Cyclic codes of length p^n over \mathbb{Z}_{p^3}

Mehdi Alaeiyan^{1,*}, Mohammad Hyrizadeh²

¹Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran.

²Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran.

*Corresponding Author: Email: Alaeiyan@iust.ac.ir

Abstract

The purpose of this paper is to find a description of the cyclic codes of length p^n over \mathbb{Z}_{p^3} , such that p is a prime. It is known that cyclic codes of length p^n over \mathbb{Z}_{p^3} are ideals of the ring $S := \mathbb{Z}_{p^3} [X]/(X^{p^n} - 1)$. In this paper we prove that the S is a local ring with unique maximal ideal (p, X - 1). We also prove that cyclic codes of length p^n over \mathbb{Z}_{p^3} are generated as ideals by at most three elements.

Keywords: Cyclic codes over \mathbb{Z}_{p^3} ; primary analysis; local ring.

1. Introduction

Let S be a commutative finite ring with identity. A linear code C over S of length n is defined as an S – submodule of S^n . An element of C is called acodeword. A cyclic code C over S of length n is a linear code such that any cyclic shift of a codeword is also a codeword, i.e whenever $(c_0, c_1, ..., c_{n-1})$ is in C then so is $(c_{n-1}, c_0, ..., c_{n-2})$. Cyclic codes of order n are ideals of the ring S^n .

Let \mathbb{Z}_{p^3} denote the ring of integers modulo p^3 . Cyclic codes over ring \mathbb{Z}_{p^m} of length n such that (n, p) = 1 are studied by Calderbank & Sloane (1995) and Kanwar & Lopez-permouth (1997). Most of the work has been done on the generators of cyclic code of length n over \mathbb{Z}_4 such that 2|n. In Abualrub & Oehmke (2003), gave the structure of cyclic codes over \mathbb{Z}_4 of length 2^k , Blackford (2003) classified all cyclic codes over \mathbb{Z}_4 of length 2n where n is odd, and Dougherty & ling (2006) gave the generator polynomial of cyclic codes over \mathbb{Z}_4 for arbitrary even length. The structure of cyclic codes over \mathbb{Z}_{n^2} of length p^e is given by Minjia & Shixin (2008).

In this paper we prove that the ring $S = \mathbb{Z}_{p^3} \frac{[X]}{X^{p^n} - 1}$ is a local ring with unique maximal ideal (p, X - 1). Thereby implying that *S* is not a principal ideal ring (*PIR*) Garg & Dutt (2012), also the generators of a cyclic code need not divide $X^{p^n} - 1$ over \mathbb{Z}_{p^3} . More over, we prove that cyclic codes of length p^n over \mathbb{Z}_{p^3} are generated as ideals by at most three elements.

2. Primary analysis

In this part we want to find the ideals of the ring $R_{\alpha(X)} = \mathbb{Z}_{p^3} [X]/(X^{p^n} + p\alpha(X))$, where $\alpha(X) \in \mathbb{Z}_{p^3} [X]$ of degree less than p^n . Set $A(X) := X^{p^n} + p\alpha(X)$. We will show that there exist an $\alpha_0(X) \in \mathbb{Z}_{p^3} [X]$ such that $S \cong R_{\alpha_0(X)}$. Since two rings $R_{\alpha_0(X)}$ and Sare isomorphic, we can get the ideals of the ring S by obtaining the ideals of the ring $R_{\alpha_0(X)}$.

Definition 1. Let $\overline{f(X)} \in R_{\alpha(X)}$, where $f(X) \in \mathbb{Z}_{p^3}[X]$. The degree of $\overline{f(X)}$ over $R_{\alpha(X)}$ is equal to the degree of r(X) over $\mathbb{Z}_{p^3}[X]$, such that

$$f(X) = A(X) q(X) + r(X),$$

where $\deg r(X) < \deg A(X)$.

Lemma 1. If $f(X) \in \mathbb{Z}_{p^3}[X]$, then $degkf(X) \leq degf(X)$ over $\mathbb{Z}_{p^3}[X]$, such that $k \in \mathbb{Z}_{p^3}$.

