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ABSTRACT

In this work, we study Lorentzian spherical motion of rigid bodies by using 
instantaneous invariants and define Lorentzian inflection curve, Lorentzian circling 
points curve and Lorentzian cubic of twice stationary curve, which are the loci of 
points having the same properties during Lorentzian spherical motion of rigid bodies. 
Also, the intersection points of these curves are called Ball points and Burmester 
points. We define Lorentzian Ball and Burmester points on Lorentzian sphere. 
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INTRODUCTION

The basic concepts of planar mechanisms with the aid of instantaneous invariants 
are widely studied in the literature (Gupta 1978; Roth & Yang 1977; Ting & Wang 
1991). The analysis of trajectory curvature with respect to instantaneous invariants 
has been extended to three dimensional mechanisms by Veldkamp (1967). Also, the 
instantaneous angular velocity vector and its derivatives in spherical kinematics are 
defined by Kamphuis (1969). In spherical kinematics, Ball points are the intersection 
points of the inflection curves and circling point curves, while Burmester points are 
the intersection points of circling point curves and cubic stationary curvature curves, 
as given by Kamphuis (1969) and Roth & Yang (1973). The parametrical formulations 
of these points in spherical kinematics have been obtained by Chiang (1992); Özçelik 
(2008) and Özçelik & Şaka (2010).

The kinematics for rolling a Lorentzian sphere (a one-sheet hyperboloid) is studied 
and the equation of motion of the Lorentzian sphere is given by Korolko & Leite 
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(2011). In dual Lorentzian space kinematics, the concepts of canonical systems and 
instantaneous invariants are studied and the instantaneous invariants are derived with 
respect to the line coordinates (Ayyıldız & Yalçın, 2010). Also, kinematically generated 
surfaces corresponding to the vectors of dual Lorentzian and hyperbolic spheres have 
been investigated by Karadağ et al. (2014).

In this study, Lorentzian motion is taken into consideration as a three dimensional 
motion of a rigid body around a fixed point on Lorentzian sphere 2

1S . The Lorentzian 
Ball and Burmester points are investigated and the parametrical representation based 
on invariants of the Lorentzian spherical motion is obtained.

PRELIMINARIES

Lorentzian 3-space, R  is a pseudo-Euclidean space with index 1 endowed with the 
indefinite inner product given by 

where ( )1 2 3, ,x x x=x  and ( )1 2 3, ,y y y=y . An arbitrary vector ∈x R  is called timelike, 

if ( ), 0g <x x , spacelike if ( ), 0g >x x  or =x 0 and null, if ( ), 0g =x x
 
and ≠x 0. 

Similarly, a curve  is said to be timelike, spacelike or null, if the velocity 

vector ċ(t)
 
is timelike, spacelike or null, respectively. The norm of ∈x R  is defined as 

. If  for all t I∈ , then C  is a regular curve. A non-null curve 

C  is parameterized by arc-length parameter t , then the tangent vector ċ(t) along C  has 

a unit length, i.e.,  for all t I∈ . Furthermore, any vectors ( )1 2 3, ,x x x=x  and 

( )1 2 3, ,y y y=y  are said to be orthogonal if ( ), 0g =x y  andthe Lorentzian product 

∧x y is defined as

( )3 2 2 3 1 3 3 1 1 2 2 1, ,x y x y x y x y x y x y∧ = − − −x y .

From now on curves are considered non-null and unit speed curves in R .

Let { }, ,T N B  be a smooth non-null frame along C  called a Frenet frame, where T ,
N and B are non-null unit tangent, principal normal and binormal vectors, respectively. 
For smooth non-null unit speed curve, the Frenet formulas

are satisfied where smooth functions  and  are called curvature and torsion of C . The 
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Frenet vectors T , N and B are mutually orthogonal vectors and, due to their casual 
characters, there is

                          
(1)

where , . If C  is a non-null unit speed curve and { }, ,T N B  is a Frenet 
frame along C  satisfying (1), then the torsion of C  holds

                                              

 (2)

(O’Neill, 1983). 

 

If M  is an oriented surface and a C  curve lying on M , then there exists another 
frame of C , different from Frenet frame.This is called a Darboux frame and is denoted 
by { }, ,T g n ,where T is the unit tangent vector of C , n  is the unit normal vector of M  
and g  is the geodesic normal vector given by = ∧g n T . 

Let M be a timelike surface and C  be a non-null curve lying on M  in a Lorentzian 

space R  . Thus, the derivative formula of a Darboux frame is given by

where ( ) 1,g ε=T T . In this formula gk , nk  and  are called geodesic curvature, normal 
curvature and geodesic torsion of the curve, respectively. The geodesic curvature of 
any curve C  on timelike surface M  is

                                               (3)

(Uğurlu & Topal, 1996).

