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ABSTRACT

The Z12V190 diesel engine has high fuel consumption and low thermal efficiency, and releases
large amounts of diesel exhaust gas and waste heat into the atmosphere. This causes huge
resource as well as energy waste. In order to protect the environment, save energy, and also
to solve these problems about exhaust gas recycling and waste heat recovery, the Z12V190
diesel engine exhaust emission rate and minimum gas injection rate for gas underbalanced
drilling are calculated and compared with the deduced formulas. The critical point pressure
range of different diameter drill pipe has been deduced in the same diameter well, which
proved the application feasibility of the Z12V190 diesel engine exhaust gas underbalanced
drilling. Meanwhile, the waste heat recovery rate has been calculated and proved the economic
feasibility of the Z12V190 diesel engine exhaust gas waste heat recovery. The process flows are
designed for the Z12V190 diesel engine exhaust gas underbalanced drilling well and its waste
heat recovery. The Z12V190 diesel engine exhaust gas will be recycled to reduce pollution, and
its waste heat recovery be used for saving energy resources.

Keywords: Diesel engine; exhaust gas; underbalanced drilling; recycling; waste heat
recovery.

INTRODUCTION

Between 1900 and 1955 the average rate of global energy use rose from about 1 TW to
2 TW. Between 1955 and 1999 energy use increased from 2 TW to about 12 TW, and
to 2006 a further 16% growth in primary energy use was recorded world-wide (Reay,
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2008). With the increasingly rapid economic development and a relative shortage of
the energy supply, the diesel engine exhaust gas (DEEG) recycling and waste heat
(WH) recovery has received significant attention.

The technology theory research and experimental work on DEEG underbalanced
drilling (UBD) has been done at the southwestern Sichuan Basin and the Southwest
Petroleum Institute in China. The practical application of DEEG UBD has achieved
good economic results in Sichuan oil and gas fields (Wei et al., 2008). However, the
DEEG UBD is facing some problems: whether the DEEG emission rate meets the
minimum gas injection rate (min-GIR) or not in wells of different depth, and also
whether O2 mass percentage (OMP) meets the safety requirements of underground
blasting or not.

In the 1980s, developed countries began recycling exhaust gas and WH of internal
combustion engines. Since 1850, the thermodynamics prompted the constantly
development of recycling exhaust gas and WH of the automobile internal combustion
engine. Mostafavi et al. (1998) and Mostafavi & Agnewt (1997) have calculated the
rate of WH recovery for supercharged engine exhaust gas. Aly (1992) have studied
the comprehensive applications of exhaust gas recycling and circulating cooling water
WH recovery of the internal combustion engine. Koehler ef al. (1997) designed a
refrigerator system of truck engine exhaust WH, which can replace the conventional
compression refrigeration system (Najjar, 1996; Turnpenny et al., 2001). Horuz &
Callander (2004) experimental research shows that it is feasible to drive refrigeration
system with automobile engine exhaust WH. Wu & Schulden (1995) and Wu (1996)
studied improved Carnot-Cycle heat engine driven by high-temperature WH, and
found the relation of a temperature range of high-temperature and the maximum
specific power. Yoon et al. (2003) studied the exhaust WH driven refrigeration
system. The highly energy-saving technology with exhaust WH has the remarkable
effect in food refrigerated-transport and energy saving (Tassou et al., 2009; Tassou
et al., 2010). Bass et al. (1994), Matsubara (2002) have implemented thermoelectric
generators for trucks. Electronic systems of most car have been supplied with power
from thermoelectric-generated electricity, using DEEG WH (Najjar, 1996). However,
all the above efforts have focused mainly on the exhaust gas WH recovery of the
automobile internal combustion engines, which is widely used in auto industry.
Researchers rarely see the exhaust gas WH recovery of the Z12V190 diesel engine,
which produces large amounts of power and is rarely used in cars.

The Z12V190 diesel engine has released large amounts of DEEG and WH into the
atmosphere, causing energy waste problems. Based on the environmental (Barakat et
al.,2014; Ahmed & Al-Dousari, 2013) concern, the DEEG components are analyzed,
and the DEEG emissions rate and WH recovery rate are calculated respectively.
Combined with min-GIR of gas UBD, the feasibility of exhaust gas UBD would be
proved for the Z12V190 diesel engine. Meanwhile, the feasibility of DEEG recovery
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would be proven, and the process flows of the Z12V190 DEEG UBD and WH
recovery would be designed. These can make up for the deficiency in current research
on Z12V190 DEEG recycling and WH recovery in oil exploration and exploitation.

