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ABSTRACT

In this paper we construct some generalized new difference statistically convergent 
sequence  spaces defined by a Musielak-Orlicz function over −n normed spaces. We 
also study several properties relevant to topological structures and inclusion relations 
between these spaces.

Keywords: Generalized difference sequence space; Musielak-Orlicz function; −n
normed space; paranorm; statistical convergence.

INTRODUCTION AND PRELIMINARIES

The notion of difference sequence spaces was introduced by Kızmaz(1981) who 
studied the difference sequence spaces  and ( )Δ0c . The notion was further 
generalized by Et & Çolak(1995) in which they introduced the spaces  
and . Later the concept has been studied by Bektaş et al. (2004); Et & Esi 
(2000). Another type of generalization of the difference sequence spaces is due to 
Tripathy & Esi (2006) who studied the spaces  and . Recently, 
Esi et al. (2007); Tripathy et al. (2005) have introduced a new type of generalized 
difference operators and unified those as follows.

Let vm,  be non-negative integers, then for Z  a given sequence space, we have

                                         

For 0,ccZ = and  where  and kkm xx =Δ0

 
for 

all ∈k N, which is equivalent to the following binomial representation

                                                      

Taking 1=m , we get the spaces  and 
 
studied by Et & Çolak 

(1995). Taking 1== vm , we get the spaces  and ( )Δ0c  
introduced and 

studied by Kızmaz (1981). For more details about sequence spaces see (Mursaleen, 
1996; Raj et al., 2011; Raj & Sharma, 2013a; Tripathy et al., 2008; Tripathy et al. 
2012b) and references therein.
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Başar & Altay (2003) introduced the generalized difference matrix 
which is a generalization of ( ) −Δ 1

1 difference operator as follows:

                                                           
          

for all ∈vk,  N, ∈sr,  R \ {0}. Recently, Başarir & Kayıkçı (2009) have defined the 
generalized difference matrix vB  of order v  which reduced the difference operator 

( )1
1Δ  in case 1,1 −== sr  the  binomial representation of this operator is

where ∈sr,  R \ {0} and ∈v N. Thus for any sequence space ,Z  the space  
is more general and more comprehensive than the corresponding space  
For details one may refer to (Başarir & Nuray, 1991; Kayıkçı & Başarir, 2010) and 
references therein.

The idea of statistical convergence was given by Zygmund (2011). The concept 
was further studied by Fast (1951) ; Schoenberg (1959) independently for the real 
sequences. Later on, it was further investigated from sequence point of view and 
linked with the summability theory by Fridy (1985). The idea is based on the notion 
of natural density of subsets of N, the set of positive integers, which is defined as 
follows. The natural density of a subset E  of  N is denoted by

where the vertical bar denotes the cardinality of the enclosed set.

An Orlicz function  is a function, which is continuous, non-decreasing and convex 

 for 0>x  and  as ∞→x . 

Lindenstrauss & Tzafriri (1971) used the idea of Orlicz function to define the following 
sequence space:

which is called as an Orlicz sequence space. The space  l  is a Banach space with the 
norm
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It is shown by Lindenstrauss & Tzafriri (1971) that every Orlicz sequence space l   
contains a subspace isomorphic to l 

p
( )1≥p . In the later stage different Orlicz sequence 

spaces were introduced and studied see (Parashar & Choudhary, 1994; Esi & Et, 2000; 
Tripathy & Mahanta 2003; Mursaleen, 1996;  Sen & Roy, 2013;  Esi, 2013) and many 
others. The −Δ 2 condition is equivalent to  for all values of 0≥x
and for 1>L .

A sequence M     =  of Orlicz functions is called a Musielak-Orlicz function 
(Maligranda, 1989; Musielak, 1983). A sequence N  ( )kN   defined by

is called the complementary function of a Musielak-Orlicz function M    . For a given 
Musielak-Orlicz function M, the Musielak-Orlicz sequence space t

M
 and its subspace  

h
M

 are defined as follows:

    

where I
M

 is a convex modular defined by 

We consider t
M

 equipped with the Luxemburg norm

or equipped with the Orlicz norm

For more details about Orlicz functions see (Et et al., 2006; Tripathy & Dutta, 2012) 

Let X  be a linear metric space. A function →Xp :  R is called paranorm, if

(1)  for all ,Xx∈

(2)  for all ,Xx∈
(3)  for all ,, Xyx ∈

(4) if   is a sequence of scalars with λλ →n  
as ∞→n  and  is a sequence of 

vectors with ( ) 0→− xxp n  
as ∞→n , then ( ) 0→− xxp nn λλ  

as ∞→n .