LORENTZIAN SPHERICAL MOTION AND INSTANTANEOUS 
INVARIANTS

The Lorentzian sphere (de Sitter space) is known as the hyperboloid of one sheet 
and is denoted as , while the Lorentzian spherical motion 
is defined as the three dimensional motion of a rigid body around a fixed point in 
Lorentzian space. We will investigate the kinematics of this spherical motion with the 
aid of the geodesic curvature and the torsion.
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Let the position vector Ar  of any point A , moving spherically, be a unit vector with 
direction from the origin O  of sphere to the point A . Thus, Ar  is defined as

where i , j , k  are the unit vectors of the Cartesian coordinate system of R . Also,

 
where Ar ,  and  are the elements of a 

Lorentzian spherical coordinate system of R .

The Lorentzian spherical motion of a moving sphere with respect to a fixed sphere 
will be considered. The orthonormal coordinate systems {μ,σ,δ} and { }x,y, z  being 
on Lorentzian moving and fixed spheres, respectively, will be investigated with respect 
to each other. So, μ, σ and δ are defined as

Moreover, the derivatives of the unit vectors of the moving frame are

                                     (4)

Angular velocity is the rate of change of angular displacement and can be described 
by the relationship

By the angular velocity vector w=w k  and the position vector Ar , the velocity vector 
of a rigid body at the point A is given by 

.A
A A

d

dt
= = ∧r

v w r                                               (5)

We assume that the moving and fixed frames of a Lorentzian sphere are coincident 
as x = μ , y = σ and z = δ at the initial time 0t = . Let us take the angular velocity vector 
w  as a unit vector. Since the angular velocity vector w  has direction towards the axis 
z  at this moment, 0 0 00, 0x y zw w w= = >  where ( )0 0 0, ,x y zw w w=w  for the right hand 
coordinate system. Also, we will use the notation for derivatives of w  as follows
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All kinematical properties can be described with xw , yw  and zw  where 
 0,1,2,3= . So, we may call these parameters instantaneous invariants of a 

Lorentzian spherical motion.

If there is a constant angle  between w  and the axis z , then  is 
obtained. For the special selection coordinate system as above, by using the equation 
(4) we get

                                            (6)

It is easily seen that 1 1 10, 0x z yw w w= = ≠  such that we get the first derivative of 
the angular velocity vector w, which is called the angular acceleration vector, towards 
the axis y .

By considering the derivative of the equation (6) with respect to t  and the equation 
(4), we can get the Lorentzian spherical motion instantaneous invariants such that

  

(7)

where

LORENTZIAN INFLECTION CURVE, CIRCLING POINTS CURVE 

AND CUBIC OF TWICE STATIONARY CURVE

The locus of points whose geodesic curvature is zero is called an inflection curve 
(Kamphuis, 1969). The curves whose geodesic curvature is zero on Lorentzian sphere 
are Euclidean or Lorentzian circles. Therefore, Lorentzian inflection curve is the locus 
of points which trace a path in the form of Euclidean or Lorentzian circle arcs. If 

0gk = , from the equation (3) we know

                                                    (8)
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If we differentiate C  with respect to the t  and consider the equation (5), we have

                                               (9)

where c is the position vector of the curve C . By taking the derivative of the equation 
(9) with respect to t  and using the equation (5), we have

                         (10)

From the equations (8), (9) and (10), the equation of the Lorentzian inflection curve 
becomes

( )2 2
1 0.yx y z xw+ − =                                          (11)

We can also parameterize the Lorentzian inflection curve. By the Lorentzian spherical 
coordinates, the last equation gives us

                                       (12)

If the equation (12) is solved with respect to , we get

With the Lorentzian spherical coordinates, we have

 

               (13)

where . 

Fig. 1. Lorentzian inflection curves on 2
1S for 1 0yw = and 1 0.4yw = , resp.
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In a similar way, by solving the equation (12) with respect to , the parametric 
representation of inflection curve is 

      (14)

where .

Fig. 2. Lorentzian inflection curves on 2
1S  for 1 1yw = and 1 20yw = , resp.

The locus of points, whose torsion is zero, is called a circling point curve (Kamphuis, 
1969). The curves whose torsions are vanished on Lorentzian sphere are Euclidean or 
Lorentzian circles. So a Lorentzian circling point curve is the locus of points that trace 
a circular path on the Lorentzian sphere. With the help of the definition of circling 
pointcurve and the equation (2),

                                                 (15)

is obtained. The derivative of the equation (10) with respect to t  gives us

                                   (16)

By the equations (6), (7), (9) and (10), the last equation is equal to

   
(17)

By the equations (9), (10), (15) and (17), the equation of the Lorentzian circling point 
curve is 

                                    (18)

where 1 0yw ≠ , 
2

2
1

y

y

a
w

w
=

−
 and 

( )2

2

1

1

2x y

y

w w

w
b

−
= .
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Similarly, the Lorentzian circling point curve can be parameterized with . By the 
Lorentzian spherical coordinate, the equation (18) is equal to

                                 (19)

If the equation (19) is solved with respect to the angle , then

                                  (20)

is obtained. So, the Lorentzian circling point curve is parameterized by  as 

          (21)

where .

Fig. 3. Lorentzian circling point curves on 2
1S for 0.25, 0.1a b= = .

