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ABSTRACT

In this study, it has been tried to present a new approximate method by using 
Homotopy Perturbation Method (HPM) for high nonlinear problems. Three different 
examples are considered and the application of the Homotopy perturbation method is 
studied.  Runge-Kutta algorithm is used to obtain numerical results. Another analytical 
method called Energy Balance Method (EBM) is applied to compare the results of 
HPM and Runge-Kutta algorithm. It has been shown that only one iteration of the 
method prepares high accurate solution for whole domain. It has been established that 
Homotopy perturbation method does not need any linearization and overcome the 
limitations of the perturbation methods.

Keywords: Energy balance method; Homotopy perturbation method; nonlinear 
oscillators; Runge-Kutta algorithm.

INTRODUCTION

Dynamical models of the problems are usually presented by differential equations. 
Differential equations are linear and nonlinear. Linear differential equations have exact 
solutions but when they are nonlinear, it is really hard to find an exact solution for the 
problem. Therefore, in recent years, finding an exact and analytical solution for the 
nonlinear differential equations is very important. The effects of important parameters 
on the nonlinear response of the problems can be easily considered, when we have 
its analytical solution. The traditional analytical methods have lots of limitations. To 
overcome these shortcomings, some new approximate methods have been presented 
to analyze high nonlinear problems. Recently, some researchers have worked on the 
numerical and analytical methods such as: Homotopy perturbation method (Bayat et 
al., 2012 ; He,1999) , Hamiltonian approach (Bayat & Pakar., 2011b, 2013b; Bayat et 
al.,  2014a,b), energy balance method (Bayat & Pakar, 2011a;  Mehdipour et al., 2010), 
Variational iteration method (Dehghan & Tatari, 2008; Pakar et al., 2012), amplitude 
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frequency formulation (He, 2008; Bayat et al., 2011; Pakar & Bayat., 2013b), max-
min approach (Shen & Mo, 2009; Pakar & Bayat, 2013a), Variational approach method 
(He, 2007; Xu & Zhang, 2009) and the other analytical and numerical (Cordero et al., 
2010; Bayat & Pakar, 2012; 2013a; Bayat et al., 2014; Bor-Lih & Cheng-Ying, 2009; 
Odibat et al., 2008;  Pakar & Bayat, 2012, 2013b; Wu, 2011; Nayfeh & Mook,1973).

Among of these new approximate methods; Homotopy perturbation method 
is used in this study. Only one iteration of this method leads us to a high accurate 
solution. Three nonlinear mechanical systems are presented to apply the homotopy 
perturbation method. The results of homotopy perturbation method are compared with 
Runge-Kutta’s algorithm and energy balance method; it has been demonstrated that 
the Homotopy perturbation method can be a strong mathematical tool for conservative 
nonlinear problems.

CONCEPT OF HOMOTOPY PERTURBATION

To explain the basic idea of the Homotopy perturbation method for solving nonlinear 
differential equations, one may consider the following nonlinear differential equation 
(He, 1999):

( ) ( ) 0A u f r− =    r ∈Ω                                     (1)

That is subjected to the following boundary condition:

, 0
u

B u
t

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
   Γ∈r                                              (2)

Where A is a general differential operator, B a boundary operator, f(r) is a known 
analytical function, Γ  is the boundary of the solution domain ( )Ω , and u t∂ ∂ denotes 
differentiation along the outwards normal to Γ . Generally, the operator A may be 
divided into two parts: a linear part L and a nonlinear part N. Therefore, Equation (3) 
can be rewritten as follows:

( ) ( ) ( ) 0L u N u f r+ − =    Ω∈r                                    (3)

By the construct of Homotopy technique, ( ) [ ], : 0,1Ω × →r p Rν , which satisfies

               
(4)

Or

                      (5)



Mahmoud Bayat, Iman Pakar and Mahdi Bayat 66

In Equation (4), [ ]0 , 1p ∈  is an embedding parameter and 0u  is the first 
approximation that satisfies the boundary condition. One may assume that solution of 
Equation (6) may be written as a power series in p, as the following:

                                             
(6)

The Homotopy parameter p is also used to expand the square of the unknown angular 
frequency  as follows:

                                           
(7)

Or

                                            (8)

where  is the coefficient of u(r) in Equation(3) and should be substituted by the right 
hand side of Equation(4). Besides,

  are arbitrary parameters that have to 
be determined.