Lemma 2. If $\overline{f(X)} \in R_{\alpha(X)}$, then $degk\overline{f(X)} \leq deg\overline{f(X)}$ over $R_{\alpha(X)}$, where $k \in \mathbb{Z}_{p^3}$.

Proof. Since A(X) is a monic polynomial, the division algorithm by A(X) is valid over $\mathbb{Z}_{p^3}[X]$, and if

$$f(X) = A(X)q(X) + r(X),$$

where degr(X) < degA(X), and

$$kf(X) = A(X)q'(X) + r'(X),$$

where degr'(X) < degA(X), are the division algorithms of f(X) and kf(X) by A(X), respectively, then we will have

$$kf(X) = A(X) kq(X) + kr(X),$$

where $degkr(X) \le degr(X) < degA(X)$ (we conclude $\deg kr(X) \le degr(X)$ by Lemma *I*). Since $\deg kr(X) < degA(X)$, we conclude that

$$kf(X) = A(X) kq(X) + kr(X),$$

where degkr(X) < degA(X), is the division algorithm of kf(X) by A(X). Therefore, by using Definition 1 we have

$$deg\overline{kf(X)} \le deg\overline{f(X)}$$
 over $R_{\alpha(X)}$.

The following result is similar to Proposition 1 in Woo (2013).

Proposition 1. The ring $R_{\alpha(X)}$ is a local ring with the maximal ideal (p, X). Every nonzero ideal J of $R_{\alpha(X)}$ is primary with the radical rad(J) = (p, X).

Proof. Let m be a maximal ideal. Any nilpotent element is contained in every prime ideal, Atiyah & Macdonald (1965). Since p is also nilpotent we see p and X

belong to *m*. On the other hand, (p, X) is a maximal ideal since $R_{\alpha(X)} / (p, X) \cong F_p$. Therefore, m = (p, X).

Let *J* be an ideal of $R_{\alpha(X)}$. Then *p* and *X*, being nilpotent, belong to the radical rad(J) of *J*. Therefore rad(J) = (p, X). It is well known that if the radical of *J* is a maximal ideal, then *J* is primary, (Atiyah & Macdonald (1965)) Proposition 4.2).

Lemma 3. (Atiyah & Macdonald, 1965) Suppose R is a commutative ring with unity, and $u \in R$ is a unit of R. Then u + n is unit if n is nilpotent.

We will use Lemma 3 in this paper freely.

Proposition 2. $R_{\alpha(X)}$ is not *PIR*.

Let J refer to an arbitrary ideal of R and M denote the set of ideals of R. We can partition M into three parts:

(i)
$$J \subseteq (p^2)$$

(ii) $J \not\subseteq (p^2) \& J \subseteq (p)$

(iii) $J \not\subseteq (p)$.

We analyze each of these three cases.

First case: $J \subseteq (p^2)$.

Theorem 1. If *J* is a nonzero ideal of $R_{\alpha(X)}$ such that $J \subseteq (p^2)$, then $J = (p^2 X^r)$ for some *r*.

Proof .Let $f(x) \in J$, then all of coefficients of f(X) belong to $p^2 \mathbb{Z}_{p^3}[X]$.

We assume $f(X) = p^2 \sum_{i=0} f_i X^i$, such that f_i is equal to zero or is a unit in Z_{p^3} . Let $deg_L f(X) = t$ then $f(X) = p^2 X^t$. *u*, such that *u* is a unit in $R_{\alpha(X)}$.

We conclude that $p^2 X^t \epsilon J$. Suppose r is the smallest t that mentioned. It is clear that $J = (p^2 X^r)$ because each nonzero polynomial in J takes the form of $p^2 X^a$. u, where u is an unit in $R_{\alpha(X)}$ and $r \leq a$.

Definition 2. Let us call the element of the form p^2X^r an p^2Xr form.

