Extension of Mazhar's theorem on summability factors

MEHMET ALI SARIGOL*

*Department of Mathematics, University of Pamukkale, Denizli, TURKEY *msarigol@pau.edu.tr

ABSTRACT

By (X, Y) we denote the set of all sequences ϵ such that $\sum a_n \epsilon_n$ is summable Y whenever $\sum a_n$ is summable X, where X and Y are summability methods. In this paper we characterize the set $(|C, \alpha|_k, |\overline{N}, p_n|)$ for k > 1, $\alpha > -1$ and arbitrary positive sequences (p_n) using functional analytic techniques, and so extend some known results.

Mathematics Subject Classification (2010): 40D09, 40F05, 46B45

Keywords: Absolute Cesàro summability; absolute Riesz summability; bounded linear operators; matrix transformations; summability factors.

INTRODUCTION

Let $\sum a_n$ be an infinite series with partial sums s_n . We denote by (σ_n^{α}) and (t_n^{α}) the n-th Cesàro means (C, α) of the sequences (s_n) and (na_n) , respectively. The concept of absolute summability of order k was first introduced by Flett (1957) as follows. A series $\sum a_n$ is summable $|C, \alpha|_k$, $k \ge 1$, $\alpha > -1$ if

$$\sum_{n=1}^{\infty} n^{k-1} \left| \sigma_n^{\alpha} - \sigma_{n-1}^{\alpha} \right|^k < \infty.$$
⁽¹⁾

The method $|C, \alpha|_1$ is reduced to $|C, \alpha|$. On the other hand, in view of the well known identity $t_n^{\alpha} = n(\sigma_n^{\alpha} - \sigma_{n-1}^{\alpha})$, the condition (1) can be stated by

$$\sum_{n=1}^{\infty} \frac{|t_n^{\alpha}|^k}{n} < \infty.$$
⁽²⁾

Let (p_n) be a sequence of positive numbers with $P_n = p_0 + p_1 + \dots + p_n \to \infty$ as $n \to \infty$. A series $\sum a_n$ is said to be summable $|\overline{N}, p_n|$ if

$$\sum_{n=1}^{\infty} |T_n - T_{n-1}| < \infty \tag{3}$$

where

$$T_{n} = \frac{1}{P_{n}} \sum_{\nu=1}^{n} p_{\nu} s_{\nu}$$
(4)

For any real α and integers $n \ge 0$, we define $\Delta^{\alpha} U_n = \sum_{\nu=n}^{\infty} A_{\nu-n}^{-\alpha-1} U_{\nu}$, whenever the series is convergent. Let *X* and *Y* summability methods. A type of summability factors (*X*, *Y*) defined by

$$(X, Y) = \{ \epsilon = (\epsilon_n) : \sum \epsilon_{\nu} a_{\nu} \text{ is summable } Y \text{ whenever } \sum a_{\nu} \text{ is summable } X \}$$

were investigated by many authors, see (Bor & Kuttner, 1989; Bosanquet & Das, 1979; Chow, 1954; Flett, 1957; Mazhar, 1971; Rhoades & Savas, 2004; Sarigol, 1993b; Sarigol, 2011a,b; Sulaiman, 1992). It is known that the summability $|\overline{N}, p_n|$ and the summability $|C, \alpha|_k$ are, in general, independent of each other. It is therefore natural to find out suitable summability factors of type ($|C, \alpha|_k, |\overline{N}, p_n|$). In this direction the following theorems are well known.

Theorem 1.1. (Mehdi, 1960). The necessary and sufficient conditions for $\sum \epsilon_n a_n$ to be summable |C, 1| whenever $\sum a_n$ is summable $|C, \alpha|_k$, $\alpha \ge 0$, k > 1, are

$$\left\{ n^{\alpha+1-\frac{1}{k'}} \Delta^{\alpha} \left(\frac{\epsilon_n}{n}\right) \right\} \in l_{k'}, \frac{1}{k} + \frac{1}{k'} = 1 ,$$

$$\sum_{m=1}^{\infty} \frac{|\epsilon_m|^{k'}}{m} < \infty, \alpha \le 1 ,$$

$$\sum_{m=1}^{\infty} m^{\alpha k'-k'-1} |\epsilon_m|^{k'} < \infty, \alpha > 1.$$

$$(5)$$

This result is contained in the following.

