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Abstract 

We compute the rank of the circulant Doob graph defined in Doob (2002). We also compute 

the rank and the determinant of its complement graph. 
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1. Introduction 
Ranks and determinants of different types of circulant 
matrices are considered in Doob (2002), Garner (2004), 
and Sookyang et al. (2008). They can be used to 
determine the non-isomorphism between two graphs. In 
other words, if two adjacency matrices have different 
determinants or ranks, then the graphs are non-
isomorphic. For more general results about the circulant 
matrices, refer to Wyn-jones (2013) and Gray (2006). 
Williams (2014) computed another algebraic invariant, 
namely the Smith normal form of various families of 
circulant graphs. The determinants and ranks of circulant 
graphs were used to check the results. In this paper, we 
compute the other algebraic invariants, specifically the 
rank and the determinant of the complement of the Doob 
graphs. This can be useful for verification of the Smith 
normal form of its complement. 
 
2. Preliminaries  
An 𝑛𝑛 × 𝑛𝑛 matrix A is said to be circulant if its first row is 
(𝑎𝑎0, 𝑎𝑎1, … , 𝑎𝑎𝑛𝑛−1), and where row 𝑖𝑖 + 1(0 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 2) 
is a cyclic shift of row 𝑖𝑖 by one column. A circulant graph 
is a graph G whose vertices can be ordered so that the 
adjacency matrix  is a circulant matrix. We use 
𝑟𝑟(= ∑ 𝑎𝑎𝑖𝑖

𝑛𝑛−1
𝑖𝑖=0 ) to denote the degree of this regular graph. 

From the theory of circulant matrices Davis (1979), we 
have: 
 
Lemma 1. Let 𝑝𝑝(𝑥𝑥) = ∑ 𝑎𝑎𝑖𝑖

𝑛𝑛−1
𝑖𝑖=0 𝑥𝑥𝑖𝑖. The eigenvalues of 𝐴𝐴 

are 𝑝𝑝(𝜀𝜀𝑘𝑘), where 𝜖𝜖𝑘𝑘 = 𝑒𝑒2𝑖𝑖𝑖𝑖𝑘𝑘/𝑛𝑛, 𝑘𝑘 = 0,1, … , 𝑛𝑛 − 1. 
 

The so-called Doob graphs 𝐺𝐺(𝑟𝑟, 𝑡𝑡)  from Doob (2002) 
have 𝑛𝑛 = (𝑟𝑟 − 1)𝑡𝑡 + 2 vertices and are regular of degree 
𝑟𝑟. They were constructed by taking a cycle of length n and 
joining each vertex with −  other vertices equally 
spaced around the circle. In other words, the vertices are 
{1,2, … , 𝑛𝑛} with two vertices i and j adjacent if and only 
if |i − j| ≡ 1 mod t. Figure 1 shows a tangible example. 

 
Fig. 1. Doob graph for 𝐺𝐺(3,4) 

 
Let 𝜖𝜖𝑘𝑘 = 𝑒𝑒2𝑖𝑖𝑖𝑖𝑘𝑘/𝑛𝑛  and 𝜉𝜉 = 𝑒𝑒2𝑖𝑖𝑖𝑖𝑖𝑖/𝑛𝑛 . The eigenvalues of 
𝐴𝐴(𝐺𝐺(𝑟𝑟, 𝑡𝑡) were computed in Doob (2002). They are given 
by the Theorem 1. 
Theorem 1. The eigenvalues of 𝐴𝐴(𝐺𝐺(𝑟𝑟, 𝑡𝑡)) are 

• r, which is simple, 
• 𝜖𝜖𝑘𝑘(𝜉𝜉𝑟𝑟𝑘𝑘 − 1)/(𝜉𝜉𝑘𝑘 − 1)   for 0 < 𝑘𝑘 < 𝑛𝑛/2, 

each of which has multiplicity 2, and 

• for even n, {−1 if t is even
−1 if t is odd  

which are also simple. 
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3. The rank of the Doob graph 
We now compute the rank of 𝐺𝐺(𝑟𝑟, 𝑡𝑡)  by finding the 
nullity in its adjacency matrix. Before this, we need the 
following observation: 
 
Let gcd(𝑛𝑛, 𝑡𝑡)  denote the greatest common divisor of n 
and t. Since 𝑛𝑛 = (𝑟𝑟 − 1)𝑡𝑡 + 2 , we have  gcd(𝑛𝑛, 𝑟𝑟𝑡𝑡) =

gcd(𝑟𝑟𝑡𝑡, 𝑡𝑡 − 2) = { gcd(r,t-2 )          if t  is odd  gcd(2r,t-2 )         if t  is even.  
 
