Kuwait J. Sci. 42 (3) pp. 64-85, 2015

Nonlinear vibration of mechanical systems by means of
Homotopy perturbation method

MAHMOUD BAYAT*, IMAN PAKAR** AND MAHDI BAYAT*

* Department of Civil Engineering, Mashhad Branch, Islamic Azad University, Mashhad,
Iran, E-mail: mbayatl4@yahoo.com, mahdi.bayat86@gmail.com

**Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad,
Iran, E-mail: Iman.pakar@yahoo.com

Corresponding author: mbayatl4@yahoo.com

ABSTRACT

In this study, it has been tried to present a new approximate method by using
Homotopy Perturbation Method (HPM) for high nonlinear problems. Three different
examples are considered and the application of the Homotopy perturbation method is
studied. Runge-Kutta algorithm is used to obtain numerical results. Another analytical
method called Energy Balance Method (EBM) is applied to compare the results of
HPM and Runge-Kutta algorithm. It has been shown that only one iteration of the
method prepares high accurate solution for whole domain. It has been established that
Homotopy perturbation method does not need any linearization and overcome the
limitations of the perturbation methods.

Keywords: Energy balance method; Homotopy perturbation method; nonlinear
oscillators; Runge-Kutta algorithm.

INTRODUCTION

Dynamical models of the problems are usually presented by differential equations.
Differential equations are linear and nonlinear. Linear differential equations have exact
solutions but when they are nonlinear, it is really hard to find an exact solution for the
problem. Therefore, in recent years, finding an exact and analytical solution for the
nonlinear differential equations is very important. The effects of important parameters
on the nonlinear response of the problems can be easily considered, when we have
its analytical solution. The traditional analytical methods have lots of limitations. To
overcome these shortcomings, some new approximate methods have been presented
to analyze high nonlinear problems. Recently, some researchers have worked on the
numerical and analytical methods such as: Homotopy perturbation method (Bayat et
al., 2012 ; He,1999) , Hamiltonian approach (Bayat & Pakar., 2011b, 2013b; Bayat et
al., 2014a,b), energy balance method (Bayat & Pakar, 2011a; Mehdipour et al., 2010),
Variational iteration method (Dehghan & Tatari, 2008; Pakar et al., 2012), amplitude
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frequency formulation (He, 2008; Bayat et al., 2011; Pakar & Bayat., 2013b), max-
min approach (Shen & Mo, 2009; Pakar & Bayat, 2013a), Variational approach method
(He, 2007; Xu & Zhang, 2009) and the other analytical and numerical (Cordero et al.,
2010; Bayat & Pakar, 2012; 2013a; Bayat et al., 2014; Bor-Lih & Cheng-Ying, 2009;
Odibat et al., 2008; Pakar & Bayat, 2012, 2013b; Wu, 2011; Nayfeh & Mook,1973).

Among of these new approximate methods; Homotopy perturbation method
is used in this study. Only one iteration of this method leads us to a high accurate
solution. Three nonlinear mechanical systems are presented to apply the homotopy
perturbation method. The results of homotopy perturbation method are compared with
Runge-Kutta’s algorithm and energy balance method; it has been demonstrated that
the Homotopy perturbation method can be a strong mathematical tool for conservative
nonlinear problems.

CONCEPT OF HOMOTOPY PERTURBATION

To explain the basic idea of the Homotopy perturbation method for solving nonlinear
differential equations, one may consider the following nonlinear differential equation
(He, 1999):

A(u)—f(r)zo re Q) €))
That is subjected to the following boundary condition:

B[u,a—u]:0 rel’ )
ot

Where A4 is a general differential operator, B a boundary operator, f{r) is a known
analytical function, I" is the boundary of the solution domain (Q), and du/o¢ denotes
differentiation along the outwards normal toT". Generally, the operator 4 may be
divided into two parts: a linear part L and a nonlinear part N. Therefore, Equation (3)
can be rewritten as follows:

L@)+N @)-f (r)=0 reQ 3)

By the construct of Homotopy technique, v (7, p ): x[0,1]— R , which satisfies

1 (v.p)=(1-P)[ L)L () ]+ £[A(v)~7 () ]=0 @

H(v,p):L(v)—L(u0)+pL(u0)+p[N(v)—f (r):l %)
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In Equation (4), pe[0,1] is an embedding parameter and u, is the first
approximation that satisfies the boundary condition. One may assume that solution of
Equation (6) may be written as a power series in p, as the following:

V=Vt pv +piv, e (6)

The Homotopy parameter p is also used to expand the square of the unknown angular
frequency o as follows:

W, =0 —po,—p’o, —.. ™)

0 =0,+po,+p’o,+.. (8)

where @, is the coefficient of u(r) in Equation(3) and should be substituted by the right
hand side of Equation(4). Besides, @, (i =1,2,...) are arbitrary parameters that have to
be determined.