Theorem 1.2. (Mazhar, 1971). The necessary and sufficient conditions for $\sum \epsilon_n a_n$ to be summable $|\overline{N}, p_n|$ whenever $\sum a_n$ is summable $|\mathcal{C}, \alpha|_k$, $\alpha \ge 0, k \ge 1$, are (5) and

$$\left\{n^{-\frac{1}{k'}}\epsilon_n\right\} \in l_{k'}, \ 0 \le \alpha \le 1,\tag{6}$$

$$\left\{n^{\alpha-\frac{1}{k'}}\left(\frac{p_n}{p_n}\right)\epsilon_n\right\}\in l_{k'}, \ \alpha>1,\tag{7}$$

where

(a)
$$\frac{p_n}{p_{n+1}} = O(1)$$
, (b) $(n+1)\frac{p_n}{p_n} = O(1)$ and (c) $\frac{p_n}{n^{\alpha}p_n} = O(1)$, $(\alpha > 1)$. (8)

Theorem 1.3. (Sarigol, 1993a and Sarigol & Bor, 1995). The necessary and sufficient conditions for $\epsilon \in (|\mathcal{C}, 1|_k, |\overline{N}, p_n|), k > 1$, are

$$\sum_{m=1}^{\infty} m^{k'-1} \left(\frac{p_m}{P_m} |\epsilon_m| \right)^{k'} < \infty,$$
$$\sum_{m=1}^{\infty} m^{k'-1} \left| \Delta \epsilon_m + \frac{\epsilon_{m+1}}{m+1} \right|^{k'} < \infty$$

MAIN RESULTS

Theorem 1.2 does not include the case $-1 < \alpha < 0$ and arbitrary positive sequence (p_n) . So, motivated by this theorem, a natural problem is that, what are the necessary and sufficient conditions in order that these results should be satisfied for $\alpha > -1$ and arbitrary positive sequence (p_n) . The aim of this paper is to answer the problem by establishing the following theorem, giving also a new characterization of the matrix $C: l_k \rightarrow l$, and deduce some known results.

Theorem 2.1. Let $\alpha > -1$ and k > 1. Then the necessary and sufficient conditions for $\epsilon \in (|C, \alpha|_k, |\overline{N}, p_n|)$ are

$$\sum_{m=1}^{\infty} m^{\alpha k' + k' - 1} \left(\sum_{n=m}^{\infty} \frac{p_n}{P_n P_{n-1}} \left| \sum_{r=m}^{\infty} A_{r-m}^{-\alpha - 1} \frac{\epsilon_r}{r} P_{r-1} \right| \right)^{k'} < \infty.$$
(9)

It may be remarked that, in the case when $\alpha \ge 0$ and (p_n) is a sequence satisfying the condition (8), Theorem 2.1 is reduced to Theorem 1.2. In fact, now $\epsilon \in (|C, \alpha|_k, |\overline{N}, p_n|) \subset (|C, 0|_k, |C, \alpha|_k)$, since $1 \in (|C, 0|_k, |C, \alpha|_k)$, see (Flett, 1957) and Therefore, if $\epsilon \in (|C, \alpha|_k, |\overline{N}, p_n|)$, then $\epsilon \in (|C, 0|_k, |\overline{N}, p_n|)$. By applying Theorem 2.1 with $\alpha = 0$, we have $(m^{-1/k'}\epsilon_m) \in l_{k'}$ which implies $\epsilon_m = O(m)$. Thus, considering that

$$\begin{split} &\sum_{n=m}^{\infty} \frac{p_n}{P_n P_{n-1}} \sum_{r=m}^{\infty} |A_{r-m}^{-\alpha-1}| \frac{|\epsilon_r|}{r} P_{r-1} \\ &= \sum_{r=m}^{\infty} |A_{r-m}^{-\alpha-1}| \frac{|\epsilon_r|}{r} P_{r-1} \sum_{n=r}^{n} \frac{p_n}{P_n P_{n-1}} \\ &= \sum_{r=m}^{\infty} |A_{r-m}^{-\alpha-1}| \frac{|\epsilon_r|}{r} P_{r-1} = O(1) \sum_{r=m}^{\infty} |A_{r-m}^{-\alpha-1}| < \infty, \end{split}$$

