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Extension of Mazhar’s theorem on summability factors
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ABSTRACT

By (X,Y) we denote the set of all sequences € such that ), @, €, is summable Y
whenever ), @, is summable X, where X and Y are summability methods. In this
paper we characterize the set (|C, @|y, [N, pnl) for k > 1, @ > —1 and arbitrary
positive sequences (Pp,) using functional analytic techniques, and so extend some
known results.
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INTRODUCTION

Let ), @, be an infinite series with partial sums S,,. We denote by (0 ) and (t5;)
the n-th Cesaro means (C, @) of the sequences (S, ) and (na,,), respectively. The
concept of absolute summability of order k was first introduced by Flett (1957) as
follows. A series ). @, is summable |C, |,k = 1,a > —1if

Yo of — o |F < oo, (1)

The method |C, @]y is reduced to |C, &| . On the other hand, in view of the well
known identity ty = n(og, — d5_1), the condition (1) can be stated by

w IRl
Yn=1 <o (2)
Let (pn,) be a sequence of positive numbers with P, = pg +p1+ - + pp, = ©

as N — 00, A series ), dy, is said to be summable IN, pnlif

Z?f:llTn - Tn—ll <o (3)
where
1
T, = S 3:1 DySy 4
n

Forany reala and integerst = 0, we define A*U,, = Yoy, Ay % 1U,,, whenever
the series is convergent. Let X and Y summability methods. A type of summability
factors (X, Y) defined by
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(X,Y) = {e = (e,) : X €, a, is summable Y whenever Y, @, is summable X }

were investigated by many authors, see (Bor & Kuttner, 1989; Bosanquet & Das,
1979; Chow, 1954; Flett, 1957, Mazhar, 1971; Rhoades & Savas, 2004; Sarigol,
1993b; Sarigol, 2011a,b; Sulaiman, 1992). It is known that the summability IN, p,|
and the summability |C, a| k are, in general, independent of each other. It is therefore
natural to find out suitable summability factors of type (|C ,al I |N, pn|). In this
direction the following theorems are well known.

Theorem 1.1. (Mehdi, 1960). The necessary and sufficient conditions for Y€, Ay to
be summable |C, 1| whenever ), @, is summable |C, @], > 0,k > 1, are

et vae (2)) ety Ly =1, 5)

! ! !
yo_ mik k-l | <o, a>1.
This result is contained in the following.

Theorem 1.2. (Mazhar, 1971). The necessary and sufficient conditions for Y€,
to be summable | N, p,, | whenever ), @, is summable |C, @|, , ¢ > 0,k > 1, are
(5) and

{n_%en} Ely, 0<a<l, (6)

{n _é (1;:) En} Ely, a>1, (7

where

(@)52-=0(1). (b) (n+ D=

=01, (@> 1) @)

Theorem 1.3. (Sarigol, 1993a and Sarigol & Bor, 1995). The necessary and sufficient
conditions for € € (|C, 1|k, IN,p,), k> 1,are

kl
S s (i) <o
!

5o 25
m € 0.
™ m+1

m=1
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MAIN RESULTS

Theorem 1.2 does not include the case —1 < a < 0 and arbitrary positive sequence
(pn). So, motivated by this theorem, a natural problem is that, what are the necessary
and sufficient conditions in order that these results should be satisfied for @ > —1
and arbitrary positive sequence (Py,) . The aim of this paper is to answer the problem
by establishing the following theorem, giving also a new characterization of the matrix
C:l; — [, and deduce some known results.

Theorem 2.1. Leta > —1 andk > 1. Then the necessary and sufficient conditions
fore € (|C, |, IN, p,|) are

! r_
Z;ﬁ:lmak +k'—1 (Z??:m

It may be remarked that, in the case when @ = 0 and (pn) is a sequence
satisfying the condition (8), Theorem 2.1 is reduced to Theorem 1.2. In fact, now
€ € (IC, aly, IN,prl) < (IC, 0]k, |C, ali) , since 1 € (|C, 0y, |C, ali), see
( Flett, 1957) and Therefore, if € € (|C, a|k, [N, pn|), then € € (|C, 0|, N, p,|).
~1/k'e ) € Ly which implies

kl
—a—-1€
PpPp_1 Z?O:mAriXmlfPr—lb < . ©))

By applying Theorem 2.1 with & = 0, we have (I
m = 0(m). Thus, considering that

b _
Z - Z Aram1 r—1
= el N
Pn

= A7e | —P,_ Z

Zl r-m r—1 4 PnPn—l

r=m n=r
= Z|A;Em1 e | P 1_0(1)Z|A_a 1| < 0o,

r=m

it follows that

o oo e k'
ak'+k'-1 Pn —a-1_T
Z m Z B.P Arzm 2 Pra
- - nin-—1 |4
m=1 n=m r=m
) oo 00 k'
Iyt —g—1 Er Pn
> Z @k k' -1 z Ar—ml_Pr—lz
r PPrq
m=1 r=m n=r
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which gives that (9) implies (5), and clearly (7). The sufficiency can be shown as in
the result of Mazhar (1971). So Theorem 2.1 includes Theorem 1.2.