The best approximations for the solution and the angular frequency  are

                                           
(9)

                                            (10)

APPLICATION

In order to assess the advantages and the accuracy of the Homotopy perturbation 
method, we will consider the following two examples:

Example 1

In this example we have Duffing equation with constant coefficient that presents in 
Figure 1 (Mehdipour et al., 2010):

             
(11)

In which u and t are generalized dimensionless displacements and time variables, 
respectively.



Nonlinear vibration of mechanical systems by means of Homotopy perturbation method67

Fig. 1. The physical model of Duffing equation with constant coefficient

Here is the application of Homotopy perturbation to Equation (11). We construct a 
Homotopy in the following form:

       
(12)

According to HPM, we assume that the solution of Equation (12) can be expressed in 
a series of p.

                                 (13)

The coefficients 1k m = Ω  be, respectively, expanded into a series in p in a similar 
way,

                                           (14)

Substituting Equations.(13) and (14)  into Equation (12) after some simplification and 
substitution and rearranging based on powers of p-terms, we have:

                                             (15)

And,

 
                          

(16)

Considering the initial conditions  and  the solution of Equation (15) 
is . Substituting the result into Equation (16), we have:
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(17)

For achieving the secular term, we use Fourier expansion series as follows:

 

  

(18)

Substituting Equation (18) into Equation (17) yields: 

  
(19)

Avoiding secular term in ( )1u t  gives:

                                                      
(20)

From Equation (14) and setting 1p = , we have:

                                                      (21)

Substituting Equation (20) in to Equation (21) and 1k mΩ = we can obtain the 
frequency of the nonlinear oscillator as follows:

                                         
(22)

Solving Equation (19) without secular term we obtain, 

(23)

Hence, we can obtain the following approximate solution,
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(24)

For comparison of the approximate solution, frequency obtained from solution of 
nonlinear equation with the energy balance method (Appendix A) is (Mehdipour et 
al., 2010):

  
                    

(25)

The numerical solution by with 4th order Runge-Kutta method (Appendix B) for 
nonlinear equation is:

                      

(26)

Example 2

Consider the motion of a mass m moving without friction along a circle of radius R 
that is rotating with a constant angular velocity Ω about its vertical diameter as shown 
in figure 2. The forces acting on the mass are gravitational force mg, the centrifugal 
of the circle O and the reaction force. The following governing equation has been 
obtained (Nayfeh & Mook,1973):

   
(27)

Fig. 2. Particle moving without friction on a rotating circular 
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(28)

By using the Taylor’s series expansion for ,  and by some manipulation 
in Equation (19) we can re-write Equation (19) in the following form:

                      
(29)

Now applying Homotopy perturbation to Equation (28) and construct a Homotopy in 
the following form:

  (30)

According to HPM, we assume that the solution of Equation (28) can be expressed in 
a series of p:

                                  (31)

The coefficients 2g
R

Δ = − Ω   be, respectively, expanded into a series in p in a similar 
way,

                                           (32)

Substituting Equation (31) and Equation (32) into Equation (30) after some 
simplification and substitution and rearranging based on powers of  p-terms, we 
have:

                                                 (33)

 

                 

(34)

 
Considering the initial conditions  and  the solution of Equation (33) 
is  substituting the result into Equation (34), we have:

          

(35)

For achieving the secular term, we use Fourier expansion series as follows:
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(36)

Substituting Equation (36) into right hand of Equation (35) yields: 

         

(37)

Avoiding secular term, gives:

                           (38)

From Equation (32) and setting 1p = , we have:

                                                     (39)

Substituting Equation (38) in to Equation (39) and 2Δ = − Ωg
R

 we can obtain the 
frequency of the nonlinear oscillator as follows:

                 (40)

Solving Equation (37) without secular term we obtain, 

   (41)

Hence, we can obtain the following approximate solution,
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(42)

For comparison of the approximate solution, frequency obtained from solution of 
nonlinear equation with the energy balance method (Appendix A) is:

 
   

(43)

The numerical solution by with 4th order Runge-Kutta method (Appendix B) for 
nonlinear equation is:

                        

(44)

Example 3

We consider the physical model of nonlinear equation in the following figure with  
, indicated in Figure 3 (Mehdipour et al,2010).