it follows that

$$\sum_{m=1}^{\infty} m^{\alpha k'+k'-1} \left(\sum_{n=m}^{\infty} \frac{p_n}{P_n P_{n-1}} \left| \sum_{r=m}^{\infty} A_{r-m}^{-\alpha-1} \frac{\epsilon_r}{r} P_{r-1} \right| \right)^{k'}$$

$$\geq \sum_{m=1}^{\infty} m^{\alpha k'+k'-1} \left| \sum_{r=m}^{\infty} A_{r-m}^{-\alpha-1} \frac{\epsilon_r}{r} P_{r-1} \sum_{n=r}^{\infty} \frac{p_n}{P_n P_{n-1}} \right|^{k'}$$

$$= \sum_{m=1}^{\infty} m^{\alpha k'+k'-1} \left| \Delta^{\alpha} \left(\frac{\epsilon_m}{m} \right) \right|^{k'}$$

which gives that (9) implies (5), and clearly (7). The sufficiency can be shown as in the result of Mazhar (1971). So Theorem 2.1 includes Theorem 1.2.

For $p_n = 1$, Theorem 2.1 is extended Theorem 1.1 of Mehdi (1960) to $\alpha > -1$.

Also, if we take $\alpha = 1$, we get Theorem 1.3 contained in Theorem 2.2 in (Sarigol, 1993a; Sarigol & Bor, 1995).

On other hand, if $-1 < \alpha < 0$, then

$$\Delta^{\alpha}\left(\frac{1}{m}\right) = \sum_{n=m}^{\infty} \frac{A_{n-m}^{-\alpha-1}}{n} = \frac{1}{mA_{m}^{\alpha}} \sim \frac{\Gamma(n+1)}{m^{\alpha+1}},$$

see (Chow, 1954 and Peyerimhoff, 1954). Hence, by considering the above comment for $\alpha \ge 0$ the condition (9) is reduced to

$$\sum_{m=1}^{\infty} \frac{1}{m} < \infty \tag{10}$$

for > -1, which is impossible. So we have the interesting following result.

Corollary 2.2. If k > 1, then $1 \notin (|C, \alpha|_k, |\overline{N}, p_n|)$ for all $\alpha > -1$ and positive sequence (p_n) , i.e., there is no a series summable $|\overline{N}, p_n|$, whenever it is summable by $|C, \alpha|_k$.

For the proof of the Theorem, we need the characterization of the matrices $C: l_k \rightarrow l$, which established in (Stieglitz & Tietz, 1977). However, it exposes a rather difficult condition to apply in applications. Therefore we need a new characterization of the class of these matrices with a simpler condition as follows.

Lemma 2.3. Let $1 < k < \infty$. Then, the necessary and sufficient conditions for an infinite matrix $C: l_k \rightarrow l$ are

$$U(C) = \left\{ \sum_{m=0}^{\infty} (\sum_{n=0}^{\infty} |c_{nm}|)^{k'} \right\}^{\frac{1}{k'}} < \infty.$$
(11)

Proof. We first note that $||C||_{(l^k,l)} = ||C^t||_{(l_{\infty},l^{k'})} < \infty$, i.e., $C: l_k \to l$ if and only if $C^t: l_{\infty} \to l_{k'}$, see (Jakimovsky & Russel, 1972). Now if the condition (11) is satisfied, then it is seen that

$$\begin{aligned} \|C^{t}(x)\|_{l^{k'}} &= \left\{ \sum_{m=0}^{\infty} \left| \sum_{n=0}^{\infty} |c_{nm} x_{n}| \right|^{k'} \right\}^{\overline{k'}} \\ &\leq \|x\|_{\infty} \left\{ \sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} |c_{nm}| \right)^{k'} \right\}^{\frac{1}{k'}} \\ &= U(C) \|x\|_{\infty} \end{aligned}$$

for all $x \in l_{\infty}$, which implies $C: l_k \to l$. Hence the condition (11) is sufficient.