The best approximations for the solution and the angular frequency w are

uzlin}v=v0+v1+v2+--- )
r—>
0’ =0, +0,+0,+... (10)
APPLICATION

In order to assess the advantages and the accuracy of the Homotopy perturbation
method, we will consider the following two examples:

Example 1

In this example we have Duffing equation with constant coefficient that presents in
Figure 1 (Mehdipour et al., 2010):
k k,

i o Dogngyu(0)=4,  d@(0)=0 (D
m 2mh m

In which u and ¢ are generalized dimensionless displacements and time variables,
respectively.
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H(t) ————

F(1)

Fig. 1. The physical model of Duffing equation with constant coefficient

Here is the application of Homotopy perturbation to Equation (11). We construct a
Homotopy in the following form:
3 FEsin(aw,t
H(u,p)=(1—p){ﬁ+£u}+p|}i+ki+ Lkg’ _ Fisin(oy1) }:0 (12)
m

m m 2 mh®

According to HPM, we assume that the solution of Equation (12) can be expressed in
a series of p.

u(l):uo(t)+pul(t)+p2u2(t)+ ..... 13)

The coefficients k,/m =Q be, respectively, expanded into a series in p in a similar
way,

Q=0 -po,-p’o, +... (14)

Substituting Equations.(13) and (14) into Equation (12) after some simplification and
substitution and rearranging based on powers of p-terms, we have:

p’ iy +o'u, =0 (15)
And,

.. 1 5 F sin(w,t
p':ul+a)2ul=coluo——kzu°2 +— (1) (16)
2 mh m

Considering the initial conditions u,(0) =4 and #,(0) =0 the solution of Equation (15)
is u, = 4 cos(wt ). Substituting the result into Equation (16), we have:
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k,(A } i
pliitou = A cos(a)t)—l 2( cosga)t)) +F0s1n(a)0t) (17)
2 mh m

For achieving the secular term, we use Fourier expansion series as follows:

k(A4 SR
D(w,t)=w,4 cos(wt)_% 2( Cozga)t)) . Osm(a)oz)
m m

=i:b2”+1 cos[(Zn +l)(ot} (18)

n=0
=b, cos(wt)+b,cos(Bwt) +...

Fysin(w,t)

m

1

Py (3k2A3 —8w,Am hz)cos(wt)+ﬁk2A3cos(3wl)+

~

Substituting Equation (18) into Equation (17) yields:

1
8mh 2

(3k2A3—8w1Amh2)cos(a)t)+ ! k2A3cos(3wt)+FoL(w0t) (19)

1, e 2
U t+tou =
p ! ! Smhz m

Avoiding secular term in u, (¢ ) gives:

3k,A°
), =— 20
L8 mh’ 20
From Equation (14) and setting p =1, we have:
Q=0 -0 (1)

Substituting Equation (20) in to Equation (21) and Q=4k /m we can obtain the
frequency of the nonlinear oscillator as follows:

3k,A° k
o &

Solving Equation (19) without secular term we obtain,
sinw)Fyo, 1 k,4 * cos(wt)
om (a)02 —a)z) 64 (a)zhz)
L k,A’ (@, — o )cos(3wt ) — 64F,h*w’ sin(w, 1)

64 ma)zhz(a)oz—a)z)

u1(t):

(23)

Hence, we can obtain the following approximate solution,
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sin(a)t)Foa)O ik2A3 cos(a)t)
om (a)02 —a)z) 64 (a)zhz)
L k,A* (@, — w*)cos(3wt ) —64F,h’w’ sin(w,1)

64 mwzhz(woz—wz)

u(t)=Acos(wt)+

24

For comparison of the approximate solution, frequency obtained from solution of
nonlinear equation with the energy balance method (Appendix A) is (Mehdipour et
al., 2010):

2 kA 3k,A* (N2 \F, .
. == +—2 4| —=-1|24sin(w,t 25
FEM A\/4m 32mh* 2 m (1) (25)

The numerical solution by with 4" order Runge-Kutta method (Appendix B) for
nonlinear equation is:

U, =u,, u, (0) =4, 26)
U, =—£u1 _k_22u13 +§sinw0t, u,(0)=0.
m 2mh m
Example 2

Consider the motion of a mass m moving without friction along a circle of radius R
that is rotating with a constant angular velocity Q about its vertical diameter as shown
in figure 2. The forces acting on the mass are gravitational force mg, the centrifugal
of the circle O and the reaction force. The following governing equation has been
obtained (Nayfeh & Mook,1973):

mR*0 —m R*Q7sin(0)cos(0)+mgR sin(0)=0, 0(0)=4, 6(0)=0 (27)

Fig. 2. Particle moving without friction on a rotating circular
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é—Qzsin(@)cos(9)+%sin(9):o, 0(0)=4, 6(0)=0 (28)

By using the Taylor’s series expansion for cos(6(t)),sin(6(1)) and by some manipulation
in Equation (19) we can re-write Equation (19) in the following form:

9‘—92(9—%93)(1—%92+2L494)+%(9—1€93)=o, (29)

Now applying Homotopy perturbation to Equation (28) and construct a Homotopy in
the following form:

0)~0- o030 107 (0= L) - 4o) [0 o

According to HPM, we assume that the solution of Equation (28) can be expressed in
a series of p:

0(t)=6,(1)+p6,(t)+p°0, (1) +.... 31)

The coefficients A =5 — Q7 be, respectively, expanded into a series in p in a similar

way,

£
R

A=’ -po,-p’o, +... (32)

Substituting Equation (31) and Equation (32) into Equation (30) after some
simplification and substitution and rearranging based on powers of p-terms, we
have:

p’: 0, +w’0,=0 (33)

P 0+0 0 =a6, - 200 + 00— 00 + 20 (34)

Considering the initial conditions 6, (0) =4 and 0, (0) =0 the solution of Equation (33)
is 6, = 4 cos(wr ) substituting the result into Equation (34), we have:

1. A4 20 _ 20243, .3 lg 43, .3
p 0 +06 —calAcos(a)t) S QA cos (a)t)+6RA cos (a)t) 35)
+%QZA Scos (ot )’ —ﬁQZA Tcos” (a)t)

For achieving the secular term, we use Fourier expansion series as follows:
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D(w,t)=wA cos(a)t)—%QZA3COS3(601)+——A cos (a)t)

+lQZA > cos(ar )’ —LQZA " cos’ (et )

= sznn cos[(2n +1)a)t}
=b, cos(wt) +b, cos(3wr) +... (36)

35 1
Sore 2 04 7)cos(cot)—gQZA > cos (3wt )

4

~( AL QA+ 0 S g
g 7
+EQZA5cos(3a)t)+ﬁEA3cos(3a)t)+ —szA7cos(3a)t)

2 245 1 247
ﬁQA cos(Sa)z) 0’4 cos(Swt)—mQA cos(7ar)

Substituting Equation (36) into right hand of Equation (35) yields:

1. A 2 2 2 g 43 5 2
P60 = (a)lA—fQA TN IR ¥ 9216QA7)cos(a)t)

(37
+ Zlym cos[(2n + 1)a)t]
n=0
Avoiding secular term, gives:
_ 2 2 4~2 lg 42
0 = 9216/1 Q +- A Q - A Q- RA (38)
From Equation (32) and setting p =1, we have:
A=’ -, (39)

Substituting Equation (38) in to Equation (39) and A =%—Qz we can obtain the
frequency of the nonlinear oscillator as follows:

_ 1€ 024 35 4602, 4202 5 4402 _lg 42
wHPM—\/; Q7+ 2 A+ A - 24— LSy (40)

Solving Equation (37) without secular term we obtain,

1
491(1): (14;‘Z56£22A cos(a)t)-i—@QZA cos(wt)— —QZA3c0s(a)t)+mEA cos(wt)

l o
+MQZA cos(3wt)— @QZA cos(3a)t)+—QZA3COS(3a)t)—ﬁ;—A3cos(3a)t) (41)

——Q'4° cos(Sa)t) N cos(Sa)t) Q0 cos(7a)t))

3072 221 184 442368

Hence, we can obtain the following approximate solution,
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0(t)=4 cos(a)t)+i( 4702 yq7 cos(a)t)+inA5 cos(a)t)—;—ngA3 cos(wt)

o> \147456 192
+é%A 3 cos(a)z ) +—24Z76 0’47 cos(3cot)—lo%QZA 3 cos(3cot)+41—ngA 3 cos(3(ot ) (42)
—é%A * cos (3wt ) —ﬁQZA *cos(Set )+ 2217184 Q47 cos(Swt )+ 442]368 4’ cos(Twt ))

For comparison of the approximate solution, frequency obtained from solution of
nonlinear equation with the energy balance method (Appendix A) is:

4R (—RQ2 cosz(gA )+2g cos(gA )+ R QO cos® (4)-2g cos(4 )) (43)

Oppy =
RA

The numerical solution by with 4" order Runge-Kutta method (Appendix B) for
nonlinear equation is:

6,=6,, 0,(0)=4, w

0, =Q? sin(@l)cos(Ol)—%sin(Ql), 0,(0)=0

Example 3

We consider the physical model of nonlinear equation in the following figure with
F(r)=Fsinw, , indicated in Figure 3 (Mehdipour et a/,2010).

L3 2L73

Fig. 3. The physical model of nonlinear equation

The motion equation is:

6+ Gino—Foginwy -0, 0(0)=4, 6(0)=0 (45)

3m ml

This equation is as known as Mathieu equation or the system with dependent
coefficients to time.

In which 6 and ¢ are generalized dimensionless displacements and time variables,

. . 4k
respectively. And consider A = 3,3 constant.
m
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The approximation sin (6)=0—(1/6)6" +(1/120)6° is used.

