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ABSTRACT

In this paper we construct some generalized new difference statistically convergent
sequence spaces defined by a Musielak-Orlicz function over 7 —normed spaces. We
also study several properties relevant to topological structures and inclusion relations
between these spaces.
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INTRODUCTION AND PRELIMINARIES

The notion of difference sequence spaces was introduced by Kizmaz(1981) who
studied the difference sequence spaces £, (A),c(A) and Cy (A). The notion was further
generalized by Et & Colak(1995) in which they introduced the spaces [, (AV),C(A")
and c, (AV). Later the concept has been studied by Bektas et al. (2004); Et & Esi
(2000). Another type of generalization of the difference sequence spaces is due to
Tripathy & Esi (2006) who studied the spaces Z,, (Am ) C(A,,,) and ¢, (Am) Recently,
Esi et al. (2007); Tripathy et al. (2005) have introduced a new type of generalized
difference operators and unified those as follows.

Let m,v be non-negative integers, then for Z a given sequence space, we have

z(a,)={x =) ew: (a,x)e 2}

For Z =c¢,c,and /,, where A", x = (Avmxk) =(a%'x, - A‘;‘xk+m) and A’ x, =x, for
all k€ N, which is equivalent to the following binomial representation

A =Y C () X
v=0

Taking m =1, we get the spaces Z, (AV),C(AV) and ¢, (AV) studied by Et & Colak
(1995). Taking m =v =1, we get the spaces Z,(A),c(A) and ¢,(A) introduced and
studied by Kizmaz (1981). For more details about sequence spaces see (Mursaleen,
1996; Raj et al., 2011; Raj & Sharma, 2013a; Tripathy et al., 2008; Tripathy et al.
2012b) and references therein.
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Basar & Altay (2003) introduced the generalized difference matrix B(r,s) = (b,, (. s))
which is a generalization of A'() — difference operator as follows:

r (k=v),
bi(rs) = {s (k=v-1),
0 O<k<v -=-1Dor(k>v)

for all k,ve N, r,se R\ {0}. Recently, Basarir & Kayik¢1 (2009) have defined the
generalized difference matrix B” of order v which reduced the difference operator
A'() in case r =1, 5 =—1 the binomial representation of this operator is

v

\% _
Bvxk: 2 (V) r’ VSVX/(_V,

v=0

where r,s€ R\ {0} and ve€ N. Thus for any sequence space Z, the space Z(B")
is more general and more comprehensive than the corresponding space Z (Av(l)).
For details one may refer to (Basarir & Nuray, 1991; Kayik¢1 & Basarir, 2010) and
references therein.

The idea of statistical convergence was given by Zygmund (2011). The concept
was further studied by Fast (1951) ; Schoenberg (1959) independently for the real
sequences. Later on, it was further investigated from sequence point of view and
linked with the summability theory by Fridy (1985). The idea is based on the notion
of natural density of subsets of N, the set of positive integers, which is defined as
follows. The natural density of a subset £ of N is denoted by

9

S(E) = liml|{ke E:k<n}
}’l—)OOn

where the vertical bar denotes the cardinality of the enclosed set.

An Orlicz function M is a function, which is continuous, non-decreasing and convex

M(0)=0, M(x)>0 for x>0 and M (x)—> oo as x —oo.

Lindenstrauss & Tzafriri (1971) used the idea of Orlicz function to define the following
sequence space:
> |Xk |
‘m = {xewzz M(T) < ®, forsomep>0}
k=1
which is called as an Orlicz sequence space. The space /,,is a Banach space with the
norm

llxll = inf {p>0:k§ilM(%)s 1.



Kuldip Raj and Seema Jamwal 88

It is shown by Lindenstrauss & Tzafriri (1971) that every Orlicz sequence space 7,
contains a subspace isomorphic to /p(p >1). In the later stage different Orlicz sequence
spaces were introduced and studied see (Parashar & Choudhary, 1994; Esi & Et, 2000;
Tripathy & Mahanta 2003; Mursaleen, 1996; Sen & Roy, 2013; Esi, 2013) and many
others. The A, —condition is equivalent to M(Lx)< kLM (x) for all values of x>0
and for L>1.