For pp = 1, Theorem 2.1 is extended Theorem 1.1 of Mehdi (1960) toa > —1.

Also, if we take @ = 1, we get Theorem 1.3 contained in Theorem 2.2 in (Sarigol,
1993a; Sarigol & Bor, 1995).

On other hand, if —1 < a < 0, then

Aa(l>= ZA;E,‘,ll: 1 T@+1)

m n mA%,  moetl

n=m

see (Chow, 1954 and Peyerimhoff, 1954). Hence, by considering the above comment
for @ = 0 the condition (9) is reduced to

1
Soio <o (10)
for > —1, which is impossible. So we have the interesting following result.
Corollary 2.2. If k > 1, then1 & (|C, al, N, piD for all @ > —1 and positive

sequence (pn), i.e., there is no a series summable | N, pn| , whenever it is summable
by |C, a | k-

For the proof of the Theorem, we need the characterization of the matrices
C:lx = L, which established in (Stieglitz & Tietz, 1977). However, it exposes
a rather difficult condition to apply in applications. Therefore we need a new
characterization of the class of these matrices with a simpler condition as follows.

Lemma 2.3. Let 1 < k < 0o, Then, the necessary and sufficient conditions for an
infinite matrix C: [, — lare

U(O) = {Zmomolenm D < c0, (11)
Proof. We first note that ”C”(lk D)= ||Ct||(loo l"') <, je., C:l, = L if and

only if Ct: I,y — U1, see (Jakimovsky & Russel, 1972). Now if the condition (11) is
satisfied, then it is seen that

[ee] [ee]
”Ct(x)”lk’ = Z Z Cnmxnl
n:
1
v

00 %) k
DY <Z|cnm|)
m=0 “\n=0

=UOlxlle
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for all x € [, which implies C: [}, — l. Hence the condition (11) is sufficient.

Conversely, if C: I, = [, then C*: I, = . Because of the fact that [, is bk space,
the mapping C* is continuous and so there exists a constant M such that

ICE @ e < Mllxlo (12)

for all x € [,. Let N be any finite subset of all nonnegative integers. Define the
sequence X as X, = 1forn € N, and zero otherwise. Then it follows from (12) that

neN
If ¢y (M, v =0,1,...) are real numbers, then, by Minkowsky’s inequality, we
have

< M¥',

1
%) K"\ k'
u(e) = Z(Zlcnm|>
m=0 \nenN
1
K\ k"
[0
SHAPITEED e
m=0 \neEN, neN_
1 1
k'™ Kk’ '\ k'

IA
s
M

Ky

3

+
g
g

Ky

&

<2M,

where Ny, = {n € N : ¢, = 0} and N-—{nEN Cnm < 0}. So, if cpy
is complex number, Cy, = C,, + lCm, say, then, since U(C;) < U(C) and
U(C,) < U(C), it follows that U(C) < 4M < oo. This shows that the condition
(11) is necessary, completing the proof.

Proof of Theorem 2.1. By the definition of t and Ty, , we can write t§ = @,
[ee)
t% 1 A% lva,,n>1
n — Tll/kAa n-—r Vv = )
nr=1

and
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n
1
T, = P_Z Pv—l)avev ,P_1 =0

which implies

V=T, —Th_1 = Zpr 10.€6-,m 21,50 = ap€p.

PPnl

Hence we have

Vp = Pn ZP a €
n PnPn—l 4 r—1%rt&r
r=1

_ Pn n €r r —-a-1.,1/k pa
~—rr r=17Pr—1Zm=1A -m m / Amtm
nfn-1

_ _Dn n 1/k qa v'n -a-1¢€r a
~ PP m=1M / Am Zr:mAr—m TPr—ltm
nfn-1

= Z?n:l Cnmtgl

where

Pn ml/kAa Zn A—a—li m<n
Com = PaPp—1 Ml T e
0 ,m>n.
Then, ), €,, Q,, is summable |N, pr| whenever Y, @, is summable |C, |} if and only
if y €  whenevert® € l,,s, or, equivalently,

Z?:l 1= mlcnml)k, <, (13)

by Lemma 2.3. Since A%~ ———for@ > —1, see ( Flett, 1957), it follows from the

r(a+1
definition C that ( )

-2 (X

which completes the proof with (13).
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