Now applying Homotopy perturbation to Equation (45) and construct a Homotopy in
the following form:

_ 2} ) 153 1 g5 3F, . _
H(e,p)-(l—p)[e+w]+p[0+,1(9-60 #13g0°) = Bsinoy }_o (46)

According to HPM, we assume that the solution of Equation (45) can be expressed in
a series of p:

0(¢)=0,(t)+p0 (¢)+p°0,(t)+..... 47)
The coefficients A be, respectively, expanded into a series in p in a similar way,
lsz—pw] —p2w2+... (48)

Substituting Equation (47) and Equation (48) into Equation (46) after some
simplification and substitution and rearranging based on powers of p-terms, we have:

' 6,+0°0,=0 (49)

2] 1 1 3F, sin(wyt)
05000, 20,0+ (00— 0700 + TR (50)

Considering the initial conditions 6, (0)=4 and 6, (0) =0 the solution of Equation (49)
is 0, = A4 cos(wt ) substituting the result in to Equation (50), we have:

)+M (51)

P60 +00 =04 cos(a)t)+éa)2A3 cos’* (01 )= - w*4° cos’ (wt
m

120

For achieving the secular term, we use Fourier expansion series as follows:

3F, sin(w,?)

O(w,t)=wA cos(wt )+ ész *cos’ (ot ) - L ©°4° cos’ (o1)+ ;
m

120
= ibzw cos[(2n + l)wt]
n=0

=b, cos(wt)+b, cos(Bwt) +...

(52)

- a3 1 a5 123
~(co1A Lo + w4 )cos(wt) S0 eos Gor) + .
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Substituting Equation (52) into right hand of Equation (51) yields:

' 6, +0%, :(a)lA —%aﬂA3 +Lw2A5)ch(a)t)+Zlﬂ2n+l cos[(2n +l)a)t] (53)

192
n=0
Avoiding secular term, gives:
_ 1l 2,00 1 2.4
=0 A"~ 0 (54)
From Equation (48) and setting p =1, we have:
=0 -, (55)

Substituting Equation (54) in to Equation (55) and A =4k /3m we can obtain the
frequency of the nonlinear oscillator as follows:

S 16\/k /m (56)

V=A% +244% 4192

Solving Equation (53) without secular term we obtain,

-3F,w,sin(wt) T

5
b mla)(a)2 —a)oz) (74" ~ 504 )eos(ar) 7
1 1 1 3F, sin(w, t
+ 50754 * cos (3wt ) ~ 10541 *cos(3wt )+ 2501 > cos (5wt )+ (Z)f(a)og))
Hence, we can obtain the following approximate solution,
B 3F,w,sin(wt?) o1 s
O(t) =4 COS(CL)I‘)—W-F (@A —MA )COS(CL)t)
) (58)
1 1 1 3F,sin(w, t
+ 29754 > cos(3wt ) - 554 *cos(3wt )+ 20501 > cos (5wt )+ (Z)f(a)og))

For comparison of the approximate solution, frequency obtained from solution of
nonlinear equation with the energy balance method (Appendix A) is (Mehdipour et
al., 2010):

@pprs =£\/ﬂ[cos£/1 —cosAJ+3ﬂ[£—le sin(a)ot) (59)
2 2

A\ 3m ml
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The numerical solution by with 4" order Runge-Kutta method (Appendix B) for
nonlinear equation is:

6,=0,, 0,(0)=4,
. 60
92=—ﬂsin91 +3ﬂsina)0t 0,(0)=0. (60)
3m ml
RESULT AND DISCUTION

In this part, to verify the results of the new applied method, we have prepared some
comparisons between Homotopy perturbation method, energy balance method and
numerical solution.

In example 1: Table 1 represent the comparison of time history displacement for
two different cases :

Casel: L=1, h=0.5, m=10, k,=1000, k,~1500, F,=I, 0,=2, A=0.8 tan(n/6)
Case2: L=1, h=1, m=15, k=1800, k,=900, F,=2, w,=3, A=0.9 tan(n/12)

The results show the high accuracy of the Homotopy perturbation method in
comparison of Runge-Kutta’s algorithm and energy balance method. Figure 4 shows
the comparison of homotopy perturbation method time history displacement diagram
with Runge-Kutta and energy balance method for two different amplitudes.

(a): A=0.9 tan(n/12)  (b): 4=0.9 tan(n/18).

Figure 5 is shown the Influence of springs stiffness (k,) and (k,) on nonlinear
frequency. It can be seen from the figure that the increases of the spring stiffness
causes the increases in nonlinear frequency.
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Table 1 . Comparison of time history response of HPM with EBM and Runge-Kutta (Example 1)