Fig. 3. The physical model of nonlinear equation 

The motion equation is:

               
(45)

This equation is as known as Mathieu equation or the system with dependent 
coefficients to time.

In which  and t are generalized dimensionless displacements and time variables, 

respectively. And consider  as constant. 
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The approximation  is used. 

Now applying Homotopy perturbation to Equation (45) and construct a Homotopy in 
the following form:

      
(46)

According to HPM, we assume that the solution of Equation (45) can be expressed in 
a series of p:

                                   (47)

The coefficients λ  be, respectively, expanded into a series in p in a similar way,

                                           (48)

Substituting Equation (47) and Equation (48) into Equation (46) after some 
simplification and substitution and rearranging based on powers of p-terms, we have:

                                                  (49)

 

                  

(50)

 
Considering the initial conditions  and  the solution of Equation (49) 
is  substituting the result in to Equation (50), we have:

   
(51)

For achieving the secular term, we use Fourier expansion series as follows:

 

  

(52)
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Substituting Equation (52) into right hand of Equation (51) yields: 

 
    

(53)

Avoiding secular term, gives:

                                          
(54)

From Equation (48) and setting 1p = , we have:

                                                      (55)

Substituting Equation (54) in to Equation (55) and 4 3k mλ =  we can obtain the 
frequency of the nonlinear oscillator as follows:

                                       
(56)

Solving Equation (53) without secular term we obtain, 

   

(57)

Hence, we can obtain the following approximate solution,

 

 

  

(58)

For comparison of the approximate solution, frequency obtained from solution of 
nonlinear equation with the energy balance method (Appendix A) is (Mehdipour et 
al., 2010):

               

(59)
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The numerical solution by with 4th order Runge-Kutta method (Appendix B) for 
nonlinear equation is:

 

                        

(60)

RESULT AND DISCUTION 

In this part, to verify the results of the new applied method, we have prepared some 
comparisons between Homotopy perturbation method, energy balance method and 
numerical solution. 

In example 1: Table 1 represent the comparison of time history displacement for 
two different cases :

Case1: L=1, h=0.5, m=10, k
1
=1000, k

2
=1500,   F

0
=1, ω

0
=2, A=0.8 tan(π/6) 

Case2: L=1, h=1, m=15,   k
1
=1800, k

2
=900,   F

0
=2, ω

0
=3, A=0.9 tan(π/12) 

The results show the high accuracy of the Homotopy perturbation method in 
comparison of Runge-Kutta’s algorithm and energy balance method. Figure 4 shows 
the comparison of homotopy perturbation method time history displacement diagram 
with Runge-Kutta and energy balance method for two different amplitudes.   

(a): A=0.9 tan(π/12)     (b): A=0.9 tan(π/18). 

Figure 5 is shown the Influence of springs stiffness (k
1
) and (k

2
) on nonlinear 

frequency. It can be seen from the figure that the increases of the spring stiffness 
causes the increases in nonlinear frequency.
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Table 1 . Comparison of time history response of HPM with EBM and Runge-Kutta (Example 1)