DIESEL ENGINE EXHAUST GAS COMPOSITION ANALYSIS

The relative performance parameters of Z12V190 diesel engines are as follows: 12
hours of power, 1200PS (882 KW); continuous power, 1080PS (794 KW); 209.4 +
5% g/kw-h; 0# light diesel fuel composition (C: 0.86, O: 0.004, H: 0.126, etc.). When
the oxygen supply is sufficient, only the four main components of CO2, 02, N2 and
H20 are considered by Hou et al. (2006).

C.H,0, +(x+%—§)OZM>xCOZ +%H20 (1)

Diesel engine exhaust gas emissions rate analysis

Here, the Z12V190 DEEG emission rate and WH recovery rate are analysed for an
OMP range of 8 to 19 %. The main DEEG components’ calculation models (Hou &
Gao, 2011) are established as follows:
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where [0,%] is the OMP of DEEG; m is the total mole number of DEEG with water
vapour for 1 kg of 0# light diesel oil, kmol; M, is the average molecular weight
of DEEG without water vapour, kg/kmol; X, is the C atom mole number of 1 kg of
0# light diesel oil, kmol; Vi is the H atom mole number of 1 kg of 0 # light diesel oil,
kmol; Z,, is the O atom mole number of 1 kg of 0# light diesel oil, kmol.

According to the above models, the calculated results show that each curve implies
that the min-DEEG emission rate is large and increases rapidly with the increase of
the OMP of DEEG (Table 1 and Fig.1).
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Table 1. One Z12V190 DEEG WH Recovery Rate at Different OMP of DEEG

The available Z12V190 DEEG WH increases with

ovp  zinVio0 zi2vioe e e il hen 212010
of Intake Air DEEG
DEEG  Volume Emission The initial temperature t1 is 500°C
Flow Rate The final temperature t2 is shown below
(%) m3/min m3/min 200°C 160°C 120°C 80°C 40°C
8 18.6 49.9 8116.3 94149 10713.6 12012.2 13310.8
9 20.1 53.7 8726.5 10122.8  11519.0 129153 14311.5
10 21.8 58.2 9437.5 10947.5  12457.5 13967.5 15477.5
11 23.9 63.4 10276.6  11920.8  13565.0 15209.3 16853.5
12 26.3 69.7 11281.6  13086.7 14891.7 16696.8 18501.8
13 29.3 77.3 12507.4  14508.5 16509.7 18510.9 20512.1
14 33.0 86.9 14035.5  16281.2 18526.9 20772.6 23018.3
15 37.7 99.1 15993.7 185527  21111.7 23670.7 26229.7
16 44.0 1153 185932  21568.1 24543.1 27518.0 304929
17 52.7 137.9 22210.7  25764.4 29318.1 32871.8 36425.6
18 65.7 171.5 27589.8  32004.1 36418.5 408329 452472
19 87.1 226.6 36431.3  42260.3 48089.3 53918.3 597473
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Fig.1. DEEG Emission Rate Curves for Different Numbers
of Z12V190s as a Function of DEEG OMP
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Diesel engine exhaust gas waste heat recovery analysis

According to the conservation of energy, the calculation models of the DEEG WH
recovery rate ( Hou & Gao, 2012) and its equivalent coal quantity are as follows:

CVR:a1+181'T+71'T2 (5)
4.184C
CP - Mexhzm:tR (6)
[m ]wal :Q_": 8. Cr '(tl _t2)'[m]exhuust (7)
q q
Qh = ge ' CP ' (tl - t2) [m]exhaust (8)

where ¢, is the DEEG Moore specific heat, kcal/(mol-°C); «,, B and 7, are constants:

a, =4.751276526 B, =1.19900582x107, 5 =-1.42321698x10” (Hua & Wang, 1984;
Su, 1980); ¢, is the DEEG initial temperature in WH transfer, °C; ¢, is the DEEG final

temperature in WH transfer, °C; 2. is the DEEG WH released from ¢, to #,,KJ; g, is
the Z12V190 fuel consumption, 209.4+5% g/(KW-h); ¢, is the DEEG quality specific
heat, kJ/(kg-°C).