Casel Case 2

Time HPM EBM RK4 Error % Time HPM EBM RK4 Error %

0 04619 04619 0.4619 0.0043 0 02412 0.2412 0.24115 0.0041
0.025 0.4386 0.4407 0.4386 0.0008 0.05 0.2054 0.2055 0.20541 0.0017
0.05 03724 03791 0.3725 0.0489 0.1 0.1090 0.1093 0.10899 0.0043
0.075 0.2731 0.2826 0.2737 0.2334 0.15 -0.0194 -0.0191 -0.01936 0.0027
0.1 0.1526 0.1603 0.1538 0.7561 0.2 -0.1419 -0.1418 -0.14189 0.0015
0.125 0.0219 0.0232 0.0234 6.3983 0.25 -0.2225 -0.2228 -0.22248 0.0005
0.15 -0.1101 -0.1159 -0.1084 1.5840 0.3 -0.2370 -0.2382 -0.23699 0.0020
0.175 -0.2350 -0.2444 -0.2331 0.8219 0.35 -0.1810 -0.1838 -0.181  0.0089
0.2 -0.3425 -0.3505 -0.3407 0.5575 0.4 -0.0713 -0.0754 -0.07133 0.0403
0.225 -0.4209 -0.4245 -0.4195 0.3249 0.45 0.0596 0.0552 0.059581 0.0549
0.25 -0.4590 -0.4595 -0.4587 0.0803 0.5 0.1733 0.1696 0.17332 0.0165
0.275 -0.4509 -0.4524 -0.4517 0.1690 0.55 0.2363 0.2341 0.23628 0.0042
0.3 -0.3979 -0.4039 -0.3998 0.4772 0.6 0.2295 0.2298 0.22952 0.0043
0.325 -0.3081 -0.3183 -0.3112 0.9870 0.65 0.1551 0.1577 0.1551 0.0027
0.35 -0.1933 -0.2036 -0.1974 2.0837 0.7 0.0353 0.0389 0.035285 0.0264
0.375 -0.0649 -0.0703 -0.0696 6.8419 0.75 -0.0946 -0.0915 -0.09459 0.0057
0.4 0.0677 0.0695 0.0627 7.9761 0.8 -0.1964 -0.1949 -0.19644 0.0013
0.425 0.1960 0.2030 0.1911 2.6011 0.85 -0.2400 -0.2404 -0.24004 0.0000
045 03106 0.3178 0.3060 1.4912 09 -0.2123 -0.2143 -0.21229 0.0014
0.475 0.3999 0.4035 0.3965 0.8670 0.95 -0.1216 -0.1241 -0.12161 0.0049
0.5 04523 04523 0.4508 0.3472 1 0.0049 0.0034 0.004911 0.3171

Casel: L=1, h=0.5, m=10, k=1000, k,=1500, F=1, o =2, A=0.8 tan(r/6)
Case2: L=1, h=1, m=15, k=1800, k,=900, F =2, w=3, A=0.9 tan(n/12)
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HFM
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- 1 1 1 1 _02 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 04 0.6 0.8 1.0 1.2
time time

Fig. 4. Comparison of time history response of homotopy perturbation method and energy balance
method with the numerical solution for L=1 m, h=0.9 m, m=10 kg, k1=1000 N/m, k_,=110() N/m, F,=IN,
w,=1 rad/sec  (a): 4=0.9 tan(n/12)  (b): 4=0.9 tan(n/18)

3 B 5 1 1 1 1
200 200 %00 300 1000 200 400 600 800 1000

k k

1 2

25 L L
Fig. 5. Influence of springs stiffness (k,) and (k,) on nonlinear frequency

In example 2, Table 2 is the comparison of the three applied method to the governing
equation of the problem for different important time value and an excellent agreement
can be seen.

The cases in table 2 are:
Casel: 4 =n/4, R=15, Q=1.5, g=10
Case2: 4 =n/2, R=05 Q=2, g=10

Figure 6 is comparison of time history displacement response of Homotopy
perturbation method and energy balance method with the numerical solution for two
different cases:

():A4=rn/6, R=08, Q=15 g=10 ({)4d=xn/3, R=12, Q=25 g=10
The motion of the problem is periodic.

To see the effects of important parameters on the frequency of the system, we have
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considered the effect of angular velocity (€ ) and radius(R) on nonlinear frequency
in figure 7.

Table 2. Comparison of time history response of HPM with EBM and Runge-Kutta (Example 2).

Casel Case2

Time HPM EBM RK4 Error % Time HPM EBM RK4 Error %

0 0.7854 0.7854 0.7854 0 0 1.5708 1.5708 1.5708 0

02 0.7151 0.7151 0.7148 0.0349 0.1 1.4640 1.4640 1.4652 0.0805
04 0.5167 0.5167 0.5158 0.1761 0.2 1.1581 1.1581 1.1625 0.3782
0.6 0.2258 0.2258 0.2241 0.7732 0.3 0.6947 0.6947 0.7034 1.2456
0.8 -0.1055 -0.1055 -0.1079 2.2135 04 0.1368 0.1368 0.1498 8.6744
1 -0.4180 -0.4180 -0.4205 0.6061 0.5 -0.4397 -0.4397 -0.4240 3.6972
1.2 -0.6556 -0.6556 -0.6575 0.3019 0.6 -0.9564 -0.9564 -0.9408 1.6577
1.4 -0.7758 -0.7758 -0.7764 0.0835 0.7 -1.3430 -1.3430 -1.3310 0.9001
1.6 -0.7570 -0.7570 -0.7557 0.1718 0.8 -1.5470 -1.5470 -1.5422 0.3073
1.8 -0.6028 -0.6028 -0.5993 0.5828 0.9 -1.5406 -1.5406 -1.5460 0.3533
2 -0.3405 -0.3405 -0.3351 1.6239 1 -1.3246 -1.3246 -1.3419 1.2849
22 -0.0173 -0.0173 -0.0167 3.7660 1.1 -0.9285 -0.9285 -0.9572 2.9973
24 03090 0.3090 0.3156 2.1030 1.2 -0.4062 -0.4062 -0.4438 8.4884
2.6 0.5799 0.5799 0.5852 0.8981 1.3 0.1715 0.1715 0.1793 4.3514
2.8 0.7471 0.7471 0.7496 0.3416 1.4 07257 0.7257 0.6849 5.9556
3 0.7804 0.7804 0.7793 0.1371 1.5 1.1813 1.1813 1.1485 2.8567