Case1 Case 2

Time HPM EBM RK4 Error % Time HPM EBM RK4 Error %

0 0.4619 0.4619 0.4619 0.0043 0 0.2412 0.2412 0.24115 0.0041

0.025 0.4386 0.4407 0.4386 0.0008 0.05 0.2054 0.2055 0.20541 0.0017

0.05 0.3724 0.3791 0.3725 0.0489 0.1 0.1090 0.1093 0.10899 0.0043

0.075 0.2731 0.2826 0.2737 0.2334 0.15 -0.0194 -0.0191 -0.01936 0.0027

0.1 0.1526 0.1603 0.1538 0.7561 0.2 -0.1419 -0.1418 -0.14189 0.0015

0.125 0.0219 0.0232 0.0234 6.3983 0.25 -0.2225 -0.2228 -0.22248 0.0005

0.15 -0.1101 -0.1159 -0.1084 1.5840 0.3 -0.2370 -0.2382 -0.23699 0.0020

0.175 -0.2350 -0.2444 -0.2331 0.8219 0.35 -0.1810 -0.1838 -0.181 0.0089

0.2 -0.3425 -0.3505 -0.3407 0.5575 0.4 -0.0713 -0.0754 -0.07133 0.0403

0.225 -0.4209 -0.4245 -0.4195 0.3249 0.45 0.0596 0.0552 0.059581 0.0549

0.25 -0.4590 -0.4595 -0.4587 0.0803 0.5 0.1733 0.1696 0.17332 0.0165

0.275 -0.4509 -0.4524 -0.4517 0.1690 0.55 0.2363 0.2341 0.23628 0.0042

0.3 -0.3979 -0.4039 -0.3998 0.4772 0.6 0.2295 0.2298 0.22952 0.0043

0.325 -0.3081 -0.3183 -0.3112 0.9870 0.65 0.1551 0.1577 0.1551 0.0027

0.35 -0.1933 -0.2036 -0.1974 2.0837 0.7 0.0353 0.0389 0.035285 0.0264

0.375 -0.0649 -0.0703 -0.0696 6.8419 0.75 -0.0946 -0.0915 -0.09459 0.0057

0.4 0.0677 0.0695 0.0627 7.9761 0.8 -0.1964 -0.1949 -0.19644 0.0013

0.425 0.1960 0.2030 0.1911 2.6011 0.85 -0.2400 -0.2404 -0.24004 0.0000

0.45 0.3106 0.3178 0.3060 1.4912 0.9 -0.2123 -0.2143 -0.21229 0.0014

0.475 0.3999 0.4035 0.3965 0.8670 0.95 -0.1216 -0.1241 -0.12161 0.0049

0.5 0.4523 0.4523 0.4508 0.3472 1 0.0049 0.0034 0.004911 0.3171

Case1: L=1,  h=0.5,  m=10,   k
1
=1000,   k

2
=1500,   F

0
=1,  ω

0
=2,  A=0.8 tan(π/6) 

Case2: L=1,  h=1,  m=15,   k
1
=1800,   k

2
=900,   F

0
=2,  ω

0
=3,  A=0.9 tan(π/12) 
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                                 (a)                                                                   (b)

 Fig. 4. Comparison of time history response of homotopy perturbation method and energy balance
  method with the numerical solution for L=1 m , h=0.9 m,  m=10 kg, k

1
=1000 N/m, k

2
=1100 N/m, F

0
=1N,

ω
0
=1 rad/sec     (a): A=0.9 tan(π/12)     (b): A=0.9 tan(π/18)

Fig. 5. Influence of springs stiffness (k
1
) and (k

2
) on nonlinear frequency

In example 2, Table 2 is the comparison of the three applied method to the governing 
equation of the problem for different important time value and an excellent agreement 
can be seen.

The cases in table 2 are: 

Case1:  

Case2:  

Figure 6 is comparison of time history displacement response of Homotopy 
perturbation method and energy balance method with the numerical solution for two 
different cases: 

(i):     (ii) 

The motion of the problem is periodic.

To see the effects of important parameters on the frequency of the system, we have 
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considered the effect of angular velocity ( Ω ) and radius(R) on nonlinear frequency 
in figure 7.

Table 2. Comparison of time history response of HPM with EBM and Runge-Kutta (Example 2).

