
Kuwait J. Sci. 42 (3) pp. 28-35, 2015

Extension of Mazhar’s theorem on summability factors
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ABSTRACT

By  we denote the set of all sequences  such that  is summable   
whenever  is summable , where  and  are summability methods. In this 
paper we characterize the set  for ,  and arbitrary 
positive sequences  using functional analytic techniques, and so extend some 
known results.
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INTRODUCTION

Let  be an infinite series with partial sums . We denote by  and   
the n-th Cesàro means  of the sequences  and  , respectively. The 
concept of absolute summability of order  was first introduced by Flett (1957) as 
follows. A series  is summable  ,  ,  if 

                                   (1)

The method  is reduced to  . On the other hand, in view of the well 
known identity  , the condition (1) can be stated by

                                                 
(2)

Let  be a sequence of positive numbers with     
as   A series  is said to be summable  if

                                           (3)

where

                                               
(4)

For any real  and integers , we define  , whenever 
the series is convergent. Let  and  summability methods. A type of summability 
factors  defined by
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 is summable  whenever  is summable 

were investigated by many authors, see (Bor & Kuttner, 1989; Bosanquet & Das, 
1979;  Chow, 1954;   Flett, 1957;  Mazhar, 1971; Rhoades & Savas, 2004; Sarigol, 
1993b; Sarigol, 2011a,b; Sulaiman, 1992). It is known that the summability   
and the summability  are, in general, independent of each other. It is therefore 
natural to find out suitable summability factors of type . In this 
direction the following theorems are well known.

Theorem 1.1. (Mehdi, 1960). The necessary and sufficient conditions for  to 
be summable   whenever  is summable  ,  , are 

              
                               

(5)

                                               

               

This result is contained in the following.

Theorem 1.2. (Mazhar, 1971). The necessary and sufficient conditions for   
to be summable  whenever  is summable  ,  , are 
(5) and   

                                      
(6)

 
                                 

(7)

where

                 
 
(8)

Theorem 1.3. (Sarigol, 1993a and Sarigol & Bor, 1995). The necessary and sufficient 
conditions for  are
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MAIN RESULTS

Theorem 1.2 does not include the case  and arbitrary positive sequence 
. So, motivated by this theorem, a natural problem is that, what are the necessary 

and sufficient conditions in order that these results should be satisfied for   
and arbitrary positive sequence  . The aim of this paper is to answer the problem 
by establishing the following theorem, giving also a new characterization of the matrix 

, and deduce some known results. 

Theorem 2.1. Let   and . Then the necessary and sufficient conditions 
for  are

 
        

(9)

It may be remarked that, in the case when  and  is a sequence 
satisfying the condition (8), Theorem 2.1 is reduced to Theorem 1.2. In fact, now 

  , since  see  
( Flett, 1957) and Therefore, if   then . 
By applying Theorem 2.1 with , we have  which implies 

. Thus, considering that

        

                                    

it follows that
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which gives that (9) implies (5), and clearly (7). The sufficiency can be shown as in 
the result of Mazhar (1971). So Theorem 2.1 includes Theorem 1.2.

For , Theorem 2.1 is extended Theorem 1.1 of Mehdi (1960) to  .

Also, if we take , we get Theorem 1.3 contained in Theorem 2.2 in (Sarigol, 
1993a;  Sarigol & Bor, 1995).

On other hand, if , then

see (Chow, 1954 and Peyerimhoff, 1954). Hence, by considering the above comment 
for  the condition (9) is reduced to

 
                                                 (10)

for , which is impossible. So we have the interesting following result.

Corollary 2.2. If , then  for all  and positive 
sequence  i.e., there is no a series summable  , whenever it is summable 
by  .

For the proof of the Theorem, we need the characterization of the matrices 
, which established in (Stieglitz & Tietz, 1977). However, it exposes 

a rather difficult condition to apply in applications. Therefore we need a new 
characterization of the class of these matrices with a simpler condition as follows.

Lemma 2.3. Let . Then, the necessary and sufficient conditions for an 
infinite matrix  are

                          (11)

Proof. We first note that  i.e.,  if and 

only if , see (Jakimovsky & Russel, 1972). Now if the condition (11) is 
satisfied, then it is seen that
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for all  , which implies  . Hence the condition (11) is sufficient.

Conversely, if  , then  . Because of the fact that  is  space, 
the mapping  is continuous and so there exists a constant  such that

                                           (12)

for all . Let  be any finite subset of all nonnegative integers. Define the 
sequence  as  for , and zero otherwise. Then it follows from (12) that

If  are real numbers, then, by Minkowsky’s inequality, we 
have

where  and . So, if   
is complex number,  say, then, since   and 

 it follows that   This shows that the condition 
(11) is necessary, completing the proof.

Proof of Theorem 2.1. By the definition of  and  we can write  ,

and
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which implies

Hence we have

where

Then,  is summable   whenever  is summable  if and only 
if  whenever   or, equivalently,

                                     (13)

by Lemma 2.3. Since  for  see ( Flett, 1957), it follows from the 
definition  that

which completes the proof with (13).
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