Theorem 2. The rank of the graph 𝐺𝐺(𝑟𝑟, 𝑡𝑡) (with 𝑛𝑛 =
(𝑟𝑟 − 1)𝑡𝑡 + 2 vertices) is given by 

rank A(G(r,t)) = { n+1- gcd(r,t-2 )          if t  is odd
  n+2- gcd(2r,t-2 )         if t  is even.  

 
Proof. The zero eigenvalues can appear only in the second 
part of Theorem 1. Therefore, ξrk − 1 = 0 if and only if rtk 
≡ 0 mod n. In order to solve this linear congruence, we let 
d = gcd(n,rt). If t is odd, since d|0 and 0 < k < n/2, we 
have exactly (d − 1)/2 distinct solutions mod n. By the 
second part of Theorem 1, each eigenvalue has 
multiplicity 2. This implies that the number of zero 
eigenvalues is d−1 = gcd(n,rt)−1 = gcd(r,t−2)−1. Thus, 
we get the first part of the theorem. If t is even, since d|0 
and 0 < k < n/2, we have exactly (d−2)/2 distinct solutions 
mod n. By the second part of Theorem 1, each eigenvalue 
has multiplicity 2, which implies that the number of zero 
eigenvalues is d−2 = gcd(n,rt)−2 = gcd(2r,t−2)−2. This 
completes the proof of the theorem. 
Note that the rank formula generalizes the results found 
in Williams (2014) Corollary 3.8. Here, the Doob graphs 
are isomorphic to 𝐹𝐹𝑛𝑛,𝑟𝑟,𝑡𝑡 = circ𝑛𝑛(𝑣𝑣, … , 𝑣𝑣⏟  

𝑟𝑟
, 0, … ,0⏟  ),
𝑛𝑛−𝑡𝑡𝑟𝑟

  

(𝑡𝑡𝑟𝑟 − (𝑡𝑡 − 1) ≤ 𝑛𝑛, 1 ≤ 𝑡𝑡) where 𝑣𝑣 = (1, 0, … ,0⏟  )
𝑡𝑡−1

. Yet, in 

order to make sense n − tr ≥ 0 and replacing n = (r − 1)t 
+ 2  in the inequality, we get (r − 1)t + 2 – tr ≥ 0. This 
forces the values of t to be just 1 or 2. Therefore, Corollary 
3.8 proposed in Williams (2014) is just valid for t = 1 or t 
= 2. 
 
4. Complement of Doob graphs, ranks and 
determinants 
In this section, the complement of 𝐺𝐺(𝑟𝑟, 𝑡𝑡) is denoted by 
𝐺𝐺(𝑟𝑟, 𝑡𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅. We need the following lemma to compute the 
eigenvalues of the complement of the Doob graph, whose 

proof can be found in Theorem 2.1.2 of Cvetković et al. 
(2010). 
 
Lemma 2. If G is r-regular and r = λ1 ≥ λ2 ≥ ... ≥ λn are 
the eigenvalues of G then the eigenvalues of �̅�𝐺 are n − 1 
− r and {−1 − λi : 2 ≤ i ≤ n}. 
 
Because of the lemma we can state the following. 
 
Theorem 3. The eigenvalues of   𝐴𝐴(𝐺𝐺(𝑟𝑟, 𝑡𝑡))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are: 

• n − r − 1, which is simple, 
• −1− 𝜖𝜖𝑘𝑘(𝜉𝜉𝑟𝑟𝑘𝑘 − 1)/(𝜉𝜉𝑘𝑘 − 1) for 0 < 𝑘𝑘 <

𝑛𝑛/2 , each of which has multiplicity 2. 

• for even n, { 𝑟𝑟 − 1 if t is even  
    0     if t is odd     

which are also simple. 
 
We now compute the rank of the complement of the Doob 
graph by finding the nullity in its adjacency matrix. 
 