Second case: $J \not\subseteq (p^2) \& J \subseteq (p)$

Theorem 2. If *J* is a nonzero ideal of $R_{\alpha(X)}$ such that $J \not\subseteq (p^2) \& J \subseteq (p)$, then *J* contains a nonzero element in form of $pX^k + p^2K(X)$, where $K(X) = \sum_{i=0}^{k-1} k_i X^i$. All of coefficients of K(X) are zero or unit in \mathbb{Z}_{p^3} .

Proof. Suppose *l* be the smallest integer such that $X^l = 0$ in $R_{\alpha(X)}$. In addition, since $J \not\subseteq (p^2) \& J \subseteq (p)$, there is a polynomial $f(X) = p \sum_{i=0} f_i X^i$ such that one of its coefficients doesn't belong to $p^2 \mathbb{Z}_{p^3}$. Let *s* denote the smallest nonzero *i* which $f_i \notin p\mathbb{Z}_{p^3}$. Therefore $X^{l-s-1}f(X)$ is the polynomial we desired.

Definition 3. We call the element of the form $pX^k + p^2K(X)$, where $K(X) = \sum_{i=0}^{k-1} k_i X^i$, and $k_i \notin pZ_{p^3}$ or $k_i = 0, 0 \le i \le k - 1$ an $pXkp^2$ form.

Let us agree that the degree of the zero polynomial to be $-\infty$ and $X^k = 0$ if $k = -\infty$.

Theorem 3. If *J* is a nonzero ideal of $R_{\alpha(X)}$, where $J \not\subseteq (p^2) \& J \subseteq (p)$, then $J = (p^2 X^r, g(X))$, where g(X) and $p^2 X^r$ have the lowest degree between $pXkp^2$ forms and $p^2 Xr$ forms respectively.

Proof. As we proved in theorem 2 there is an $pXkp^2$ form in *J*. We call the $pXkp^2$ form with the lowest degree g(X). Therefore $g(X) = pX^k + p^2K(X)$, where $K(X) = \sum_{i=0}^{k-1} k_i X^i$, and $k_i \notin p\mathbb{Z}_{p^3}$ or $k_i = 0, 0 \le i \le k - 1$. It is clear that $(p^2X^r, g(X)) \subseteq J$. We show that $J \subseteq (p^2X^r, g(X))$.

Suppose that $T'(X) \& T(X) \in J$, $T(X) = p \sum_{i=0} t_i X^i$ and $T'(X) = \sum_{i=0} t_i X^i$. Then the division algorithm states that

$$T'(X) = g'(X) q(X) + r'(X),$$

where $deg\overline{r'(X)} < deg\overline{g'(X)}$ over $R_{\alpha(X)}$, and $g'(X) = X^k + pK(X)$.

We conclude that

$$pT'(X) = pg'(X) q(X) + pr'(X)$$
$$\Rightarrow T(X) = g(X)q(X) + pr'(X).$$

Lemma 2 Implies that deg pr'(X) < deg r'(X). Let r(X) denote pr'(X), i.e. r(X) = pr'(X). We will have

T(X) = g(X) q(X) + r(X), where degr(X) < degg(X)

We will show $r(X) \in (p^2)$.

In a proof by contradiction, we assume the opposite: $r(X) \notin (p^2)$. suppose $r(X) = p \sum_{i=0}^{t} r_i X^i, r'(X) = \sum_{i=0}^{t} r_i X^i$.

First, we assume s is the smallest i such that r_i is unit. Therefore $r(X) = pX^s u$ for some unit u. We see that $pX^s \in J$, an $pXkp^2$ form. It is a contradiction, because s < degg(X).

Second, we assume s is the index of the leading coefficient of r(X). Then $r'(X) = r_s X^s + ph(X)$. Therefore $pX^s + p^2 uh(X) \in J$, for some unit u. This is contradiction, because $s < \deg g(X)$ and $pX^s + p^2 uh(X)$ is an $pXkp^2$ form.

Thirdly, we assume s is an arbitrary index of a coefficient of r(X), except the smallest or the greatest one. Up to the end of the paper we consider a coefficient zero if its index become negative.