Casel: 4 =n/4, R=1.5, Q=1.5, g=10
Case2: A =n/2, R=05 Q=2, g=10
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(i)
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Fig. 6. Comparison of time history response of Homotopy perturbation method and energy balance
method with the numerical solution for (i): 4 =7/6, K =08, Q=1.5, g=10
(i) A =n/3, R=12, =25, g=10

0.6 0.9 1.2 1.5 1.8 2.1 24 0.6 0.9 1.2 1.5 1.8 2.1 2.4
R 0

Fig.7. Effect of angular velocity( {2 ) and radius(R) on nonlinear frequency

In example 3, again to compare the results of HPM and EBM and numerical
solution, a complete comparison has been done for time point values to see the
agreement of the methods. As it is shown they are in high agreement. The diagram
of the time history displacements is shown in figure 8 for two different amplitudes
D: A=n/12 (1I): A=n/3.

The effects of important parameters such as: spring stiffness and amplitude are
studied in figure 9. As it is shown in figure 9, by increasing the spring stuffiness, the
frequency of the vibration increase and by increasing the amplitude the frequency of
the system is decreased.
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Table 3. Comparison of time history response of HPM with EBM and Runge-Kutta (Example 3).

Casel Case 2

Time HPM EBM RK4 Error % Time HPM EBM RK4 Error %

0 05236 0.5236 0.5236 0.0012 0 03491 0.3491 0.3491 0.0028
0.025 0.4988 0.4985 0.4988 0.0056 0.05 0.2616 0.2615 0.2617 0.0138
0.05 0.4264 0.4257 04265 0.0313 0.1 0.0426 0.0432 0.0427 0.1858
0.075 0.3130 0.3122 0.3132 0.0834 0.15 -0.1975 -0.1963 -0.1974 0.0423
0.1 0.1691 0.1689 0.1695 0.2332 0.2 -0.3368 -0.3379 -0.3368 0.0112
0.125 0.0087 0.0095 0.0091 5.2831 0.25 -0.3062 -0.3119 -0.3062 0.0164
0.15 -0.1526 -0.1507 -0.1520 0.3450 0.3 -0.1203 -0.1319 -0.1204 0.0958
0.175 -0.2986 -0.2965 -0.2981 0.1735 035 0.1282 0.1129 0.1281 0.1075
0.2 -0.4154 -0.4140 -0.4150 0.1045 0.4 03136 0.3020 0.3135 0.0296
0.225 -0.4920 -0.4920 -0.4917 0.0575 0.45 0.3434 0.3428 0.3436 0.0339
0.25 -0.5215 -0.5232 -0.5214 0.0115 0.5 0.2032 0.2155 0.2037 0.2031
0.275 -0.5013 -0.5046 -0.5015 0.0464 0.55 -0.0373 -0.0174 -0.0367 1.4509
0.3 -0.4331 -0.4381 -0.4337 0.1272 0.6 -0.2563 -0.2417 -0.2559 0.1423
0.325 -0.3231 -0.3300 -0.3240 0.2619 0.65 -0.3435 -0.3476 -0.3434 0.0066
0.35 -0.1814 -0.1906 -0.1825 0.5947 0.7 -0.2557 -0.2830 -0.2560 0.1066
0.375 -0.0216 -0.0332 -0.0228 5.3405 0.75 -0.0363 -0.0792 -0.0367 1.1241
04 0.1406 0.1274 0.1394 0.8915 0.8 0.2045 0.1639 0.2041 0.1840
0.425 0.2892 0.2758 0.2881 0.4016 0.85 0.3447 0.3263 0.3446 0.0328
0.45 0.4099 0.3981 0.4089 0.2303 09 03149 03271 03153 0.1211
0475 0.4912 0.4827 0.4906 0.1185 095 0.1296 0.1651 0.1305 0.6254
0.5 0.5260 0.5215 0.5259 0.0156 1 -0.1186 -0.0798 -0.1178 0.7137

