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Abstract

The purpose of this paper is to find a description of the cyclic codes of length  over 
, such that  is a prime. It is known that cyclic codes of length  over  are 

ideals of the ring . In this paper we prove that the  is a local 
ring with unique maximal ideal . We also prove that cyclic codes of length 

 over  are generated as ideals by at most three elements.
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1. Introduction

Let  be a commutative finite ring with identity. A linear code  over  of length  is 
defined as an    of . An element of  is called acodeword. A cyclic 
code  over  of length  is a linear code such that any cyclic shift of a codeword is 
also a codeword, i.e whenever  is in  then so is . 
Cyclic codes of order  are ideals of the ring .

Let  denote the ring of integers modulo . Cyclic codes over ring  of length 
 such that  are studied by Calderbank & Sloane (1995) and Kanwar & 

Lopez-permouth (1997). Most of the work has been done on the generators of cyclic 
code of length  over  such that . In Abualrub & Oehmke (2003), gave the 
structure of cyclic codes over  of length , Blackford (2003) classified all cyclic 
codes over  of length  where  is odd, and Dougherty & ling (2006) gave the 
generator polynomial of cyclic codes over  for arbitrary even length. The structure 
of cyclic codes over  of length  is given by Minjia & Shixin (2008).

In this paper we prove that the ring 
 
is a local ring with unique 

maximal ideal . Thereby implying that  is not a principal ideal ring 
Garg & Dutt (2012), also the generators of a cyclic code need not divide  over 

. More over, we prove that cyclic codes of length  over  are generated as 
ideals by at most three elements.
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2. Primary analysis

In this part we want to find the ideals of the ring , 
where  of degree less than . Set .We will show 
that there exist an  such that . Since two rings  and 
are isomorphic, we can get the ideals of the ring  by obtaining the ideals of the ring 

.

Definition 1. Let , where . The degree of  over  
is equal to the degree of  over , such that

where .

Lemma 1. If  , then  over , such that ϵ .

Lemma 2.  If  , then  over , where .

Proof. Since  is a monic polynomial, the division algorithm by  is valid 
over , and if 

where , and

where , are the division algorithms of  and  by 
, respectively, then we will have

,

where  (we conclude  
by Lemma1). Since , we conclude that 

,

where , is the division algorithm of  by . 
Therefore, by using Definition 1 we have

 over .

The following result is similar to Proposition 1 in Woo (2013).

Proposition 1. The ring  is a local ring with the maximal ideal . Every 
nonzero ideal  of  is primary with the radical .

Proof. Let  be a maximal ideal. Any nilpotent element is contained in every 
prime ideal, Atiyah & Macdonald (1965). Since  is also nilpotent we see  and  
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belong to . On the other hand,  is a maximal ideal since . 
Therefore, . 

Let  be an ideal of . Then  and , being nilpotent, belong to the radical 
 of . Therefore  = . It is well known that if the radical of  is a 

maximal ideal, then  is primary, (Atiyah & Macdonald (1965)) Proposition 4.2).

Lemma 3. (Atiyah & Macdonald, 1965) Suppose  is a commutative ring with 
unity, and  is a unit of . Then  is unit if  is nilpotent.

We will use Lemma 3 in this paper freely.

Proposition 2.  is not .

Let  refer to an arbitrary ideal of R and M denote the set of ideals of R. We can 
partition M into three parts:

(i) 

(ii) 

(iii) .

We analyze each of these three cases.

First case: .

Theorem 1.  If  is a nonzero ideal of  such that , then  
for some .

Proof .Let , then all of coefficients of  belong to .

We assume , such that  is equal to zero or is a unit in . Let 

 then ,such that  is aunit in .

We conclude that . Suppose  is the smallest  that mentioned. It is clear that 
 because each nonzero polynomial in  takes the form of , where 

is an unit in  and .

Definition 2. Let us call the element of the form  an  form.

Second case: 

Theorem 2. If  is a nonzero ideal of   such that  then  
contains a nonzero element in form of , where . All 
of coefficients of  are zero or unit in .

Proof. Suppose  be the smallest integer such that  in . In addition, 
since , there is a polynomial  such that one of 
its coefficients doesn’t belong to . Let  denote the smallest nonzero  which 

. Therefore  is the polynomial we desired.
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Definition 3. We call the element of the form , where 
, and  or  an  form.

Let us agree that the degree of the zero polynomial to be  and  if 
.

Theorem 3. If  is a nonzero ideal of , where , then 
, where  and  have the lowest degree between  

forms and  forms respectively.