We define the sequence of $\psi_i(X)$ of polynomials as the following:

$$\begin{split} \psi_0(X) &= X^{k-t} r(X) - r_t g(X) \Longrightarrow \psi_0(X) = \sum_{i=0}^{k-1} p(r_{i+t-k} - pr_t k_i) X^i. \\ \psi_1(X) &= X \psi_0(X) - (r_{t-1} - pk_{k-1} r_t) g(X) \\ \Longrightarrow \psi_1(X) &= \sum_{i=0}^{t-2} (r_{i+t-k} - p(k_i r_t + r_{t-1})) X^{i+1} + p^2 f_0. \\ \psi_2(X) &= X \psi_1(X) - (r_{t-2} - p(k_{k-2} r_t + r_{t-1})) g(X) \\ \Longrightarrow \psi_2(X) &= \sum_{i=0}^{t-2} p(r_{i+t-k} - p(k_i r_t + r_{t-1} + r_{t-2})) X^{i+2} + p^2 f_2(X), \end{split}$$

where deg $f_2(X) \leq 1$.

We define $\psi_z(X)$ inductively such as

$$\psi_z(X) = X\psi_{z-1}(X) - \delta_z g(X),$$

where
$$\delta_z = (r_{t-z} - p(k_{k-z}r_t + r_{t-1} + r_{t-2} + \dots + r_{t-z-1}))$$

$$\Rightarrow \psi_z(X) = \sum_{i=0}^{k-z-1} p(r_{i+t-k} - p(k_ir_t + r_{t-1} + r_{t-2} + \dots + r_{t-z}))X^{i+z} + p^2 f_z(X),$$

where deg $f_z(X) \leq z - 1$.

By taking z = t - s - 1 we have

$$\psi_{t-s-1}(X) = \sum_{i=0}^{k-t+s} p(r_{i+t-k} - p(k_i r_t + r_{t-1} + r_{t-2} + \dots + r_{s+1})) X^{i+t-s-1} + p^2 f_{t-s-1}(X)$$

The leading coefficient of $\psi_{t-s-1}(X)$ is equal to

$$B = p(r_s - p(k_{k-t+s}r_t + r_{t-1} + r_{t-2} + \dots + r_{S+1}))$$

Clearly, there exists a unit u in $R_{\alpha(X)}$ such that B = pu. Other coefficients of $\psi_{t-s-1}(X)$ are also in form of p^2u (*uisunit*). Considering deg $\psi_{t-s-1}(X) \le k-1$, we see a contradiction. Since $r(X) \in (p^2)$. Therefore $r(X) = p^2 X^t u$ for some unit u, where u is unit. It means $T(X) \in (p^2 X^r, g(X))$, so $J = (p^2 X^r, g(X))$.

Third case: $J \not\subseteq (p)$.

Theorem 4. Let *J* be a nonzero ideal of $R_{\alpha(X)}$ such that $J \notin (p)$. Then *J* contains a nonzero element in form of $X^t + pt_1(X) + p^2t_2(X)$, where $degt_1(X), degt_2(X) < t$, and all of the coefficients of $t_1(X)$ and $t_2(X)$ are unit in \mathbb{Z}_{p^3} .

Proof. Since $J \not\subseteq (p)$, there exists polynomial f(X) of J which one of its coefficients doesn't belong to pZ_{p^3} . We consider s to be the smallest positive integer such that f_s is unit. Therefore $X^{l-s-1}f(X)$ is the polynomial as desired, where l is the lowest positive integer such that $X^l = 0$ in $R_{\alpha(X)}$.

Definition 4. Let *J* be a nonzero ideal of $R_{\alpha(X)}$, where $J \not\subseteq (p)$. Then we define an element $X^t + pt_1(X) + p^2t_2(X)$ as an $Xtpp^2$ form, where $degt_1(X) < t$, $degt_2(X) < t$, and all of coefficients of $t_1(X)$ and $t_2(X)$ are unit in \mathbb{Z}_{p^3} .