A sequence M = (M, ) of Orlicz functions is called a Musielak-Orlicz function
(Maligranda, 1989; Musielak, 1983). A sequence N = (N, ) defined by

N, (v) = sup{|v|u -M, () :u> 0},k =1,2,....

is called the complementary function of a Musielak-Orlicz function M. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space ¢, , and its subspace
h, , are defined as follows:

VI {xe w Iy (cx) < % for some c>0},
hn = {x € w:ly(ex) < o forall ¢ >0},

where [, is a convex modular defined by

I (x) = kz] My (x0), x =(x0) € 1y

We consider ¢, , equipped with the Luxemburg norm

llxIl = inf {k >0 Iy (%‘) < 1}

or equipped with the Orlicz norm

lx11® = inf {é (1 + IM(kx)) k> 0}.
For more details about Orlicz functions see (Et et al., 2006; Tripathy & Dutta, 2012)
Let X be a linear metric space. A function p: X — Ris called paranorm, if
(1) p(x)=0forall xe X,
) p(=x)= p(x) forallxe X,
3) p(x + y) < p(x) + p(y) forall x,ye X,

@ if (7\,,1) is a sequence of scalars with A, — A as n — o and (xn) is a sequence of
vectors with p(x, —x)—0as n—> oo, then p(A,x, —Ax)—0as n—>oo.

A paranorm p for which p(x)=0 implies x =0 is called total paranorm and the pair
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(X , D) is called a total paranormed space. It is well known that the metric of any linear
metric space is given by some total paranorm see (Wilansky, 1984) Theorem 10.4.2,
pp- 183.

By w we denote the set of all real or complex sequences x = (xk ) Let c,c,,C,Cy,l..,m
and m,, denote the sets of all convergent, null, statistically convergent, statistically null,
bounded, bounded statistically convergent and bounded statistically null sequences,
respectively.

A sequence space E is said to be solid (or normal) if (x,) € E implies (o, , x,) € E;
for all sequences of scalars (o1, ) with ‘ o, ‘ <lforall ke N.

The concept of 2-normed spaces was initially developed by Gihler (1965) in the
mid of 1960’s, while that of n —normed spaces was introduced by Misiak (1989).
Since then, many others have studied these concepts and obtained various results, see
(Gunawan, 2001a; Gunawan, 2001b; Gunawan & Mashadi, 2001). Let 7€ N and X
be a linear space over the field K, where K is the field of real or complex numbers of
dimension d, where d >2n>2. A real valued function |.,...,.| on X, satisfying the
following four conditions:

(D) Cxys x5 000%,)
2) ||()cl 3 X5 5enns xn)
3 [,y e x,)

@] (x+x", x5,..00x,

‘ =0 fand only if (x,,X,,...,x, ) are linearly dependent in X ,

is invariant under permutation,

= ‘0(‘ H(xl,xz,...,xn for any o € K, and

< Gy s x|+ (2 2550 x,)

is called an n —norm on X, and the pair (X ,
over the field K.

) is called an n —normed space

egeeeye

Example 1.1. We may take X =R"equipped with the n —norm ”(Xl 5 Xg 5eees )C,,) P
the volume ofthe n — dimensional parallelopiped spanned by the vectors (x1 3 Xy s X,
which may be given explicitly by the formula

||(xl,x2,...,xn) . =‘det(xij),

where x, = (x,,, x,,,...,x, ) €R" foreach i —1,2,...,n. Let (X,
space of dimension d >n>2 and {a,,a,,....,a, } be linearly independent set in X .
Then the following function _on X "' defined by

||(x1 3 Xy penes X,y )”m = max{”(x1 I SRR S ), a, || (i=12,..., n}

defines an (2 —1)—normon X with respect to{a,,a,,....,a,}.

)be an n —normed

cgecegsl

egeeeys
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) is said to converge to some

cgeeegl

A sequence (xk) in an n—normed space (X )
Le X if

11m||xk -L,z ...z, ||=0 forevery z,...,z, € X.

k—eo

) is said to be Cauchy if

egeeene

A sequence (x,) in an 7 —normed space (X ,

k’l]iglmuxk N H =0 forevery z,,...,z, , € X.
If every Cauchy sequence in X converges to some L€ X, then X is said to be
complete with respect to the # —norm. Any complete n —normed space is said to be
n —Banach space. For more details about n —normed space see ( Altin et al., 2004;
Raj & Sharma, 2012; Raj et al., 2010; Tripathy et al., 2012a; Tripathy & Borgogain,
2013) and references therein.