Case1 Case2

Time HPM EBM RK4 Error % Time HPM EBM RK4 Error %

0 0.7854 0.7854 0.7854 0 0 1.5708 1.5708 1.5708 0

0.2 0.7151 0.7151 0.7148 0.0349 0.1 1.4640 1.4640 1.4652 0.0805

0.4 0.5167 0.5167 0.5158 0.1761 0.2 1.1581 1.1581 1.1625 0.3782

0.6 0.2258 0.2258 0.2241 0.7732 0.3 0.6947 0.6947 0.7034 1.2456

0.8 -0.1055 -0.1055 -0.1079 2.2135 0.4 0.1368 0.1368 0.1498 8.6744

1 -0.4180 -0.4180 -0.4205 0.6061 0.5 -0.4397 -0.4397 -0.4240 3.6972

1.2 -0.6556 -0.6556 -0.6575 0.3019 0.6 -0.9564 -0.9564 -0.9408 1.6577

1.4 -0.7758 -0.7758 -0.7764 0.0835 0.7 -1.3430 -1.3430 -1.3310 0.9001

1.6 -0.7570 -0.7570 -0.7557 0.1718 0.8 -1.5470 -1.5470 -1.5422 0.3073

1.8 -0.6028 -0.6028 -0.5993 0.5828 0.9 -1.5406 -1.5406 -1.5460 0.3533

2 -0.3405 -0.3405 -0.3351 1.6239 1 -1.3246 -1.3246 -1.3419 1.2849

2.2 -0.0173 -0.0173 -0.0167 3.7660 1.1 -0.9285 -0.9285 -0.9572 2.9973

2.4 0.3090 0.3090 0.3156 2.1030 1.2 -0.4062 -0.4062 -0.4438 8.4884

2.6 0.5799 0.5799 0.5852 0.8981 1.3 0.1715 0.1715 0.1793 4.3514

2.8 0.7471 0.7471 0.7496 0.3416 1.4 0.7257 0.7257 0.6849 5.9556

3 0.7804 0.7804 0.7793 0.1371 1.5 1.1813 1.1813 1.1485 2.8567

Case1:  

Case2:  
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                                  (i)                                                                 (ii)

Fig. 6.  Comparison of time history response of Homotopy perturbation method and energy balance 
method with the numerical solution  for  (i):  

(ii): 
 

Fig.7. Effect of angular velocity( Ω ) and radius(R) on nonlinear frequency

In example 3, again to compare the results of HPM and EBM and numerical 
solution, a complete comparison has been done for time point values to see the 
agreement of the methods. As it is shown they are in high agreement. The diagram 
of the time history displacements is shown in figure 8 for two different amplitudes 
(I): A=π/12  (II): A=π/3.

The effects of important parameters such as: spring stiffness and amplitude are 
studied in figure 9. As it is shown in figure 9, by increasing the spring stuffiness, the 
frequency of the vibration increase and by increasing the amplitude the frequency of 
the system is decreased.
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Table 3. Comparison of time history response of HPM with EBM and Runge-Kutta (Example 3).