Theorem 4. The rank of the graph 𝐺𝐺(𝑟𝑟, 𝑡𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅  (with 𝑛𝑛 =
(𝑟𝑟 − 1)𝑡𝑡 + 2 vertices) is given by 

rank 𝐴𝐴(𝐺𝐺(𝑟𝑟, 𝑡𝑡))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = {  𝑛𝑛 + 1 − gcd(𝑡𝑡 − 1, 𝑛𝑛)       if  𝑡𝑡 > 1 0                                              if  t = 1.  
 

Proof. In order to compute the rank of the complement of 
the Doob graph, we need to find the number of 0 
eigenvalues. Therefore, we have to solve the following 
equation: 

−1− 𝜖𝜖𝑘𝑘(𝜉𝜉𝑟𝑟𝑘𝑘 − 1)/(𝜉𝜉𝑘𝑘 − 1) = 0. 
This expression simplifies to: 

(𝜖𝜖𝑘𝑘 + 1)(𝜉𝜉𝑘𝑘 − 𝜖𝜖𝑘𝑘) = 0, 
which can be written as: 

(𝑒𝑒
2𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 + 1)(𝑒𝑒

2𝑖𝑖𝑖𝑖𝑘𝑘𝑡𝑡
𝑛𝑛 − 𝑒𝑒

2𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 ) = 0. 

This means that either 𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛 + 1 = 0 or 𝑒𝑒

2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛 − 𝑒𝑒

2𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛 =

0. Since 0 < k < n, the only solution for the first factor is 
when n is even and k = n/2. 

For the second factor, we need to solve 𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛 = 𝑒𝑒

2𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛 . 

This equation is equivalent to kt ≡ k mod n, which is 
equivalent to (t − 1)k ≡ 0 mod n. Let d = gcd(t − 1,n). Then 
since d|0, it has d distinct solutions mod n. But since 0 < 
k < n, we have d−1 distinct solutions mod n. This means 
that the number of zero eigenvalues is − . If t = 1 then 
n = r + 1, so n − r − 1 = 0. Therefore, the number of all 
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zero eigenvalues is n, which completes the second part of 
the theorem.  
 
We now compute the determinant by finding the product 
of the eigenvalues. 
 
Theorem 5. The determinant of the graph 𝐺𝐺(𝑟𝑟, 𝑡𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅  (with 
𝑛𝑛 = (𝑟𝑟 − 1)𝑡𝑡 + 2  vertices) is 

𝐴𝐴(𝐺𝐺(𝑟𝑟, 𝑡𝑡))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

{
  
  
(𝑛𝑛 − 𝑟𝑟 − 1)  if n and t are even         
                        and  gcd(𝑡𝑡 − 1, 𝑛𝑛) = 1 
𝑛𝑛 − 𝑟𝑟 − 1      if n(hence t) are odd     
                      and gcd(𝑡𝑡 − 1, 𝑛𝑛) = 1
       0              𝑜𝑜therwise.                      

 

 
Proof. By Theorem 3, one of the eigenvalues is – – . 
When n is even, we have another non-zero eigenvalue 
−  for . By Theorem 4, if −  then 

we have at least one zero eigenvalue which forces the 
determinant to be zero. So let us consider the case 
 gcd(t − 1,n) = 1. 
 
The remaining product of the eigenvalues is 

    ∏ (−1 −
0<𝑘𝑘<𝑛𝑛
𝑘𝑘≠𝑛𝑛2

𝜖𝜖𝑘𝑘(𝜉𝜉𝑟𝑟𝑘𝑘 − 1)
𝜉𝜉𝑘𝑘 − 1 ) 

= ∏ −𝜉𝜉𝑘𝑘 + 1 − 𝜖𝜖𝑘𝑘(𝜉𝜉𝑟𝑟𝑘𝑘 − 1)
𝜉𝜉𝑘𝑘 − 10<𝑘𝑘<𝑛𝑛

𝑘𝑘≠𝑛𝑛2

 

= ∏ 1− 𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 − 𝑒𝑒

2𝑖𝑖𝑖𝑖𝑘𝑘(1+𝑖𝑖𝑟𝑟)
𝑛𝑛 + 𝑒𝑒

2𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛

𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 − 10<𝑘𝑘<𝑛𝑛

𝑘𝑘≠𝑛𝑛2

 