A paranorm p  for which  implies 0=x  is called total paranorm and the pair 
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( )pX ,  is called a total paranormed space. It is well known that the metric of any linear 
metric space is given by some total paranorm see (Wilansky, 1984) Theorem 10.4.2, 
pp. 183.

By w  we denote the set of all real or complex sequences . Let mlcccc ,,,,, 00 ∞

and 0m  denote the sets of all convergent, null, statistically convergent, statistically null, 
bounded, bounded statistically convergent and bounded statistically null sequences, 
respectively.

A sequence space E  is said to be solid (or normal) if  implies ; 
for all sequences of scalars  with 

 
for all ∈k N.

The concept of 2-normed spaces was initially developed by Gӓhler (1965) in the 
mid of 1960’s, while that of −n normed spaces was introduced by Misiak (1989). 
Since then, many others have studied these concepts and obtained various results, see 
(Gunawan, 2001a; Gunawan, 2001b; Gunawan & Mashadi, 2001). Let ∈n N and X  
be a linear space over the field K, where K is the field of real or complex numbers of 
dimension d , where .2≥≥ nd  A real valued function 

 
on nX  satisfying the 

following four conditions:

(1) 
 
f and only if ( )nxxx ,...,, 21  are linearly dependent in X ,

(2)  is invariant under permutation,

(3)  for any ∈α K, and

(4) 

is called an −n norm on X , and the pair 
 
is called an −n normed space 

over the field K.

Example 1.1. We may take =X Rn equipped with the −n norm 
the volume of the −n dimensional parallelopiped spanned by the vectors ( )nxxx ,...,, 21  
which may be given explicitly by the formula

                                             

where  R
n for each ni ,...,2,1− . Let  be an −n normed 

space of dimension 2≥≥ nd  and 
 
be linearly independent set in X . 

Then the following function 
 
on  1−nX  defined by

defines an ( )−−1n norm on X  with respect to .
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A sequence  in an −n normed space  is said to converge to some 
XL∈  if

0,....,,lim 11 =− −∞→ nk
k

zzLx
 
for every .,..., 11 Xzz n ∈−

A sequence  in an −n normed space  is said to be Cauchy if

0,....,,lim 11
,

=− −∞→ npk
pk

zzxx
 
for every .,..., 11 Xzz n ∈−

If every Cauchy sequence in X  converges to some ,XL∈  then X  is said to be 
complete with respect to the −n norm. Any complete −n normed space is said to be 

−n Banach space. For more details about −n normed space see ( Altin et al., 2004; 
Raj & Sharma, 2012; Raj et al., 2010; Tripathy et al., 2012a; Tripathy & Borgogain, 
2013) and references therein.

A sequence  is said to be statistically convergent to L  if for every ,0>ε  
the set  N:  has natural density zero for each nonzero 

Xzz n ∈−11 ,...., , in other words  statistically converges to L  in −n normed 

space   if

                                  
 
N: 

 

for each nonzero . For 0>L  we say this is statistically null.

First we give the following lemma, which we need to establish our main results.

Lemma 1.2. Every closed linear subspace F  of an arbitrary linear normed space E  
(different from E  is a nowhere dense set in E  (Tripathy & Dutta, 2010).

Throughout the paper  and ( )Xm0  
denote the spaces of all, convergent, null, statistically convergent, statistically null, 
bounded, bounded statistically convergent and bounded statistically null X  valued 

sequence spaces respectively, where  is an n-normed space. By  
we mean the zero element of X . By 0⎯→⎯stat

kx  we mean that kx  is statistically 
convergent to zero.