Case1 Case 2

Time HPM EBM RK4 Error % Time HPM EBM RK4 Error %

0 0.5236 0.5236 0.5236 0.0012 0 0.3491 0.3491 0.3491 0.0028

0.025 0.4988 0.4985 0.4988 0.0056 0.05 0.2616 0.2615 0.2617 0.0138

0.05 0.4264 0.4257 0.4265 0.0313 0.1 0.0426 0.0432 0.0427 0.1858

0.075 0.3130 0.3122 0.3132 0.0834 0.15 -0.1975 -0.1963 -0.1974 0.0423

0.1 0.1691 0.1689 0.1695 0.2332 0.2 -0.3368 -0.3379 -0.3368 0.0112

0.125 0.0087 0.0095 0.0091 5.2831 0.25 -0.3062 -0.3119 -0.3062 0.0164

0.15 -0.1526 -0.1507 -0.1520 0.3450 0.3 -0.1203 -0.1319 -0.1204 0.0958

0.175 -0.2986 -0.2965 -0.2981 0.1735 0.35 0.1282 0.1129 0.1281 0.1075

0.2 -0.4154 -0.4140 -0.4150 0.1045 0.4 0.3136 0.3020 0.3135 0.0296

0.225 -0.4920 -0.4920 -0.4917 0.0575 0.45 0.3434 0.3428 0.3436 0.0339

0.25 -0.5215 -0.5232 -0.5214 0.0115 0.5 0.2032 0.2155 0.2037 0.2031

0.275 -0.5013 -0.5046 -0.5015 0.0464 0.55 -0.0373 -0.0174 -0.0367 1.4509

0.3 -0.4331 -0.4381 -0.4337 0.1272 0.6 -0.2563 -0.2417 -0.2559 0.1423

0.325 -0.3231 -0.3300 -0.3240 0.2619 0.65 -0.3435 -0.3476 -0.3434 0.0066

0.35 -0.1814 -0.1906 -0.1825 0.5947 0.7 -0.2557 -0.2830 -0.2560 0.1066

0.375 -0.0216 -0.0332 -0.0228 5.3405 0.75 -0.0363 -0.0792 -0.0367 1.1241

0.4 0.1406 0.1274 0.1394 0.8915 0.8 0.2045 0.1639 0.2041 0.1840

0.425 0.2892 0.2758 0.2881 0.4016 0.85 0.3447 0.3263 0.3446 0.0328

0.45 0.4099 0.3981 0.4089 0.2303 0.9 0.3149 0.3271 0.3153 0.1211

0.475 0.4912 0.4827 0.4906 0.1185 0.95 0.1296 0.1651 0.1305 0.6254

0.5 0.5260 0.5215 0.5259 0.0156 1 -0.1186 -0.0798 -0.1178 0.7137

Case1: L=0.5,  m=10, k=1200,  F
0
=1,  ω

0
=2,  A=π/6

Case2: L=1.5,  m=5,   k=800,    F
0
=3,  ω

0
=2,  A=π/9
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                                   (I)                                                                 (II)

Fig. 8.  Comparison of time history response of Homotopy perturbation method and energy balance 
method with the numerical solution  for  L=1 m,  m=10 kg,  k=1000 N/m,   F

0
=1N,   ω

0
=1 rad/sec

  (I):      (II):  

Fig. 9. Influence of spring stiffness (k) and amplitude (A) on nonlinear frequency

CONCLUSION 

In this study, we tried to apply a new approximate analytical method to high nonlinear 
mechanical systems. Homotopy perturbation method has been successfully applied 
for three different examples. Some patterns and tables have been presented to show 
the accuracy of the method. The method can converge rapidly to a high accurate 
solution in comparison to energy balance method and Runge-Kutta’a algorithm. Form 
the examples, it can be seen that only the first iteration of the problem can lead us to a 
high accurate solution for whole domain as indicated in this study.

APPENDIX A: BASIC IDEA OF ENERGY BALANCE METHOD 

Consider a general nonlinear oscillator in the form (He,2008);

                                                 (A.1)

In which u and t  are generalized dimensionless displacement and time variables, 
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respectively. Its variational principle can be easily obtained:

                                        
(A.2)

Where  is period of the nonlinear oscillator,  

Its Hamiltonian, therefore, can be written in the form;

                                          
(A.3)

Or

                                   
(A.4)

Oscillatory systems contain two important physical parameters, i.e. The frequency   
and the amplitude of oscillation.  . So let us consider such initial conditions:

                                           (A.5)

We use the following trial function to determine the angular frequency  

                                               (A.6)

Substituting (A.6) into u  term of (A.4), yield:

                    
(A.7)

If, by chance, the exact solution had been chosen as the trial function, then it would 
be possible to make  zero for all values of t  by appropriate choice of . Since 
Equation (A.6) is only an approximation to the exact solution,  cannot be made zero 
everywhere. Collocation at  gives:

                                  

(A.8)

APPENDIX B: BASIC IDEA OF RUNGE-KUTTA (RK)

The most often used method of the Runge-Kutta family is the Fourth-Order one, 
which extends the idea of the mid-point method, by jumping 1/4th of the way first, 
then going half-way, using the mid-point method, then going 3/4th of the way and 
finally jumping all the way.

Consider an initial value problem be specified as follows: 

                                          (B.1)
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 is an unknown function of time t which we would like to approximate. Then RK4 
method is given for this problem as below: 

                               

(B.2)

for n = 0, 1, 2, 3, . . . , using

                                     

(B.3)

Where 1nu +  is the RK4 approximation of ( )1nu t + . and the next value ( )1nu +  
is 

determined by the present value ( )nu
 
plus the weighted average of four increments, 

where each increment is the product of the size of the interval, h, and an estimated 
slope specified by function f on the right-hand side of the differential equation.

   is the increment based on the slope at the beginning of the interval, using  , 

   is the increment based on the slope at the midpoint of the interval, using  ;

   is again the increment based on the slope at the midpoint, but now using
 

 ;

  is the increment based on the slope at the end of the interval, using .
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