Proof. As we proved in theorem  there is an  form in . We call the 
 form with the lowest degree . Therefore , 

where , and  or . It is clear that 
. We show that .

Suppose that  & ,  and . Then 
the division algorithm states that

,

where  over , and .

We conclude that

Lemma 2 Implies that . Let  denote , i.e. 
. We will have

,where 

We will show .

In a proof by contradiction, we assume the opposite: . suppose 
, .

First, we assume  is the smallest  such that  is unit. Therefore  
for some unit .We see that , an  form. It is a contradiction, because 

.

Second, we assume  is the index of the leading coefficient of . Then 
. Therefore , for some unit . This is 

contradiction, because  and  is an  form.

Thirdly, we assume  is an arbitrary index of a coefficient of , except the 
smallest or the greatest one. Up to the end of the paper we consider a coefficient zero 
if its index become negative.
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We define the sequence of  of polynomials as the following: 

where 

We define  inductively such as

where 

where .

By taking  we have 

The leading coefficient of  is equal to 

Clearly, there exists a unit  in  such that . Other coefficients of 
 are also in form of  ( ). Considering , 

we see a contradiction. Since . Therefore  for some unit , 
where  is unit. It means , so .

Third case: .

Theorem 4. Let  be a nonzero ideal of  such that . Then  contains a 
nonzero element in form of , where , 
and all of the coefficients of  and  are unit in .
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Proof. Since , there exists polynomial  of  which one of its coefficients 
doesn’t belong to . We consider  to be the smallest positive integer such that  is 
unit. Therefore  is the polynomial as desired, where  is the lowest positive 
integer such that  in .

Definition 4. Let  be a nonzero ideal of , where . Then we define an 
element  as an  form, where , 
and all of coefficients of  and  are unit in .

Theorem 5. .Let  be a nonzero ideal of   and . Then 
, where  is an element of  with the lowest degree and an 

 form, and  is an element of  with the lowest degree and  form, and 
an  is an element of  with the lowest degree and an  form.

Proof. It is obvious that . We will show that 
.

Let  is an  form, where 
, and ’  are unit or zero, .

We consider . As polynomial  is monic, we can use the division 
algorithm for  and  in . We will have 

, 

where , and we can assume .

We will show that .

In a proof by contradiction, we assume the opposite:  and  
. Suppose that  denotes the smallest  where  is unit. If  is the leading 

coefficient of , then  and  for some  
and for some . Therfore  is an  form. It is a contradiction.

If  is the coefficient of the lowest degree term, then  for some , 
where  is unit.Therefore  is an 

 

form. Again it is a contradiction.

We consider  as an arbitraty coefficients of , except two cases mentioned. 
We define the sequence of  of polynomials as the following:

We remember that we consider a coefficient zero if its index become negative.
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For the sake of notational convenience let us use  instead of some coefficients 
and  instead of some polynomials. Moreover, the coefficients of  and 

 are unit.

where .

                    

where .

We define  inductivly such as

where .

By taking , we have

where .

The leading coefficient of  is equal to B= . Since  is 
unit, B is unit too. It is a contradiction because  is an  form and its 
degree is less than . Therefore . Consequently 
Hence we see that

3. The main results

In this part we contact between  and  by using an isomorphism to find the ideals 
of .
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Lemma 4. Let . Then 

Proof. Consider the mapping  ( prime), such that , where 

 is the greatest positive integer such that . Clearly , 

 and . So if 

then . Therefore , thus for , there 

exists an element  such that . Otherwise, .

Lemma 5. Let , where . Then

 

where 

Proof. We know .

By  taking  ,  we  have   .  By  Lemma  4,
. Therefore

where we know  in advance.

      By Lemma 5 we have the following result.

Proposition 4. There is an isomorphism  of rings which maps  
to .

We have the following main result.

Proposition 5.  is the unique maximal of . Moreover, the only ideals of 
 are

,

 for some ,

 for some  where is an  form, and 
, for some ,

 for some ,  and  which are the 
form ,  respectively, and .
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Proof. We know the mapping  is an isomorphism  onto . 
Therefore, the mapping  given by  is an isomorphism 

 onto . If  is an ideal of , then  will be an ideal of , and if  is 
an ideal of , then  will be an ideal of . Therefore maximal ideal of  is 
unique, and is equal to . In addition, , and  mentioned above are the 
only ideals of .All cyclic codes of length  over  are defined by , and .
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