A sequence (xk) is said to be statistically convergent to L if for every € >0,
the set {k € N: | =L,z 0eer 2,
Zy sy 2,1 € X, in other words (x,) statistically converges to L in n—normed
space (X, )if

‘2 ¢ } has natural density zero for each nonzero

cgeeegl

|
hm;|{ke N: ||xk -L,7,.,2, ” 2‘g}| =0,

k—>e0
for each nonzero z,,...,z, , € X. For L >0 we say this is statistically null.
First we give the following lemma, which we need to establish our main results.

Lemma 1.2. Every closed linear subspace F' of an arbitrary linear normed space E
(different from E is a nowhere dense set in £ (Tripathy & Dutta, 2010).

Throughout the paper w(X),c(x),c,(X),e(X),¢,(X),£.(X),m(X) and my (X)
denote the spaces of all, convergent, null, statistically convergent, statistically null,
bounded, bounded statistically convergent and bounded statistically null X valued

sequence spaces respectively, where (X , ) is an n-normed space. By 6 = (0,0,....)
we mean the zero element of X. By x, —“—0 we mean that x, is statistically

convergent to zero.

cgeeegl

Let m,v be non-negative integers, M = (M, ) be a Musielak-Orlicz function,
p= (pk) be a bounded sequence of positive real numbers and u = (uk) be a

) be an n —normed space. In this

egeeegsl

sequence of positive real numbers. Let (X ,
paper we define the following sequence spaces:
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egeeesgs

):
{x () w05 M,

E( Ma B(vm),l/t, pa

5 Zpseees Ly

(”u B(m)(xk) L
e

Pr
) stat 0

for every non zero Z;,...,2, ;€ X andsome L € X, p >0 }

)-
{x=(xk)ew(X):ng(

EO(M, B, U, p,

cgeeess

ukB(Vm)(‘xk)

Pi
s Zyseees 2oy ) — 0

for every non zero 2, ,...,2,_; € X and some p >0 }

)=
{xz (xk)e w(X):supliMk(

egeengsl

/w (Ma Bzm)aua po

v
”kB(m)(xk)
———————, 2 »s Ly
n M=

Pk
) <oo

for every non zero Zj,..., 2, € X and some p >0 }

)-
{x () € w(X) :lim— ZM (H” B(Vm)(xk)_L,zl,...,zn,l

p

c(M, B, u, p,

egeeege

Pr
) =0

for every non zero Z,,..., 2, ; € X and some p >0 }

)=
{x (xk)ew(X) hm ZM (T Z

egesegs

¢y (M, Bi,.u, p,

5 Zyseees Ly

Pk
) :0

for every non zero Z,,...,2,_; € X and some p >0 }
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Pk
) :O

egesegs

):
x=(x,) € w(X): lim— sz H” B(v"ﬂ(xk)‘L,zl,...,z,,_]

p

for every non zero 2,,...,2,_; € X and some p >0 }

m(l\/l, B(in),u,p, Y )ZE(M, B(L;n),u,p, ....... H)ﬂ/m(M,B(Vm),u,p,H.,...,.H)
and
My (M, Bl sty phes]) =8 (ML BE ity Pl Y0 2 (ML Bty o]

where B, x =B,y x, = rB(Vn'l;xk + sB(Vn'l;ka and B(Om)xk =x, forall k€ N, which is
equivalent to the binomial representation as follows:

14

1% _
Bl = 2 () Sk
V=

In this representation, we obtain the matrix B, defined in Basarir & Kayike¢1 (2009)
for v>1 and in Bagar & Altay (2003) for v=1.