The calculation results of the minimum DEEG WH recovery rate for Z12V190 are
as shown in Table 1. Increases in the DEEG emission rate lead to a linear increase in
the DEEG WH rate. An increased difference between DEEG initial temperature and
DEEG final temperature leads to an increased DEEG WH recovery rate.

DIESEL ENGINE EXHAUST GAS RECYCLING

Diesel engine exhaust gas underbalanced drilling

For DEEG UBD, some formulas to modify min-GIR are derived by the analysis
of DEEG density at the critical point (CP) on the basis of the minimum kinetic energy
method (Tabatabaei et al., 2008; Guo & Ghalambor, 2006; Johnson, 1991; Carlos &
Chi, 1982; Angel, 1957), such as formula (9) and (10). The minimum gas velocity will
be calculated by the following formulas (11) and (12). All this formulas are shown as
follows.
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Qg:%vg(Df—D;O) (11)

0,0=0, 28 (12)
where P, is the gas density at standard atmospheric conditions, kg/m?; o, is the gas
density at pressure Poi and temperature 7' o1 » kg/m’; Qg is the min-GIR at standard
atmospheric conditions, m*/s; Qg0 is the min-GIR at pressure Py, and temperature ,

01 m*/s; Dh is the wellbore diameter, mm; Dp0 is the outside diameter of DP, mm; M
is DEEG molar mass, kg/kmol; R is the general gas constant.
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Fig.2. Curves for DEER and CP min-GIR at Different Pressure and OMP

The CP pressure, which determines the min-GIR, is different according to the
CP depth. The results are as shown in Figure 2. The DEEG UBD is not only suitable
for low-pressure shallow wells, but also for low-pressure deep wells. As the well
becomes deeper or the annular cross-sectional area becomes smaller, CP pressure will
increase. On the contrary, the CP pressure will be lesser. According to the analysis of
calculation results, the DEEG emission rate determines the CP pressure range. The CP
pressure range is as shown in Figure 2.

Diesel engine exhaust gas waste heat recovery

The Z12V190 DEEG outlet temperature is about 500°C (Conklin & Szybist, 2010).
Suppose DEEG WH recovery systems can use 70% of the DEEG WH from 500°C to
120°C, the DEEG WH rates are as shown in Fig.3 and Table 1, the available DEEG
WH rate is large and increases proportionally with the number of diesel engines. The
possible cost savings of DEEG WH recovery is large, and the Z12V190 DEEG WH
recovery has great marketing prospects.
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Fig.3. DEEG WH Recovery Rate Curves for DEEG Emission Rate
from 500°C to 120°C

DIESEL ENGINE EXHAUST GAS COMPREHENSIVE
APPLICATION

The schematic flowchart of comprehensive applications on DEEG recycling is as
shown in Figure 4. The DEEG arrives at the WH recovery systems by the pipeline.
The WH recovery systems (Reay, 2002; Reay et al., 2008) recover DEEG WH into
available energy and send it to the drilling crew users. The DEEG releases WH
constantly until the DEEG temperature drops to the drill well permit temperature.
Then the DEEG goes through the air compressors, supercharger and other equipments
to achieve the high-pressure requirements of gas UBD.
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Fig.4. Schematic Flowchart of Comprehensive Applications on DEEG Recycling and WH Recovery

The high pressure DEEG passes through the standpipe, drilling hose and DP
water eye, etc., to arrive at the bottom hole to clean and carry the cuttings back to the
ground along the DP annular space. Finally, the DEEG goes through the dust filtration

equipments and debris waste reservoirs to remove the dust and cuttings, and releases
it in to the atmosphere.
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CONCLUSIONS

(1) The DEEG UBD is feasible for low-pressure oil and gas fields. It has given
CP pressure ranges of DEEG UBD corresponding to different DEEG emission
rates with different diameter DPs in a same diameter well.

(2) The DEEG WH rate increases with an increasing DEEG emission rate and is
very large. Rational DEEG WH recovery is feasible and has a good economic
development prospect.

(3)  The process flows of DEEG UBD and WH recovery for Z12V190 diesel engine
has been set up.
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NOMENCLATURE
DEEG diesel engine exhaust gas
WH waste heat
UBD underbalanced drilling;

min-GIR minimum gas injection rate

OMP O, mass percentage or oxygen mass percentage
DP drill pipe or drill pipes
CP critical point
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