Theorem 5. Let *J* be a nonzero ideal of $R_{\alpha(X)}$ and $J \not\subseteq (p)$. Then $J = (p^2 X^r, g(X), f(X))$, where f(X) is an element of *J* with the lowest degree and an $Xtpp^2$ form, and g(X) is an element of *J* with the lowest degree and $pXkp^2$ form, and an $p^2 X^r$ is an element of *J* with the lowest degree and an $p^2 Xr$ form.

Proof. It is obvious that $(p^2 X^r, g(X), f(X)) \subseteq J$. We will show that $J \subseteq (p^2 X^r, g(X), f(X))$.

Let $f(X) = X^t + pt_1(X) + p^2t_2(X)$ is an $Xtpp^2$ form, where $t_j(X) = \sum_{i=0}^{t-1} t_j^{(i)} X^i$, $j = 1, 2, \text{ and } t_j^{(i)}$ s are unit or zero, $j = 1, 2 \& 0 \le i \le t - 1$.

We consider $T(X) \in J$. As polynomial f(X) is monic, we can use the division algorithm for T(X) and f(X) in $R_{\alpha(X)}$. We will have

$$T(X) = f(X)q(X) + r(X),$$

where degr(X) < degf(X), and we can assume $r(X) = \sum_{i=0}^{w} r_i X^i$.

We will show that $r(X) \in (p)$.

In a proof by contradiction, we assume the opposite: $r(X) \notin (p)$ and $r(X) = \sum_{i=0}^{w} r_i X^i$. Suppose that *s* denotes the smallest *i* where r_i is unit. If r_s is the leading coefficient of r(X), then w = s and $r(X) = uX^w + pw_1(X) + p^2w_2(X)$ for some *u* and for some $w_1(X), w_2(X)$. Therfore r(X) is an $Xtpp^2$ form. It is a contradiction.

If r_s is the coefficient of the lowest degree term, then $r(X) = uX^s$ for some u, where u is unit. Therefore r(X) is an $Xtpp^2$ form. Again it is a contradiction.

We consider r_w as an arbitraty coefficients of r(X), except two cases mentioned. We define the sequence of $\psi_i(X)$ of polynomials as the following:

$$\psi_0(X) = X^{t-w}r(X) - r_w f(X)$$

$$\Rightarrow \psi_0(X) = \sum_{i=0}^{t-1} \left(r_{i-t+w} - pr_w t_i^{(1)} - p^2 r_w t_i^{(2)} \right) X^i.$$

We remember that we consider a coefficient zero if its index become negative.

21 Cyclic codes of length p^n over \mathbb{Z}_{p^3}

$$\psi_1(X) = X\psi_0(X) - \left(r_{w-1} - pr_w t_{t-1}^{(1)} - p^2 r_w t_{t-2}^{(2)}\right) f(X).$$

For the sake of notational convenience let us use $\alpha_i^{(j)}$ instead of some coefficients and $\beta_i(X)$, $\gamma_i(X)$ instead of some polynomials. Moreover, the coefficients of $\beta_i(X)$ and $\gamma_i(X)$ are unit.

$$\psi_1(X) = \sum_{i=0}^{l-2} (r_{i-t+w} + p\alpha_i^{(1)})X^{i+1} + p\beta_1(X) + p^2\gamma_1(X)$$

where $\deg \beta_1(X) = \deg \gamma_1(X) = 0$.

$$\begin{split} \psi_2(X) &= X\psi_1(X) - \left(r_{w-2} + p\alpha_{t-2}^{(1)}\right)f(X) \\ \Rightarrow \psi_2(X) &= \sum_{i=0}^{t-3} (r_{i-t+w} + p\alpha_i^{(2)})X^{i+2} + p\beta_2(X) + p^2\gamma_2(X), \end{split}$$

where deg $\beta_2(X) \le 1$, deg $\gamma_2(X) \le 1$.