= ∏ 1− 𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 − 𝑒𝑒

2𝑖𝑖𝑖𝑖𝑘𝑘(𝑛𝑛+𝑖𝑖−1)
𝑛𝑛 + 𝑒𝑒

2𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛

𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 − 10<𝑘𝑘<𝑛𝑛

𝑘𝑘≠𝑛𝑛2

 

= ∏ 1− 𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 − 𝑒𝑒

2𝑖𝑖𝑖𝑖(𝑖𝑖−1)𝑘𝑘
𝑛𝑛 + 𝑒𝑒

2𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛

𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 − 10<𝑘𝑘<𝑛𝑛

𝑘𝑘≠𝑛𝑛2

= ∏ (1 − 𝑒𝑒
2𝑖𝑖𝑖𝑖(𝑖𝑖−1)𝑘𝑘

𝑛𝑛 )(1 + 𝑒𝑒
2𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 )

𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 − 10<𝑘𝑘<𝑛𝑛

𝑘𝑘≠𝑛𝑛2

. 

 

Note that gcd(𝑛𝑛, 𝑡𝑡) = gcd((𝑟𝑟 − 1)𝑡𝑡 + 2, 𝑡𝑡) = gcd (𝑡𝑡, 2),  
which implies that if t is odd then gcd(𝑛𝑛, 𝑡𝑡) = 1 and if t is 
even then gcd(𝑛𝑛, 𝑡𝑡) = 2.  Therefore if n and t are odd, we 
have gcd(𝑛𝑛, 𝑡𝑡) = 1. If n and t are even, gcd(𝑛𝑛, 𝑡𝑡) = 2. 

Since −  we have {(t−1)k mod n | k 
=1,… , 𝑛𝑛-1} = {1,… , 𝑛𝑛}.  So the above product becomes 

    ∏ (1 − 𝑒𝑒
2𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 )(1 + 𝑒𝑒

2𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 )

𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 − 10<𝑘𝑘<𝑛𝑛

𝑘𝑘≠𝑛𝑛2

= ∏ 1− 𝑒𝑒
2𝑖𝑖𝑖𝑖2𝑘𝑘
𝑛𝑛

𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 − 10<𝑘𝑘<𝑛𝑛

𝑘𝑘≠𝑛𝑛2

. 

 
Now there are two cases to consider. The first one is when 
n and t are both even. The second one is when n and t are 
both odd. 

Assume that n and t are even. Since n and t are even we 
have gcd(n,t) = 2. This implies {(tk mod n | k =1,… , 𝑛𝑛-1} 
= {0, 2, 4,… 𝑛𝑛 − 2} = (2k mod n | k =1,… , 𝑛𝑛-1}. Note that 

𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛 − 1 ≠ 0 since 𝑘𝑘 ≠ 𝑛𝑛/2. Hence 

   ∏ 1− 𝑒𝑒
2𝑖𝑖𝑖𝑖2𝑘𝑘
𝑛𝑛

𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 − 10<𝑘𝑘<𝑛𝑛

𝑘𝑘≠𝑛𝑛2

= ∏ 1− 𝑒𝑒
2𝑖𝑖𝑖𝑖2𝑘𝑘
𝑛𝑛

𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 − 10<𝑘𝑘<𝑛𝑛

𝑘𝑘≠𝑛𝑛2

 

This proves the first part of the theorem. 

Let n and t be odd. Then we have gcd(n, t) = 1 and 
gcd(n,2) = 1. This implies {tk mod n | k =1,… , 𝑛𝑛-1} =  
{ 1,… , 𝑛𝑛-1} = {2k  mod n | k =1,… , 𝑛𝑛-1}. This implies 

    ∏ 1− 𝑒𝑒
2𝑖𝑖𝑖𝑖2𝑘𝑘
𝑛𝑛

𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 − 10<𝑘𝑘<𝑛𝑛

𝑘𝑘≠𝑛𝑛2

= ∏ 1− 𝑒𝑒
2𝑖𝑖𝑖𝑖2𝑘𝑘
𝑛𝑛

𝑒𝑒
2𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
𝑛𝑛 − 10<𝑘𝑘<𝑛𝑛

= ∏ (−1)𝑛𝑛−1 = 1
0<𝑘𝑘<𝑛𝑛

. 

This proves the second part of the theorem.  
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