Let vm,  be non-negative integers, M       be a Musielak-Orlicz function,  
 be a bounded sequence of positive real numbers and 

 
be a 

sequence of positive real numbers. Let  be an −n normed space. In this 
paper we define the following sequence spaces:
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(c M,  =

  

for every non zero
  

 and some 

(0c M,  =

 

for every non zero
 

 and some 

M,  =

 

for every non zero
  

 and some 

(c M,  =

 

for every non zero
 

 and some 

(0c M,  =

 

for every non zero
 

 and some 
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(W M,  =

 

for every non zero
 

 and some 

(m M,  = (c M,  M, ( ) ).,...,.,,, puB v
m  

and

(0m M, ( ) ).,...,.,,, puB v
m  = (0c M,  M, ( ) ).,...,.,,, puB v

m  ,

where 
 
and ( ) kkm xxB =0

 
for all ∈k N, which is 

equivalent to the binomial representation as follows:

In this representation, we obtain the matrix ( )
vB 1  defined in Başarir & Kayıkçı (2009) 

for 1>v  and in Başar & Altay (2003) for .1=v

If we take 1) 0=v  then the above sequence spaces are reduced to (c M, 

 (0c M,  M,  (c M,  
(0c M,  (W M,  (m M, 

 
and

 
(0m M, 

 respectively.

If we take 2) 1=r  and 1−=s  then the above sequence spaces are reduced to 

(c M, 
 

(0c M, 
 

M,  

(c M, 
 

(0c M,     
 

(W M,  

(m M, 
 
and

 
(0m M, 

 
respectively.

By taking 3)  and  for all k  then these sequence spaces are 

reduces to (c M,  (0c M,  M,  
(c M,  (0c  M,  (W M,  (m M, 

 and
 

(0m M, 
 
respectively.

If we take 4) M       = I where I is the Identity map, then we get the sequence spaces 

(c  (0c   (c  
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(0c  (W  (m  and 

(0m  respectively.

If we replace the base space 5) X  which is a linear −n normed space by C, 

complete normed linear space and take 1=m  and take  then the 

above spaces reduces to (c M,  (0c M,  

M,  (c M,  (0c M,  

(W M,  (m M,  and (0m M,  

respectively.

If we replace the base space 6) X  which is an −n normed space by 2-normed space, 
M       = I,  for all k  and  we obtained the sequence spaces introduced 
by (Başarir et al., 2013).

Moreover if we take 7) =X  C,   M       = I,  and 
 
for all 

k  we get the spaces 
 
and 0m , respectively.

The following inequality will be used throughout the paper.

Let 
 
be a sequence of positive real numbers with Hpp k

k
k =≤< sup0  and  

let  Then, for the sequences  and  in the complex plane, 
we have      

                                   (1)

and  for ∈λ C, where .inf k
k

ph =

The main purpose of this paper is to introduce and study the above defined sequence 
spaces. We make an effort to study some topological and algebraic properties of 
these spaces. Further we show that the sequence spaces (m M, ( ) ).,...,.,,, puB v

m  
and

 
(0m M, ( ) ).,...,.,,, puB v

m are complete paranormed spaces, when the base 
space is −n Banach space. We have also studied some inclusion relations between 
these spaces.

MAIN RESULTS

Theorem 2.1. Let be a M   =   Musielak-Orlicz function,  be a bounded 
sequence of positive real numbers and 

 
be a sequence of positive real numbers. 

Then the sequence spaces (Z M, ( ) ).,...,.,,, puB v
m  are linear spaces over the field 

of complex number C, where .,,,,, 00 mmWlccZ ∞=
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Proof. We prove the theorem only for the space (c M, ( ) ).,...,.,,, puB v
m  and for the 

other spaces it will follow on applying similar argument.

Let 
 

(c M, ( ) ).,...,.,,, puB v
m  and  C. Then there exists 

XJL ∈, and positive real numbers  such that for every 

 

and

 

Let 
 
Since  are non-decreasing convex so by using the 

inequality (1) we have

   

   

0⎯→⎯stat  as .∞→k

Thus,  (c M, ( ) ).,...,.,,, puB v
m . Hence (c M, ( ) ).,...,.,,, puB v

m  is a linear 
space over the field of complex number C.

Theorem 2.2. Let M  = 
 
be a Musielak-Orlicz function, 

 
be a bounded 

sequence of positive real numbers and 
 
be a sequence of strictly positive 

real numbers. Let  be a −n Banach space. Then the spaces (m M, 
 and (0m M,  are complete paranormed sequence 

spaces, paranormed by
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where , sup k
k

pH =
 
and .inf k

k
ph =

Proof. We shall prove the theorem for the space (0m M, .