Fig. 4. Lorentzian circling point curves on 2
1S  for 0 0.3a b= = and 0.4, 0a b= = , resp.
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 The locus of points whose torsion vanishes, as well as, the change with respect 
to time vanishes, is called a cubic of twice stationary curvature curve (Kamphuis, 

1969). From this definition, we have seen that  and 
 
is satisfied for a 

cubic of twice stationary curvature curve. With the help of the equation (2), we have 

 and

Since  from the last equation, we see

                                                (22)

On the other hand, by the derivative of the equation (16) with respect to t , we get

                         (23)

From the equations (6), (7), (9), (10) and (17), we find

               (24)

By the equations (6), (7), (9), (10), (17) and (24), the Lorentzian cubic of twice 
stationary curvature curve equation is given by

          (25)

where  

The Lorentzian cubic of twice stationary curvature curve can be parameterized 
with  or . By the Lorentzian spherical coordinate, the equation (25) is equal to

If the last equation is solved with respect to the  or , we can get the parametric 
equation of the Lorentzian cubic of twice stationary curvature curve.
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Fig. 5. Lorentzian cubic of twice stationary curvature curve on 2
1S for 0.25, 0.1a b= =

LORENTZIAN BALL POINTS AND BURMESTER POINTS

Definition 1. The intersection points of a Lorentzian inflection curve and a Lorentzian 
circling point curve in Lorentzian spherical kinematics are called Lorentzian Ball 
points.

As can be understood from Definition 1., the common solution of the equation 
system of the Lorentzian inflection curve and the Lorentzian circling point curve 
gives us the Lorentzian Ball points. In order to calculate the Lorentzian Ball points, 
firstly, we will parameterize the Lorentzian inflection curve with parameter t . Thus, 
we assume that

x ty=                                                         (26)

where 0t ≠ . From the equation (11), we get

                                       (27)

If we solve the equation (27) for z , we find

                                                 (28)

where ( )21 0t+ ≠ . Substituting the equations (27) and (28) into the Lorentzian circling 
point curve equation gives us

( )( )
1

2 21 1

yt w
y

t b at t
= ±

+ + +
,                                 (29)

where ( ) 0b at+ > . Since the Lorentzian Ball points lie on the Lorentzian sphere 2
1S , 

by the equations (26), (27), (28) and (29), the biquadratic equation of t  satisfies

4 3 2
1 2 3 4 5 0c t c t c t c t c+ + + + =                                    (30)
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where

( )( )
( )

( )( )
( )( )

( )( )
( )

( )( )
( )

( )( )

2 22
111

1 2 32 2 2

1 1

4 52 2

11 2
, , ,

1 1 1

1 2 1
, .

1 1

yyy

y y

b w a ba bwa w
c c c

b at t b at t b at t

a bw b bw
c c

b at t b at t

+ + −+
= = =

+ + + + + +

+ +
= =

+ + + +

The number of real roots of the equation (30) gives the number of Lorentzian Ball 
points. Also, it can be concluded that the maximum number of Lorentzian Ball points 
is eight. By the equations (26), (28) and (29), Lorentzian Ball points coordinate can 
be found.

Fig. 6. Lorentzian Ball points for 1 0.45, 0.25, 0.1yw a b= = =

Definition 2. The intersection points of a Lorentzian circling point curve and a 
Lorentzian cubic of twice stationary curvature in Lorentzian spherical kinematics are 
called Lorentzian Burmester points.

Similarly, to find Lorentzian Burmester points, if x ty= , 0t ≠  is assumed and 
calculations are done for the Lorentzian circling point curve, we get 

2 2( )(1 )
, ,

t t b at t
x y z

E EE
+ += = =                                   (31)

where ( ) ( ) ( )( )22 2 21 1 0t t b at t E+ + + + = ≠ . If we substitute the equation (31) into 

the Lorentzian cubic of twice stationary curvature equation, we find

7 6 5 4 3 2
1 2 3 4 5 6 7 0d t d t d t d t d t d t d t+ + + + + + =                      (32)
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where

( )( ) ( )

( )( ) ( )( )

( ) ( )

2 22
11

1 2 3

4 5

6 7

1

2
11

11

, ,
2 31 2

2 22 4

,

, ,

, .
12

yyy

yy

yy

b f a b bg ah wb g wa w

E E

b f a b b g ah wa

a
d d d

E

d
e a b g bh w

E E

bwa e b a h w

E

d

b
d

E
d

− + + − − −+ −

− + + − −− + −

= = =

= =
−

+−
=

−
=

+

The number of the real roots of the equation (32) gives the Lorentzian Burmester 
points numbers. The maximum number of Lorentzian Burmester points is twelve. 
Because the obvious solution of the equation (32) is 0t = , which is contradiction to

0t ≠ . If the real value of t  is obtained from the equation (32) and substituted into the 
equation (31), the coordinates of the Lorentzian Burmester points can be found.

Fig. 7. Lorentzian Burmester points for 0.25, 0.1a b= =
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