)

2)

3)

4)

If we take v=0 then the above sequence spaces are reduced to E(I\/I,
o) G (M wp ). (M, o pn]). (ML pn)),
CO(M, u,p,H.,...,.H), W(M, u,p,H.,...,.H), m(M, u,p,H.,...,.H) and mo(M,

), respectively.

cgeeeys

u,p,
If we take r =1 and s=-1 then the above sequence spaces are reduced to
c(M, Ayt ), 2, (M, Aftt, pulles ), 2. (M, A7, p]),
(M, A1, p o)y € (ML At o), (ML A, p]en ),
m( M, A”'(m),u, D, ) and m, (M, A”(m),u, D, ), respectively.

cgeeeys

egeeeys

IPERRPR

By taking p=(p,)=1and u=(u,)=1for all k then these sequence spaces are
). 2@, (M, Bl Jvees]). 2. (M, B ],
), c( M, B(,) ), w(m, B, ), m( M,
) and m, ( M, B(Vm), ), respectively.

cgeeege cgeeege cgeeege

reduces to ¢ (M, B,y
c(M. By,

egeeeys cgeeegl egeeegl

.
Y .
(m)

If we take M = [ where [ is the Identity map, then we get the sequence spaces
Z(Blytts Pollord)s € (Bl pofl])s 2, , (Bl ity s,

,
T -
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) and

c9eeege cgeeege cgeesg

)’ W(B(Vm)’u’ P )7 m(B(vm)vua p

), respectively.

Co (B(vm)a u,p,
mO (Bem)auv P>

egeenye

5) If we replace the base space X which is a linear 7 —normed space by C,
complete normed linear space and take m =1 and take r =1, s =—1 then the

)’ EO(M’ Av(l)aua D> ),

cgeeens IPYREPR

above spaces reduces to E(M, Av(l),u,p,

2. (M, Aty pu s ])s (M, A, o)), €0 (M, A, p, e,
W( M,Av(l),u,p, S ), m(M,A"(l),u,p, ryeeesd )and mO(M,A"(l),u,p, ryeeesd ),
respectively.

6) Ifwe replace the base space X which is an n —normed space by 2-normed space,
M =1L u=(u,)=1forall k and p =1we obtained the sequence spaces introduced
by (Basarir et al., 2013).

7) Moreover if we take X = C,v=0, M =1, p=(p,) =land u=(u,) =1 for all
k we get the spaces ¢, ¢,,7,,c,c,,W,m and m,, respectively.

The following inequality will be used throughout the paper.

Let p=(p,) be a sequence of positive real numbers with 0 < p, Ssup p, =H and

k
let D= max{l,ZH_l}. Then, for the sequences (a,) and (b,) in the complex plane,

we have
Pk ) (1)

MH} for A € C, where h=i1}cfpk.

o< D( |ak e +|bk

|ak + b,

h
s

andmp‘ < max{‘k

The main purpose of this paper is to introduce and study the above defined sequence
spaces. We make an effort to study some topological and algebraic properties of
these spaces. Further we show that the sequence spaces m(M,B(Vm),u,p, )
and mO(I\/I,B(Vm),u,p, yeeer ) are complete paranormed spaces, when the base
space is 7 —Banach space. We have also studied some inclusion relations between

egeeege

these spaces.

MAIN RESULTS

Theorem 2.1. Let be a M = (M,) Musielak-Orlicz function, p = (p,) be a bounded
sequence of positive real numbers and u = (u . ) be a sequence of positive real numbers.
Then the sequence spaces Z ( M, B(Vm), u,p, are linear spaces over the field
of complex number C, where Z =c,c,,I_,W,m,m,.

egecege
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) and for the

cgeeeye

Proof. We prove the theorem only for the space ¢ ( M, B(,),u, p,
other spaces it will follow on applying similar argument.

Let x=(x,),y=(y,) € E(M, Bt D ,,||) and a, B € C. Then there exists
L,J € X and positive real numbers p,, p, such that for every z,,...,z, , € X

v ( ) Pk

d u B x, )—L

E Mk( * (m) b ’Zl""’ Zn—l ) Sl )0
k=1 P

and

BV ( ) L Pk

o] u —

sz( k (m) yk ,Zl,..., Zn_l ) stat 0
k=1 P

Letp, = max(2|a|p] ,2|ﬁ | P, ) Since M, s are non-decreasing convex so by using the
inequality (1) we have
)ﬁk

- ||ukB(vm)(a’xk+Byk)—(aL+ﬁJ)
S -

s Zyseees Ly

Pr
> B/ sa(x, — L B/ -J
:sz(””k ma (, ),Z]’W’Zn_l_l_uk (B )’ZW,Z”_] )
k=1 H P P
Pk
= B/ - L
<DY M, B (1) Zysens 2
k=1 P
Pk
o B/ -J
+ DY M, By (1) s Zyserer Ty
k=1 P,

— 50 as k —>oo.

