πhλ‖L2(Γ3)
.
∥∥(u�′

hν − u�′
ν

)
− πh

(
u�′

hν − u�′
ν

)∥∥
L2(Γ3)

+ ‖λ− πhλ‖L2(Γ3)
.
∥∥u�′

ν − πhu
�′
ν

∥∥
L2(Γ3)

.

 Then, the approximation (46) and the trace theorem yield: 

b(ũh,λ) ≤ ch
1
2
+η
∥∥λ∥∥

Hη(Γ3)

∥∥ũh − ũ
∥∥
H

1
2 (Γ3)

+ ch1+2η
∥∥λ∥∥

Hη(Γ3)

∥∥ũ∥∥
H1+η(Γ3)

.      (48)
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 Let us note that the trace theorem implies for any 0>s  

          

∥∥λ∥∥
Hs(Γ3)

≤ c ‖ũ‖s+ 3
2                (49)

 Putting (48) and (49) and using the trace theorem gives 

   b(ũh,λ) ≤ ch
1
2
+η ‖ũ− ũh‖ ‖ũ‖ 3

2
+η + ch1+2η ‖ũ‖23

2
+η .      (50)

 The result is now a consequence of (39)-(43) and (50) with  ab ,
4
1 22 ba
β

β +≤  0>β .

Theorem 2  Set Λh=Λh )( hΣ ), 1=  or 2 and let (u ,~ λ ) M×∈V  be the solution 

of (23)-(24). Suppose that 
3 3

1 3 2 32 2( ( )) ( ( ))u H H
η η+ +

∈ Ω × Ω  with .<<0 η 1. Let 

( hu ,~ λ ) hh ×∈V Λh  be the solution of (26)-(27). Then there exists a constant 0>C  

independent of h  and u~  such that 

  ‖ũ− ũh‖V + ‖λ− λh‖H− 1
2 (Γ3)

≤ Ch
1
2
+ η

2 ‖ũ‖ 3
2
+η .          (51)

 
 Proof.  Using (39), (40) (41), (42) and estimate ab ,

4
1 22 ba
β

β +≤  0>β  
leads to the bound 

‖ũ−ũh‖V + ‖λ−λh‖H− 1
2 (Γ3)

≤C
{
h

1
2
+η ‖ũ‖ 3

2
+η+ (max(b(ũ,λh), 0)

1
2

+(max(b(ũh,λ), 0)
1
2
}
.

    (52)

The proof consists of estimating ,~(ub λ )h  and ,~( hub λ).

Step 1. Estimation of ,~(ub  λh ).

Let us denote by hi  the Lagrange interpolation operator of order one on the mesh 
of Ω  on .3Γ

So, there is a constant 0>c  satisfying for all ( )3Γ∈ sHµ  ( Ciarlet, 1991) 

    
∥∥µ− i�hµ

∥∥
L2(Γ3)

+ h
1
2

∥∥µ− i�hµ
∥∥
H

1
2 (Γ3)

≤ chs ‖µ‖Hs(Γ3)
,        (53)

 for all ( ).3Γ∈ sHµ  We write 

 
b(ũ,λh) =

∫
Γ3

λh[uν] − i�h[uν])dΓ3 +

∫
Γ3

λhi
�
h[uν]dΓ3.

Obviously 0][ ≤νuhi  on .3Γ  From λh ∈Λ ( hh Σ ), ][hi ∈uν Λ *)( hh Σ and (53), 
we deduce 
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b(ũ,λh) ≤

∫
Γ3

λh

(
[uν]−i�h[uν]

)
dΓ3

≤
∫
Γ3

λ
(
[uν]−i�h[uν]

)
dΓ3 +

‖λ−λh‖H− 1
2 (Γ3)

∥∥[uν]−i�h[uν]
∥∥
H

1
2 (Γ3)

.

Using again the approximation properties of hi  implies 

 
b(ũ,λh)≤

∫
Γ3

λ
(
[uν]−i�h[uν]

)
dΓ3+

     ch
1
2
+η ‖λ−λh‖H− 1

2 (Γ3)
‖[uν]‖H1+η(Γ3)

.   (54)

 The remaining integral term is estimated using (53): 

   
3Γ∫ λ( ) 3[ ] [ ]hi dν ν− Γ ≤u u λ 2 2( ) ( )3 3

[ ] [ ]hL L
iν νΓ Γ

−u u
 
    1 [ch η+≤ u 1 ( )3

]
H ην + Γ

u λ 2 ( )3
.