We define $\psi_h(X)$ inductivly such as

$$\begin{split} \psi_h(X) &= X \psi_{h-1}(X) - \left(r_{w-h} + p \alpha_{t-h}^{(h-1)} \right) f(X) \\ \Rightarrow \psi_h(X) &= \sum_{i=0}^{t-h-1} (r_{i-t+w} + p \alpha_i^{(h)}) X^{i+h} + p \beta_h(X) + p^2 \gamma_h(X), \end{split}$$

where $\deg \beta_{\rm h}(X) \le h - 1$, $\deg \gamma_{\rm h}(X) \le h - 1$.

By taking h = w - s - 1, we have

$$\psi_{w-s-1}(X) = \sum_{i=0}^{t-w+s} (r_{i-t+w} + p\alpha_i^{(w-s-1)})X^{i+w-s-1} + p\beta_{w-s-1}(X) + p^2\gamma_{w-s-1}(X),$$

where $\deg \beta_{w-s-1}(X) w - s - 2$, $\deg \gamma_{w-s-1}(X) \le w - s - 2$.

The leading coefficient of $\psi_{w-s-1}(X)$ is equal to $B = r_s + p\alpha_{t-w+s}^{(w-s-1)}$. Since r_s is unit, B is unit too. It is a contradiction because $\psi_{w-s-1}(X)$ is an $Xtpp^2$ form and its degree is less than k - 1. Therefore $r(X) \in (p)$. Consequently $(r(X)) \subseteq (p^2X^r, g(X))$. Hence we see that

$$J = (p^2 X^r, g(X), f(X)).$$

3. The main results

In this part we contact between $R_{\alpha(X)}$ and *S* by using an isomorphism to find the ideals of *S*.

Lemma 4. Let $n \ge 2$. Then

$$\binom{p^{n}}{r} \equiv \begin{cases} a_{r}p, r = ip^{n}, i = 1, 2, \dots, p^{2} - 1, \exists a_{r} \notin p^{2}\mathbb{Z}_{p^{3}}, a_{r} \in \mathbb{Z}_{p^{3}}, \\ 0 & (modp^{3}) \\ 0 & o.w. \end{cases}$$

Proof. Consider the mapping $t_p: \mathbb{N} \to \mathbb{N}$ (*p*prime), such that $t_p(r) = p^m$, where m is the greatest positive integer such that $p^m | r$. Clearly $t_p(r) = t_p(p^n - r)$, $t_p(ab) = t_p(a)t_p(b)$ and $t_p(a/b) = t_p(a)/t_p(b)$. So if $r = ip^{n-2}$, $i = 1, 2, ..., p^2 - 1$, then $p | \binom{p^n}{r}$. Therefore $\binom{p^n}{r} \not\equiv 0 \pmod{p^3}$, thus for $r = ip^{n-2}$, $i = 1, 2, ..., p^2 - 1$, there exists an element a_r such that $\binom{p^n}{r} \equiv pa_r(modp^3)$. Otherwise, $\binom{p^n}{r} \equiv 0 \pmod{p^3}$.

Lemma 5. Let $(X^{p^n} - 1) \in \mathbb{Z}_{p^3}[X]$, where $n \ge 2$. Then

$$X^{p^n} - 1 = (X - 1)^{p^n} + p \sum_{r \in \Gamma} a_r (X - 1)^r$$
,

where $\Gamma = \{ip^{n-2} | i = 1, 2, \dots, p^2 - 1\}.$

Proof. We know $X^{p^n} - 1 = ((X - 1) + 1)^{p^n} - 1.$

By taking T = X - 1, we have $(T + 1)^{p^n} - 1 = \sum_{i=0}^{p^n} {p^n \choose i} T^i - 1$. By Lemma 4, $(T + 1)^{p^n} - 1 = T^{p^n} + p \sum_{r \in \Gamma} a_r T^r$. Therefore

$$X^{p^n} - 1 = (X - 1)^{p^n} + p \sum_{r \in \Gamma} a_r (X - 1)^r,$$

where we know $\sum_{r \in \Gamma} a_r (X-1)^r = \alpha_0 (X-1)$ in advance.

By Lemma 5 we have the following result.