Conversely, if $C: l_k \to l$, then $C^t: l_\infty \to l_{k'}$. Because of the fact that l_∞ is bk space, the mapping C^t is continuous and so there exists a constant M such that

$$\|C^{t}(x)\|_{l^{k'}} \le M \|x\|_{\infty}$$
(12)

for all $x \in l_{\infty}$. Let N be any finite subset of all nonnegative integers. Define the sequence x as $x_n = 1$ for $n \in N$, and zero otherwise. Then it follows from (12) that

$$\sum_{m=0}^{\infty} \left| \sum_{n \in \mathbb{N}} c_{nm} \right|^{k'} \le M^{k'}$$

If $c_{n\nu}$ $(n, \nu = 0, 1, ...)$ are real numbers, then, by Minkowsky's inequality, we have

$$U(C) = \left\{ \sum_{m=0}^{\infty} \left(\sum_{n \in N} |c_{nm}| \right)^{k'} \right\}^{\frac{1}{k'}}$$
$$= \left\{ \sum_{m=0}^{\infty} \left(\sum_{n \in N_+} c_{nm} + \sum_{n \in N_-} (-c_{nm}) \right)^{k'} \right\}^{\frac{1}{k'}}$$
$$\leq \left\{ \sum_{m=0}^{\infty} \left(\sum_{n \in N_+} c_{nm} \right)^{k'} \right\}^{\frac{1}{k'}} + \left\{ \sum_{m=0}^{\infty} \left(\sum_{n \in N_-} (-c_{nm}) \right)^{k'} \right\}^{\frac{1}{k'}}$$
$$\leq 2M,$$

where $N_+ = \{n \in N : c_{nm} \ge 0\}$ and $N_- = \{n \in N : c_{nm} < 0\}$. So, if $c_{n\nu}$ is complex number, $c_{n\nu} = c_{n\nu}^{(1)} + ic_{n\nu}^{(2)}$ say, then, since $U(C_1) \le U(C)$ and $U(C_2) \le U(C)$, it follows that $U(C) \le 4M < \infty$. This shows that the condition (11) is necessary, completing the proof.

Proof of Theorem 2.1. By the definition of t_n^{α} and T_n , we can write $t_0^{\alpha} = a_0$,

$$t_n^{lpha} = rac{1}{n^{1/k} A_n^{lpha}} \sum_{r=1}^{\infty} A_{n-r}^{lpha-1} \, v a_{
u}$$
 , $n \ge 1$,

$$T_n = \frac{1}{P_n} \sum_{\nu=0}^n (P_n - P_{\nu-1}) a_{\nu} \epsilon_{\nu} , P_{-1} = 0$$

which implies

$$y_n = T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{r=1}^n P_{r-1} a_r \epsilon_r , n \ge 1, y_0 = a_0 \epsilon_0.$$

Hence we have

$$y_{n} = \frac{p_{n}}{P_{n}P_{n-1}} \sum_{r=1}^{n} P_{r-1} a_{r} \epsilon_{r}$$

$$= \frac{p_{n}}{P_{n}P_{n-1}} \sum_{r=1}^{n} \frac{\epsilon_{r}}{r} P_{r-1} \sum_{m=1}^{r} A_{r-m}^{-\alpha-1} m^{1/k} A_{m}^{\alpha} t_{m}^{\alpha}$$

$$= \frac{p_{n}}{P_{n}P_{n-1}} \sum_{m=1}^{n} m^{1/k} A_{m}^{\alpha} \sum_{r=m}^{n} A_{r-m}^{-\alpha-1} \frac{\epsilon_{r}}{r} P_{r-1} t_{m}^{\alpha}$$

$$= \sum_{m=1}^{n} C_{nm} t_{m}^{\alpha}$$

where

$$C_{nm} = \begin{cases} \frac{p_n}{P_n P_{n-1}} m^{1/k} A_m^{\alpha} \sum_{r=m}^n A_{r-m}^{-\alpha-1} \frac{\epsilon_r}{r} P_{r-1} , m \le n \\ 0, m > n. \end{cases}$$