L Γ
             (55)

 Putting (54) and (55) and using the trace theorem, we get 

      b(ũ,λh) ≤ C ‖ũ‖ 3
2
+η

(
h

1
2
+η ‖λ− λh‖H− 1

2 (Γ3)
+ h1+η ‖ũ‖ 3

2
+η

)
. (56)

Step 2. Estimation of ,~( hub  λ).

Let )( 3ΓhX  be the space of the piecewise continuous functions on 3Γ  which are 

constant on the meshes of Ω  on .3Γ  Define hΠ  as the projection operator for the 

)( 3
2 ΓL  inner product on ( 3ΓhX ). Such an operator satisfies the following estimate 

for any :10 ≤≤ r  

   
∥∥µ− Π�

hµ
∥∥
L2(Γ3)

≤ chr ‖µ‖Hr(Γ3)
, ∀µ ∈ Hr (Γ3) .          (57)

 According to Lemma 4, we have [ hh νπ u ]( 0) ≤a  for any .ha Σ∈  This implies 
that 

Π�
h

(
π�
h[uhν]

)
≤ 0 on Γ3
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As a consequence 

 
b(ũh,λ) =

∫
Γ3

λ[uhν]dΓ3

=

∫
Γ3

λ ([uhν] − πh[uhν]) dΓ3 +

∫
Γ3

λ
(
πh[uhν] − Π�

hπh[uhν]
)
dΓ3

+

∫
Γ3

λΠ�
hπh[uhν]dΓ3

≤
∫
Γ3

λ ([uhν] − πh[uhν]) dΓ3 +

∫
Γ3

λ
(
πh[uhν] − Π�

hπh[uhν]
)
dΓ3.

 The term 
3

∫Γ
λ( ) 3][][ Γ− dhhh νν π uu  has already been estimated in Theorem 1 and 

bounded in (50), hence we obtain 

  
b(ũh,λ) ≤ ch

1
2
+η ‖ũ− ũh‖ ‖ũ‖ 3

2
+η + ch1+2η ‖ũ‖23

2
+η

+

∫
Γ3

λ
(
πh[uhν] − Π�

hπh[uhν]
)
dΓ3.

            (58)

 The remaining term is developed as follows: ∫
Γ3

λ
(
πh[uhν] − Π�

hπh[uhν]
)
dΓ3

=

∫
Γ3

λ
(
(πh[uhν] − [uhν])− Π�

h (πh[uhν] − [uhν])
)
dΓ3

+

∫
Γ3

λ
(
[uhν] − Π�

h[uhν]
)
dΓ3

=

∫
Γ3

(
λ− Π�

hλ
) (

(πh[uhν] − [uhν])− Π�
h (πh[uhν] − [uhν])

)
dΓ3

+

∫
Γ3

(
λ− Π�

hλ
) (

[uhν] − Π�
h[uhν]

)
dΓ3.

 Next, we apply Cauchy-Schwartz inequality to deduce 

 
∫
Γ3

λ
(
πh[uhν]−Π�

hπh[uhν]
)
dΓ3

≤
∥∥λ−Π�

hλ
∥∥
L2(Γ3)

∥∥ (πh[uhν] − [uhν])− Π�
h (πh[uhν] − [uhν])

∥∥
L2(Γ3)

+

∫
Γ3

(
λ− Π�

hλ
) (

([uhν] − [uν])− Π�
h ([uhν] − [uν])

)
dΓ3

+

∫
Γ3

(
λ− Π�

hλ
) (

[uν] − Π�
h[uν]

)
dΓ3.
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 Therefore by (57), we get 

 ∫
Γ3

λ
(
πh[uhν]−Π�

hπh[uhν]
)
dΓ3 ≤

c
∥∥λ−Π�

hλ
∥∥
L2(Γ3)

∥∥πh[uhν]−[uhν]
∥∥
L2(Γ3)

+

∫
Γ3

(
λ− Π�

hλ
) (

([uhν] − [uν])− Π�
h ([uhν] − [uν])

)
dΓ3

+

∫
Γ3

(
λ− Π�

hλ
) (

[uν] − Π�
h[uν]

)
dΓ3.