Casel: L=0.5, m=10, k=1200, F =1, o =2, A=n/6
Case2: L=1.5, m=5, k=800, F =3, w =2, A=n/9
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Fig. 8. Comparison of time history response of Homotopy perturbation method and energy balance
method with the numerical solution for L=1 m, m=10 kg, k=1000 N/m, F ,=IN, w,=1 rad/sec
D:A==/12 (1): A==/3
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Fig. 9. Influence of spring stiffness (k) and amplitude (4) on nonlinear frequency

CONCLUSION

In this study, we tried to apply a new approximate analytical method to high nonlinear
mechanical systems. Homotopy perturbation method has been successfully applied
for three different examples. Some patterns and tables have been presented to show
the accuracy of the method. The method can converge rapidly to a high accurate
solution in comparison to energy balance method and Runge-Kutta’a algorithm. Form
the examples, it can be seen that only the first iteration of the problem can lead us to a
high accurate solution for whole domain as indicated in this study.

APPENDIX A: BASIC IDEA OF ENERGY BALANCE METHOD

Consider a general nonlinear oscillator in the form (He,2008);
i+f (u(t))=0 (A.1)

In which u and ¢ are generalized dimensionless displacement and time variables,
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respectively. Its variational principle can be easily obtained:
o
J ()=, (3 + F () ) (A2)
Where T =27/ is period of the nonlinear oscillator, F ()= J S (u)du.

Its Hamiltonian, therefore, can be written in the form,;

H:%u2+F(u):F(A) (A3)

m(t):%a2+F(u)—F(A) 0 (A.4)

Oscillatory systems contain two important physical parameters, i.e. The frequency o
and the amplitude of oscillation. 4 . So let us consider such initial conditions:

u(0)=4, 1i(0)=0 (A.5)
We use the following trial function to determine the angular frequency o
u(t)=A4cos(wt) (A.6)
Substituting (A.6) into u term of (A.4), yield:
i}{(t):%a)zAzsinz(a)t)+F(A cos(ar ))—F (4)=0 (A.7)

If, by chance, the exact solution had been chosen as the trial function, then it would
be possible to make R zero for all values of ¢ by appropriate choice of . Since
Equation (A.6) is only an approximation to the exact solution, R cannot be made zero
everywhere. Collocation at or = 7/4 gives:

Y 2(F(4))~F (4 cos(ar )) (AS8)
A’ sin*(wt)
APPENDIX B: BASIC IDEA OF RUNGE-KUTTA (RK)

The most often used method of the Runge-Kutta family is the Fourth-Order one,
which extends the idea of the mid-point method, by jumping 1/4th of the way first,
then going half-way, using the mid-point method, then going 3/4th of the way and
finally jumping all the way.

Consider an initial value problem be specified as follows:

u=f (t,u), u(to):uo (B.1)
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6 is an unknown function of time ¢ which we would like to approximate. Then RK4
method is given for this problem as below:

u,, =u, +éh(kl +2k, +2ky +k,),

(B.2)
t,,, =t +h.
forn=0,1,2,3,...,using
kl =f (ln’un)’
k,=f|t,+=h, u, +15hk1j,
(B.3)

1 1
k.=f1|t +—h, +—hk. |,
(oo )
ky=f (t,+h, u, +hk,).

Where u
determined by the present value (un ) plus the weighted average of four increments,
where each increment is the product of the size of the interval, 4, and an estimated
slope specified by function fon the right-hand side of the differential equation.

n+l

is the RK4 approximation of u (¢,,,). and the next value (u,,,) is

= k,is the increment based on the slope at the beginning of the interval, using  ,
=k, is the increment based on the slope at the midpoint of the interval, using s + %hkl ;
= k,is again the increment based on the slope at the midpoint, but now using # + %hk2 ;

= k,is the increment based on the slope at the end of the interval, using s + Ak .

REFERENCES

Bayat, M. & Pakar, I. 2011a. Application of He’s Energy Balance Method for Nonlinear vibration of thin
circular sector cylinder, International Journal of Physical Sciences, 6(23):5564-5570.

Bayat, M. & Pakar, 1. 2011b. Nonlinear Free Vibration Analysis of Tapered Beams by Hamiltonian
Approach, Journal of vibroengineering, 13(4): 654-661.

Bayat, M. & Pakar, I. 2012. Accurate analytical solution for nonlinear free vibration of beams, Structural
Engineering and Mechanics, 43(3): 337-347.

Bayat, M. & Pakar, 1. 2013a. On the approximate analytical solution to non-linear oscillation systems,
Shock and vibration, 20(1), 43-52.

Bayat, M. & Pakar, 1. 2013b. Nonlinear dynamics of two degree of freedom systems with linear and
nonlinear stiffnesses, Earthquake Engineering and Engineering Vibration, 12 (3): 411-420.

Bayat, M. Pakar, 1. & Bayat, M. 2013. Analytical solution for nonlinear vibration of an eccentrically
reinforced cylindrical shell, Steel and Composite Structures, 14(5): 511-521.

Bayat, M., Bayat, M. & Pakar, L. 2014. “Nonlinear vibration of an electrostatically actuated microbeam”,
Latin American Journal of Solids and Structures, 11(3), 534 — 544.