,,") is a linear

Thus, ax+ Bye E( M, B(,), 1, P eseeere ) Hence E(I\/I, B(,y.u, p,
space over the field of complex number C.

Theorem 2.2. Let M = (M, ) be a Musielak-Orlicz function, p = ( p, ) be a bounded
sequence of positive real numbers and u = (uk) be a sequence of strictly positive
real numbers. Let (X ,||,,||) be a n—Banach space. Then the spaces m( M,
B(Vm),u,p,||.,...,.||) and m, ( M, By, Pslseees- ) are complete paranormed sequence
spaces, paranormed by
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MkB(Vm)(-xk) z z
—’ l""’ n_l

gx)= sup Z‘Mk(

kEN k=1

Pi
)M, for some p >0

where M =max(1, H), H =sup p, and h :ir}cfpk'
k

).

Clearly, g(#) =0, where 8 =(0,0....,0) is the zero sequence and g(-x)=g(x).
Let x=(x,), y=(y,) € m, (M, B,y u, p, ) Then there exists positive real
numbers P, and P, such that

Proof. We shall prove the theorem for the space m,, ( M, B(Vm), u,p,

cgeeeye

egeeeys

Pk
i u B/ (x
sz( L)(k),zl,...,zn_l ) —0, for some p, >0
k=1 P

and

2M,

k=1

( uk B(vm) (yk ) " stat

s Ly seees Ly ——0, for some p, >0.
P,

Letp =p, + p,, thus

[ & ugB () (xXk + i) s
g(x+)’) = Sup Mk y 1y sin-1
keN kz:f P11+ P2
Z1,Zn-1€EX =

IA
e

[ = ugBY (X0 ]
sup ZMk(f—>,zl,...,zn_l)
1

keN
s Zn—- 1€X

[ & weB,, (i) a
+ Sup ZMk(#th---,Zn—l " .

keN P2
Z1seesZn- 1€X

P

This implies that g(x+y)=g(x) + g(y). To prove the continuity of scalar
such that g (x" - x) — 0as v — 0 and (A,) be a sequence of scalars such that A, — A.
Since the inequality g(x”) <gx)+ g(x”— x) holds by subadditivity of g, (g (xv))
is bounded. Thus, g(4,x" — Ax)

egeeeys

multiplication, assume that (x”) be any sequence of points in m,, ( M, B, u, P,
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Pic
M

v v
ukB(m)(xk)

ukB(m)(lvx,ﬁ — Axy)
I

y <1y +9Zn-1
kEN
21 Zn- 1€X

= sup M, (

IA

3Z1se5in—-1

Pk
M

= (max {11, — 21", 14, — A7 })ag(x") + (max {IA1", 1217 })ag(x" - x)

- 0 asv-ooo,

keN
Z1seesZn-1€X

(max {14, — AI",1A, — A1 })a  sup Mk(

P
M

ukB )(xk X)
p

yZ1se e +5Zn-1
keEN
Ll seeesln—

+ (max {A", 1A )& sup (
1EX

8)

assume that (xi) be a Cauchy sequence in m1,, (M, B(,y.u, p, ||,,||) Then for a given

Thus, g is a paranorm. To prove the completeness of space m,, (M, B, u,

€ >0 there exists a positive integer N, such that g(xi - x-’) <eforall i, j>N,.
This implies that

sup ZM (”u B('")(x k) “ B(m)(x(k))Z .

keN H p

ZlseesZn— 1€X

P

M
) <eg,forall i, j =2 N,.

’an

It follows that for every nonzero z,,...,z, , € X.

”u B(m)(xk ukB(vm)(x,f)
| b

<¢&,foreach k=1 andforall i, j 2 N, .