 Now, we use (46), (49), (57) and the trace theorem yield: 
∫
Γ3

λ
(
πh[uhν] − Π�

hπh[uhν]
)
dΓ3 ≤ Chη ‖ũ‖ 3

2
+η

(
‖πh[uν]−[uν]‖L2(Γ3)

+ ‖πh ([uhν]−[uν])−([uhν]−[uν])‖L2(Γ3)

)

+Ch
1
2
+η ‖ũ‖ 3

2
+η ‖ũ− ũh‖V +

∫
Γ3

(
λ− Π�

hλ
) (

[uν] − Π�
h[uν]

)
dΓ3

≤ C ‖ũ‖ 3
2
+η

(
h

1
2
+η ‖ũ− ũh‖V + h1+2η ‖ũ‖ 3

2
+η

)

+

∫
Γ3

(
λ−Π�

hλ
) (

[uν]−Π�
h[uν]

)
dΓ3. (59)

 Using again the approximation properties of hΠ  gives ∫
Γ3

(
λ− Π�

hλ
) (

[uν]−Π�
h[uν]

)
dΓ3

≤
∥∥λ−Π�

hλ
∥∥
L2(Γ3)

∥∥[uν]−Π�
h[uν]

∥∥
L2(Γ3)

≤ Ch1+η ‖λ‖Hη(Γ3)
‖[uν]‖H1(Γ3)

.

Here, we observe a loss of optimality when approximating the function 
)(][ 3

1 Γ∈ +η
ν Hu  with [ νuhΠ ]. As a consequence 

  b(ũh,λ) ≤ C ‖ũ‖ 3
2
+η

(
h

1
2
+η ‖ũ− ũh‖V + h1+η ‖ũ‖ 3

2
+η

)
. (60)

 Step3. End of the proof.
The estimate (51) of the theorem is proved by combining (52), (56) and (60) with 

ab >,
4
1 22 β
β

β ba +≤  0.
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Theorem 3  Set Λh=Λh )( hΣ ), 1=  or 2  and let (u ,~ λ) M×∈V  be the solution of 

(23)-(24). Suppose that 12
3

((~ Ω∈
+η

Hu )) 22
3

3 (( Ω×
+η

H )) 3  with <<
2
1 η 1. Assume 

that the set of points of 3Γ  where the change from 0<][ νu  to 0=][ νu  occurs 

is finite. Let ( hu ,~ λ ) hh ×∈V Λh  be the solution of (26)-(27). Then there exists a 

constant 0>C  independent of h  and u~  such that 

 ‖ũ− ũh‖V + ‖λ− λh‖H− 1
2 (Γ3)

≤ Ch
1
2
+η ‖ũ‖ 3

2
+η .            (61)

 

 Proof.  Consider again estimate (59) and suppose now that <<
2
1 η 1. Let )(hN  

represent as in the previous theorem the number of −)(1 D segments denoted iT  
)),((1 hNi≤≤  of the triangulation of Ω  on 3Γ  where the change from 0<][ νu  to 

0=][ νu  occurs.

The integral term in (59) is now estimated as follows: 
 ∫

Γ3

(
λ− Π�

hλ
) (

[uν] − Π�
h[uν]

)
dΓ3 = −

∫
Γ3

λΠ�
h[uν]dΓ3

≤
N(h)∑
i=1

∫
Ti

|λ|
∣∣Π�

h[uν]
∣∣ dΓ3

≤ h

N(h)∑
i=1

‖λ‖L∞(Ti)

∥∥Π�
h[uν]

∥∥
L∞(Ti)

≤ h

N(h)∑
i=1

‖λ‖L∞(Ti)
‖[uν]‖L∞(Ti)

. (62)