Clearly, , where  is the zero sequence and . 
Let 

 
(0m M, . Then there exists positive real 

numbers  and  such that 

 for some 

and

 for some 

Let , thus

                                          

This implies that  To prove the continuity of scalar 

multiplication, assume that  be any sequence of points in (0m M,  
such that  as ∞→v  and  be a sequence of scalars such that .λλ →v  

Since the inequality  holds by subadditivity of  

is bounded. Thus,         
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Thus,  is a paranorm. To prove the completeness of space (0m M,  

assume  that  be a Cauchy sequence in (0m M, . Then for a given 

 there exists a positive integer 0N  such that   for all 0, Nji ≥ . 

This implies that  

 for all 0, Nji ≥ .

It follows that for every nonzero 

  

for each 1≥k  and for all 0, Nji ≥ .

Therefore,  is a Cauchy sequence in X  for all ∈k N. Since X  

is −n  Banach space,  is convergent in X  for all ∈k N. We write 

 as .∞→i  Now we have for all 0, Nji ≥ .
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It follows that (0m M,  and (0m M,  is 

a linear space, so we have (0m M, . Similarly we 

can prove for the space (m M, . This completes the proof.

Theorem 2.3. The space (Z M,  is not solid in general, where 

.,,, 00 mmccZ =

Proof. To show the space is not solid in general, consider the following examples.

Example 2.4.  Let 1,1,1,3 −==== srvm  and consider the −n normed space as 

defined in example (1.1). Let 5=kp , 1=ku  and , (the identity map); for all 

∈k N. Consider the sequence , where  is defined by  

for each fixed ∈k N. Then ∈kx (Z M, 
 

for mcZ ,= . Let 

, then  (Z M, 
 
.Thus (Z M, 

 
for mcZ ,=  is not solid in general.

Example 2.5. Let 1,1,1,3 −==== srvm  and consider the −n normed space as 

defined in example (1.1). Let ,1=kp  for all odd k  and 2=kp  
for all even k , 1=ku  and 

, the identity map, for all ∈k N. Consider the sequence , where  is 

defined by  for each fixed ∈k N. Then ∈kx (Z M, 
 

for ., 00 mcZ =  Let , then  (Z M, . Thus (Z M, 

 
for 00 , mcZ =  is not solid in general.

Theorem 2.6. The spaces (0m M,  and (m M,  are 

nowhere dense subsets of M, .

Proof. From Theorem 2.2, it follows that (0m M,  and (m M, 

  are closed subspace of M, . Since the inclusion 

relations

and

                     
 

are strict, the spaces (0m M,  and (m M,  are 

nowhere dense subsets of M,  by lemma 1.2.

Theorem 2.7.  Let  be a non-negative bounded sequence of positive real 
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numbers such that .0inf >k
k

p  Then

Proof.  Let (Wxk ∈)( M,  M, . Then for a 

given  we have

                            

If we take the limit for ∞→n . It follows that (Wxk ∈)( M,  from 

the above inequality. Since (Wxk ∈)( M, . we have the result.

Theorem 2.8.  If  ,0 ∞<<< kk qp for each .k  Then 

Proof. Let  M,  then their exists some  such that

This implies that

for sufficiently large value of  .k  Since  are non-decreasing, we get
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                         .∞<

Thus, M, . This completes the proof.

Theorem 2.9.  (i)  If  ,1inf0 <≤< kk pp then

(ii)  If  ,sup1 ∞<≤≤ kk pp  then

Proof.  (i) Let  M, . Since ,1inf0 ≤< kp we have

Hence 

(ii) Let 1≥kp
 
for each ∈k N and .sup ∞<kp  Let  Then 

for each ,10 << ε there exists a positive integer N such that

for all ∈k N. This implies that

                               

Hence 



Kuldip Raj and Seema Jamwal 100

Theorem 2.10. Let M' =  and  M'' =  be two Musielak-Orlicz functions. 
Then we have

Proof.  Let 
 
Then

and 

Adding the above inequalities from 1=k  to ∞, we have

                     

                       

                       

                       

.∞≤

Thus, we get  This completes the proof.
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CONCLUSION

In this paper we have introduced some new statistically convergent sequence spaces 
defined by a Musielak-Orlicz function over −n normed spaces. We have studied some 
topological properties and interesting inclusion relations between these sequence 
spaces. There are many applications of sequence spaces in Science and Engineering 
see (Raj & Sharma, 2013b). The solutions obtained here are potentially significant and 
important for the explanation of some practical physical problems.
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