Therefore, (ukB(vm)(x,’;)) is a Cauchy sequence in X for all ke N. Since X
is n— Banach space, (ukB(vm)(x,i)) is convergent in X for all k€ N. We write
ukB(Vm)(x,’;) %ukB(”;n)(xk) as i — oo, Now we have forall i, j = N, .

Pk
M
<é&

3819 sln—1

B, (xp = x7)

3 %15+ +sZn-1

oo
sup Z M,
keN k=1

215 0Zn- 1€X

oo
= lim sup z My
J o keN
k=1
Z1,e52n- 1€EX

B, (xi = x)

P

-

uyB’ (xf< - Xz) o
(m) "< e, forall i > Ny.

3Z1s+++53n-1

= sup i M, (
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cgeengl cgecegsl

)is

). Similarly we

) and mo(l\/l, B,y.u, p,

a linear space, so we have x = x' — (xi - x) em, (M, B(‘;n),u, D,

It follows that (xi - x) em, (I\/I, B(,.u, p,

cgeeesd

egeenye

can prove for the space m(l\/l, B(,u, p, ) This completes the proof.

..... Y

Theorem 2.3. The space Z ( M, B(”;n),u, D, ) is not solid in general, where
Z=c,c,,m,m,.

Proof. To show the space is not solid in general, consider the following examples.

Example 2.4. Let m=3,v=1,r=1,5 =-1 and consider the #» —normed space as
defined in example (1.1). Let p, =5, u, =1 and M, =1, (the identity map); for all
ke N. Consider the sequence (x, ), where x, = (x,‘() is defined by (x,i) = (k. k, k.......)
for each fixed k€ N. Then X, € Z(l\/l, B(13),u,p, .,...,.) for Z=c,m. Let
a,= (1) then (a,x,) ¢ Z(M, B, U, p, ) .Thus Z(M, B(s). 1, p, )

for Z=c¢,m is not solid in general.

egeensd egeeeysl

Example 2.5. Let m=3,v=1,r=1,s =—1 and consider the n—normed space as
defined in example (1.1). Let p, =1, forallodd k and p, =2 forallevenk,u, =1and
M, =1, the identity map, for all ke N. Consider the sequence (x f ), where x, = (x,’() is
deﬁnedby(x,i) = (3,3,3,.......) foreach fixed ke N.Then x, € Z( I\/I,B('S),u, D, ,,H)

for Z=c¢,,m,. Leta, = (— l)k, then (akxk) eEZ(l\/I, B(13),u,p, yeeess ) Thus Z(l\/l,
B(13),u, p,H.,...,.H) for Z =¢,,m, is not solid in general.

Theorem 2.6. The spaces m,, (l\/l, Bty Psleseese )and m(l\/l, Bty Pseseeese )are
nowhere dense subsets of Z_ (I\/l, B(Vm),u, Dsllseeess )

Proof. From Theorem 2.2, it follows that mo(l\/l, B(Vm),u,p, .,...,.) and m(l\/l,

B>t Pseseees: ) are closed subspace of 7 (l\/l, Bys Uy Dy [lsenese ) Since the inclusion
relations

mo(l\/l, B> Us Dsll5eees ) c /w(l\/l, B(,)sts Pslseees- ),
and

)

) and m(M, B(v,.n)auapa
)by lemma 1.2.

m (M, B> Uy Psleseees- ) < 7, (M, B>ty Pslseees-

) are

are strict, the spaces mo(l\/l, B(Vm),u,p, iyenns .

nowhere dense subsets of £_ (I\/I, B(‘;n), u,p,

cgeeese

Theorem 2.7. Let p= (p k) be a non-negative bounded sequence of positive real
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numbers such that ir]%f p; >0. Then

).

) < m(M, B, p,

W(M, Blytty puoeess]) 02 (M, Bty pflee

Proof. Let (x,)€ W(M, Bty Py [oreens- )ﬂ Z, (M, Bty Py [lreens- ) Then for a
given € > (), we have
1 C | uk B(Vm) (xk) -L .
T ZMk H 5 Zp5ees Ly
k=1 p
1 " uyB! (xy)— L
> — Z Mk( ‘ (m) ‘ 3 &1 ++s3n—-1 )pk
n , k=1 p
My (” M’Zl"” Zn-1 ”) pkze
n B’ - L
> gl {ksn:ZMk( e (m)(Xk) 221y sZn1 )ka s}‘
n k=1 p

,,") from

). we have the result.