 From the definition of the segment ,iT  we deduce that 

‖λ‖L∞(Ti)
≤ hη− 1

2 ‖λ‖C0,η− 1
2 (Ti)

and 

.][][
)(2

10,12
1

)(

1

iTiTL
DhD −

−

∞ ≤ ην

η

ν C
uu
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So 

 

       

∫
Γ3

(
λ−Π�

hλ
) (

[uν]−Π�
h[uν]

)
dΓ3

≤ h

N(h)∑
i=1

hη− 1
2 ‖λ‖C0,η− 1

2 (Ti)
h
∥∥D1[uν]

∥∥
L∞(Ti)

≤ h1+2η

N(h)∑
i=1

‖λ‖C0,η− 1
2 (Ti)

‖[uν]‖C1,η− 1
2 (Ti)

≤ N(h)h1+2η ‖λ‖C0,η− 1
2 (Γ3)

‖[uν]‖C1,η− 1
2 (Γ3)

≤ N(h)h1+2η ‖λ‖Hη(Γ3)
‖[uν]‖H1+η(Γ3)

,            (63)

 where the embedding properties of Sobolev and Hölder spaces (Zhong, 1993) have 
been used. If )(hN  is uniformly bounded in ,h  we obtain thanks to the trace theorem, 
(58), (59) and (63): 

b(ũh,λ) ≤ c ‖ũ‖ 3
2
+η

(
h

1
2
+η ‖ũ− ũh‖+ h1+2η ‖ũ‖ 3

2
+η

)
.            (64)

 The remaining integral term in (54) is estimated as 
 ∫

Γ3

λ
(
[uν] − i�h[uν]

)
dΓ3 = −

∫
Γ3

λi�h[uν]dΓ3

≤
N(h)∑
i=1

∫
Γ3

|λ|
∣∣i�h[uν]

∣∣ dΓ3

≤ h

N(h)∑
i=1

‖λ‖L∞(Ti)

∥∥i�h[uν]
∥∥
L∞(Ti)

≤ h

N(h)∑
i=1

‖λ‖L∞(Ti)
‖[uν]‖L∞(Ti)

.

The latter term has already been estimated in (62). Hence, from (54), we deduce 

b(ũ,λh) ≤ c ‖ũ‖ 3
2
+η

(
h

1
2
+η ‖λ− λh‖H− 1

2 (Γ3)
+ h1+2η ‖ũ‖ 3

2
+η

)
. (65)

 Finally, the estimate (61) of the theorem is proved by combining (52), (64), (65) 

and by using ab ,
4
1 22 ba
β

β +≤  >β  0.
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 CONCLUSION 
In this paper we present a mixed variational formulation for frictionless contact problems 
between two electro-elastic bodies, in which the unknowns are the displacement field, the 
electric potential field and the contact pressure. We have proposed and studied two mixed 
finite element methods, in which the discrete non-interpenetration conditions are either an 

exact non-interpenetration condition “Λh=Λh 
)( 3Γ ” or only a nodal condition “Λh=Λh )( hΣ

” and proved that they can lead to optimal convergence rates under reasonable hypotheses. 
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تقريب عنصر منته مختلط لمسألة تلامس 
في المرونة كهربية 

* تجاني حاج عمار ، ** بن عبد الرحمان بن يطو و *** صالح درابلة 
* قسم الرياضيات والإعلام الآلي - جامعة الوادي - الوادي - الجزائر

** مختبر علوم الحاسوب والرياضيات - كلية العلوم وعلوم الحاسوب - جامعة الأغواط - الجزائر

*** قسم الرياضيات - الكويت جامعة سطيف - الجزائر

خلاصة
يهتم هذا البحث بمسألة تلامس عديم الاحتكاك بين جسمين مرنين كهربياً في مجال ثنائي 
البعدية. نحصل هنا على صياغة مختلطة بحيث تكون المجاهيل هي حقل الازاحة، حقل 
الكمون الكهربي وضغط التلامس. نقوم بإستخدام طريقة العنصر المنته المختلط  للوصول 
إلى حلول تقريبية. ثم نحسب تقديرات الخطأ لهذه الحلول التقريبية و نقوم من خلال ذلك 

بالحصول على تقارب الخوارزمية تحت تأثير شروط ملائمة لإنتظام الحل الدقيق.
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