Proposition 4. There is an isomorphism $\varphi: R_{\alpha_0(X)} \to S$ of rings which maps f(X) to f(X - 1).

We have the following main result.

Proposition 5. (p, X - 1) is the unique maximal of S. Moreover, the only ideals of S are

 $I_0 = (0),$

 $I_1 = (p^2(X - 1)^r)$, for some *r*,

 $I_2 = (p^2(X-1)^r, g(X-1))$, for some g(X) where is an $pXkp^2$ form, and $deg g(X) \ge r$, for some r,

 $I_3 = (p^2(X-1)^r, g(X-1), f(X-1))$, for some g(X), f(X) and r which are the form $pXkp^2$, $Xtpp^2$ respectively, and $deg f(X) \ge deg g(X) \ge r$.

Proof. We know the mapping $\varphi: R_{\alpha_0(X)} \to S$ is an isomorphism $R_{\alpha_0(X)}$ onto *S*. Therefore, the mapping $\varphi^{-1}: S \to R_{\alpha_0(X)}$ given by $\varphi^{-1}(X) = X + 1$ is an isomorphism *S* onto $R_{\alpha_0(X)}$. If *I* is an ideal of *S*, then $\varphi^{-1}(I) = J$ will be an ideal of $R_{\alpha_0(X)}$, and if *J* is an ideal of $R_{\alpha_0(X)}$, then $\varphi(J) = I$ will be an ideal of *S*. Therefore maximal ideal of *S* is unique, and is equal to (p, X - 1). In addition, I_0, I_1, I_2 , and I_3 mentioned above are the only ideals of *S*.All cyclic codes of length p^n over \mathbb{Z}_{p^3} are defined by I_0, I_1, I_2 , and I_3 .

References

- Atiyah, M.F. & Macdonald, I.G. (1969) Introduction to Commutative Algebra. AddisonWesley.
- Abualrub, T. & Oehmke, R. (2003) Cyclic codes of length 2^e over \mathbb{Z}_4 . Discrete Applied Mathematics, 128:3-9.
- **Blackford, T. (2003)** Cyclic codes over \mathbb{Z}_4 of oddly even length. Discrete Applied Mathematics, **128:**27-46.
- Calderbank, N.J.A. & Sloane, A.R. (1995) Modular and p-adic cyclic codes. Designs, Codes and Cryptography, 6:21-35.
- **Dougherty, S.T. & Ling, S. (2006)** Cyclic codes over \mathbb{Z}_4 of even length. Designs, Codes and Cryptography, **39**:127-153.
- Garg, A. & Dutt, S. (2012) Cyclic codes of length 2^k over \mathbb{Z}_{g} . Open Journal of Applied Sciences, 2(4B):104-107.
- Kanwar, P. & Lopez-permouth, S.R. (1997) Cyclic codes over the integers modulo p^m. Finite Fields and Their Applications, 3(4):334-352.
- Minjia, S. & Shixin, Z. (2008) Cyclic codes over the ring \mathbb{Z}_{p^2} of length p^e. Journal of Electronics (China), 25(5):636-640.
- Woo, S.S. (2013) Cyclic codes of length 2^n over \mathbb{Z}_4 . Communications of the Korean Mathematical Society, 28(1):39-54.

 Submitted
 : 17/03/2014

 Revised
 : 26/08/2014

 Accepted
 : 05/01/2015

\mathbb{Z}_{p^3} شيفرات دورية طولها p^n على

خلاصة

الغرض من هذا البحث هو إيجاد وصف للشيفرات الدورية التي طولها "p حيث p هو عدد أولى. ومن المعروف أن الشيفرات الدورية ذات الطول "p على Z_{P3} هي مثاليات للحلقات (X^{PN} 1) / (X) _EZ_{P3} (X) نثبت في هذا البحث أن S هي حلقة محلية لها مثالية أعظمية وحيدة (I- P,X). كما نثبت أيضاً بأن الشيفرات الدورية التي طولها "p على Z_{P3} يكن توليدها كمثاليات بواسطة ثلاثة عناصر على الاكثر.