Bayat, M., Pakar, I. & Cveticanin, L. 2014a. Nonlinear vibration of stringer shell by means of extended



Mahmoud Bayat, Iman Pakar and Mahdi Bayat 84

Hamiltonian approach, Archive of Applied Mechanics, 84(1): 43-50.

Bayat, M., Pakar, I. & Cveticanin L. 2014b. Nonlinear free vibration of systems with inertia and static
type cubic nonlinearities: an analytical approach, Mechanism and Machine Theory, 77(7): 50-58.

Bayat, M., Pakar, I. & Domaiirry, G. 2012. Recent developments of Some asymptotic methods and their
applications for nonlinear vibration equations in engineering problems: A review, Latin American
Journal of Solids and Structures, 9(2):145 —234 .

Bayat, M., Pakar, 1. & Shahidi, M. 2011. Analysis of nonlinear vibration of coupled systems with cubic
nonlinearity, Mechanika, 17(6): 620-629.

Bor-Lih, K. & Cheng-Ying, L. 2009. Application of the differential transformation method to the solution
of a damped system with high nonlinearity, Nonlinear Analysis: Theory, Methods & Applications.
70(4):1732-1737.

Cordero, A, Hueso, J. L., Martinez, E. & Torregrosa, J, R. 2010. Iterative methods for use with
nonlinear discrete algebraic models, Mathematical and Computer Modelling, 52(7-8):1251-1257.

Dehghan, M. & Tatari, M. 2008. Identifying an unknown function in a parabolic equation with over
specified data via He’s variational iteration method, Chaos, Solitons & Fractals, 36(1):157-166.

He, J. H. 1999. Homotopy perturbation technique, Computer methods in applied mechanics and
engineering, 178(3-4): 257-262.

He, J. H. 2007. Variational approach for nonlinear oscillators, Chaos, solitons & Fractals , 34(5):1430-
1439.

He, J. H. 2008. An improved amplitude-frequency formulation for nonlinear oscillators, International
Journal of Nonlinear Sciences and Numerical Simulation, 9(2): 211-212.

Mehdipour, 1., Ganji, D. D. & Mozaffari, M. 2010. Application of the energy balance method to
nonlinear vibrating equations, Current Applied Physics, 10(1): 104-112.

Nayfeh, A. H. & Mook, D. T. 1973. Nonlinear Oscillations, Wiley, New York.

Odibat, Z., Momani, S. & Suat Erturk, V. 2008. Generalized differential transform method: application
to differential equations of fractional order, Applied Mathematics and Computation. 197(1): 467—
477.

Pakar, 1. & Bayat, M. 2012. “Analytical study on the non-linear vibration of Euler-Bernoulli beams,
Journal of vibroengineering, 14(1): 216-224.

Pakar, 1. & Bayat, M. 2013a. An analytical study of nonlinear vibrations of buckled Euler Bernoulli
beams, Acta Physica Polonica A, 123(1): 48-52.

Pakar, 1. & Bayat, M. 2013b. Vibration analysis of high nonlinear oscillators using accurate approximate
methods, Structural Engineering and Mechanics, 46(1):137-151.

Pakar, 1., Bayat, M. & Bayat, M. 2012. On the approximate analytical solution for parametrically excited
nonlinear oscillators, Journal of vibroengineering, 14(1): 423-429.

Shen, Y. Y. & Mo, L. F. 2009. The max—min approach to a relativistic equation, Computers & Mathematics
with Applications. 58(11): 2131-2133.

Wu G, 2011. Adomian decomposition method for non-smooth initial value problems”, Mathematical and
Computer Modelling, 54(9-10): 2104-2108.

Xu, Nan, & Zhang, A. 2009. Variational approach next term to analyzing catalytic reactions in short
monoliths, Computers & Mathematics with Applications, 58(11-12): 2460-2463.

Submitted : 08/02/2014
Revised : 08/07/2014
Accepted : 11/09/2014



85 Nonlinear vibration of mechanical systems by means of Homotopy perturbation method

Salodl Qi )1 88y b Aol gy A Rl Jas b 51 20

Sls g™ QLG O il 5 gezes™
Ol 2l = s = LoMaw Yo ST ol — o ipids 3 — Lol kil (3
Ol = ke = BT el — dgtn gk ¢ — A5l (53U DLl G U1 45
mbayat14@yahoo.com : a5l

LM
Soloall Ol M1 B3y b plasenal Hlanl g s (g Ay b @i ol lia b sl
ptets - Lo L3y Jall odn a5 s 5 Aakiies Bltal 0 ds UL Ltk 2 Lo sl
By b s (5 AT EE B b G oS sde il o J pmamlI 555 — i, &l o5
S5 A T ey B8 - 50 el s il 4 hall oda ks &)l (O3l 5
Y sl 0lix ey b Of et WS .alS Jlall e B Jle | 5k iy ol asl
* Ly i 1 3 b b g e i LT LS Bl T e