Then, $\sum \epsilon_n a_n$ is summable $|\overline{N}, p_n|$ whenever $\sum a_n$ is summable $|C, \alpha|_k$ if and only if $y \in l$ whenever $t^{\alpha} \in l_{k'}$, or, equivalently,

$$\sum_{m=1}^{\infty} (\sum_{n=m}^{\infty} |c_{nm}|)^{k'} < \infty , \qquad (13)$$

by Lemma 2.3. Since $A_n^{\alpha} \sim \frac{n^{\alpha}}{\Gamma(\alpha+1)}$ for $\alpha > -1$, see (Flett, 1957), it follows from the definition *C* that

$$\sum_{m=1}^{\infty} \left(\sum_{n=m}^{\infty} |c_{nm}| \right)^{k'}$$

$$=\sum_{m=1}^{\infty} m^{\alpha k'+k'-1} \left(\sum_{n=m}^{\infty} \left| \frac{p_n}{P_n P_{n-1}} \sum_{r=m}^n A_{r-m}^{-\alpha-1} \frac{\epsilon_r}{r} P_{r-1} \right| \right)^{k'}$$

which completes the proof with (13).

REFERENCES

- Bor, H. & B. Kuttner, B. 1989. On the necessary condition for absolute weighted arithmetic mean summability factors. Acta Mathematica Hungarica 54: 57-61.
- Bosanquet, L. S. & Das, G. 1979. Absolutely summability factors for Nörlund means. Proceedings London Mathematical Society 838: 1-52.
- Chow, H. C. 1954. Note on convergence and summability factors. Journal of the London Mathematical Society 29: 459-476.
- Flett, T. M. 1957. On an extension of absolute summability and some theorems of Littlewood and Paley. Proceedings London Mathematical Society 7: 113-141.
- Jakimovsky, A. & Russel, D. C. 1972. Matrix mapping between BK-spaces, Bulletin London Mathematical Society 4: 345-353.
- Mazhar, S. M. 1971. On the Absolute summability factors of infinite series. Tohoku Mathematical Journal 23: 433-451.
- Mehdi, M. R. 1960. Summability factors for generalized absolute summability I. Proceedings London Mathematical Society. 10: 180-200.
- Peyerimhoff, A. 1954. Summierbarkeitsfactoren f
 ür absolut Ces
 aro summierbareReihen. Mathematische Zeitschrift 59: 417-424.
- Rhoades, B. E. & Savas, E. 2004. A characterization of absolute summability factors. Taiwanese Journal of Mathematics 8: 453-465.
- Sarigol, M. A. 1993a. On two absolute Riesz summability factors of infinite series. Proceedings of the American Mathematical Society 118: 485-488.
- Sarigol, M. A. 1993b. A note on summability. Studia Scientiarum Mathematicarum Hungarica 28; 395-400.
- Sarigol, M. A. & Bor, H. 1995. Characterization of absolute summability factors. Journal of Mathematical Analysis and Applications 195: 537-545.
- Sarigol, M. A. 2011a. Matrix transformations on fields of absolute weighted mean summability. Studia Scientiarum Mathematicarum Hungarica 48; 331-341.
- Sarigol, M. A. 2011b. Characterization of general summability factors and applications, Computers and Mathematics with Applications 62: 2665-2670.
- Stieglitz, M. & Tietz, H. 1977. Matrixtransformationen von Folgenraumen Eine Ergebnisübersicht. Mathematische Zeitschrift 154: 1-16.
- Sulaiman, W. T. 1992. On summability factors of infinite series. Proceedings of the American Mathematical Society 115: 313-317.

 Submitted
 : 19/01/2014

 Revised
 : 13/03/2014

 Accepted
 : 19/03/2014

تطوير نظرية مظهر حول عوامل التجميعية

محمد علي سرجول قسم الرياضيات- جامعة باموكالي- دنيزلي- تركيا

خلاصة

نرمز بالرمز (X,Y) لمجموعة كل المتتاليات E بحيث قابلة للجمع Y عندما تكون قابلة للجمع X حيث X,Y) لمجموعة كل المتتاليات E بحيث قابلة للجمع X حيث Y,X مي طرق تجميعية . نقوم في هذا البحث بالحصول على خصائص المجموعة (X,Y) مي طرق تجميعية . فقوم في هذا البحث المحصول على خصائص المجموعة (a, p_n,p_n] و حيث k>1 ، k>1 ، p_n,p_n] و تتيجة لدراستنا هذه نقوم بتطوير بعض النتائج المعروقة.