If we take the limit for n — co. It follows that (x, )€ W( M, B(Vm),u, D,

the above inequality. Since (x, )€ W(M, B, U, P,

egeeeys

Theorem 2.8. If 0< p, <g, <eo, for each k. Then

)

) then their exists some p > 0 such that

Pk
M"(u ukBEm)l()xk)—L

Pk
<1,
‘ |

for sufficiently large value of k. Since M,;s are non-decreasing, we get

) 4k
Supl iMk(”ukB(m)(Xk)_L>Z1>"'>Zn—l )

L H p

/w(M, B,y Us Dy [loseeese ) c /w(l\/l, B,y Us G esees

Proof. Let (x, )€/, (M, B, 1, p,

PYREPR

This implies that

19009 Zp
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izl

L (=

< 0o,

). This completes the proof.

cgeeegl

Thus, (x, )€ /. (I\/I, B, q,
Theorem 2.9. (i) If O<inf p, < p, <1, then

vo]).

egeeegsl

£.(M, Bl ity pulees]) € 2.(M, B,

(i) If 1< p, <sup p, <oo, then

)

, ,,") Since 0 <inf p, <1, we have

|

/w(l\/l, B,ys Us [loseees- ) c /w(l\/l, Bysts Ds [loseeese

Proof. (i) Let (x,)€ 2 (M, B,).u,

(|| w By (x,) - L

sup k 1 H P 5 Zpseres g
non
) Pk

)

(if) Let p, 21 for each k€ N and sup p, <eo. Let(x,) € £(M, B{,,u

Hence (x,) € /N(M, B(Vm),u,

). Then

of[+oeeese

)Se<1

for each 0 <€ <1, there exists a positive integer N such that

sup — ZM (”ukB(m)(xk) L,zl,...,z,,_l

n N oo H P
)Pk

<sup 1 iMk (HukB(vm)(Xk)_L,Zl,...,Z,,1

no N oo
.

for all k€ N. This implies that

(%%ﬁ»¢

5 Zp9eees Xy
e

sup — ZM

no N

Hence (x,) € Z, (I\/I, B,y U, P,
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Theorem 2.10. Let M’ = (M,;) and M" = (M;') be two Musielak-Orlicz functions.
Then we have

/m(M ’7 B(vm)’ u, p5

) N /m(l\/l”, B(Vm), u, p,

).

Proof. Let(x,) € /N(M', B, u, p,".,...,.”) N /w(l\/l", By, U, P,

cgecegs egesegs

< /w(M"i' M”, B(vm)a u,p,

cgeeege

). Then

egeeeg

Pk
) <°o

sup — ZM (ukB(m)(xk)_L,zl,...,zn_1

L (s P
and
Pr
u, B (x,)—L
sup ZM” ¢ ()( ) s Zypeees Ty <oo-
(O (= p

Adding the above inequalities from k£ =1 to oo, we have
Pk
B, —-L
sup Z(M +M7) (H ('")(xk) s Zyseees Ly )
p

B L
<sup [ ;(H” (m)(xk) oz,

"nkl p

)m
)m

ukB(Vm)(xk)_L )pk

< Dsup — ZM ( s Zyseeer Ly

” u B(‘;n)(xk)_L
+ Slip . kz{ (H Py 5 Zysees Ly

no Mg p

Pk
B/ - L
+ Dsup — ZM (uk ('")(xk) s Zyseees 2y )

(R (s p

< oo,

cgeeegsl

). This completes the proof.

Thus, we get (x,) € £ (M'+M”, B,y U, P,
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CONCLUSION

In this paper we have introduced some new statistically convergent sequence spaces
defined by a Musielak-Orlicz function over 7 —normed spaces. We have studied some
topological properties and interesting inclusion relations between these sequence
spaces. There are many applications of sequence spaces in Science and Engineering
see (Raj & Sharma, 2013b). The solutions obtained here are potentially significant and
important for the explanation of some practical physical problems.
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