Extension of Mazhar's theorem on summability factors

MEHMET ALI SARIGOL*

*Department of Mathematics, University of Pamukkale, Denizli, TURKEY
*msarigol@pau.edu.tr

Abstract

By (X, Y) we denote the set of all sequences ϵ such that $\sum a_{n} \epsilon_{n}$ is summable Y whenever $\sum a_{n}$ is summable X, where X and Y are summability methods. In this paper we characterize the set $\left(|C, \alpha|_{k},\left|\bar{N}, p_{n}\right|\right)$ for $k>1, \alpha>-1$ and arbitrary positive sequences $\left(p_{n}\right)$ using functional analytic techniques, and so extend some known results.

Mathematics Subject Classification (2010): 40D09, 40F05, 46B45

Keywords: Absolute Cesàro summability; absolute Riesz summability; bounded linear operators; matrix transformations; summability factors.

INTRODUCTION

Let $\sum a_{n}$ be an infinite series with partial sums s_{n}. We denote by $\left(\sigma_{n}^{\alpha}\right)$ and $\left(t_{n}^{\alpha}\right)$ the n-th Cesàro means (C, α) of the sequences $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively. The concept of absolute summability of order k was first introduced by Flett (1957) as follows. A series $\sum a_{n}$ is summable $|C, \alpha|_{k}, k \geq 1, \alpha>-1$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right|^{k}<\infty \tag{1}
\end{equation*}
$$

The method $|C, \alpha|_{1}$ is reduced to $|C, \alpha|$. On the other hand, in view of the well known identity $t_{n}^{\alpha}=n\left(\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right)$, the condition (1) can be stated by

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|t_{n}^{\alpha}\right|^{k}}{n}<\infty \tag{2}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers with $P_{n}=p_{0}+p_{1}+\cdots+p_{n} \rightarrow \infty$ as $n \rightarrow \infty$. A series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|T_{n}-T_{n-1}\right|<\infty \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=1}^{n} p_{v} S_{v} \tag{4}
\end{equation*}
$$

For any real α and integers $n \geq 0$, we define $\Delta^{\alpha} U_{n}=\sum_{v=n}^{\infty} A_{\nu-n}^{-\alpha-1} U_{v}$, whenever the series is convergent. Let X and Y summability methods. A type of summability factors (X, Y) defined by
$(X, Y)=\left\{\epsilon=\left(\epsilon_{n}\right): \sum \epsilon_{v} a_{v}\right.$ is summable Y whenever $\sum a_{v}$ is summable $\left.X\right\}$ were investigated by many authors, see (Bor \& Kuttner, 1989; Bosanquet \& Das, 1979; Chow, 1954; Flett, 1957; Mazhar, 1971; Rhoades \& Savas, 2004; Sarigol, 1993b; Sarigol, 2011a,b; Sulaiman, 1992). It is known that the summability $\left|\bar{N}, p_{n}\right|$ and the summability $|C, \alpha|_{k}$ are, in general, independent of each other. It is therefore natural to find out suitable summability factors of type $\left(|C, \alpha|_{k},\left|\bar{N}, p_{n}\right|\right)$. In this direction the following theorems are well known.
Theorem 1.1. (Mehdi, 1960). The necessary and sufficient conditions for $\sum \epsilon_{n} a_{n}$ to be summable $|C, 1|$ whenever $\sum a_{n}$ is summable $|C, \alpha|_{k}, \alpha \geq 0, k>1$, are

$$
\begin{gather*}
\left\{n^{\alpha+1-\frac{1}{k^{\prime}}} \Delta^{\alpha}\left(\frac{\epsilon_{n}}{n}\right)\right\} \in l_{k^{\prime}}, \frac{1}{k}+\frac{1}{k^{\prime}}=1 \tag{5}\\
\sum_{m=1}^{\infty} \frac{\left|\epsilon_{m}\right|^{k^{\prime}}}{m}<\infty, \alpha \leq 1 \\
\sum_{m=1}^{\infty} m^{\alpha k^{\prime}-k^{\prime}-1}\left|\epsilon_{m}\right|^{k^{\prime}}<\infty, \alpha>1
\end{gather*}
$$

This result is contained in the following.
Theorem 1.2. (Mazhar, 1971). The necessary and sufficient conditions for $\sum \epsilon_{n} a_{n}$ to be summable $\left|\bar{N}, p_{n}\right|$ whenever $\sum a_{n}$ is summable $|C, \alpha|_{k}, \alpha \geq 0, k \geq 1$, are (5) and

$$
\begin{align*}
& \left\{n^{-\frac{1}{k^{\prime}}} \epsilon_{n}\right\} \in l_{k^{\prime}}, 0 \leq \alpha \leq 1, \tag{6}\\
& \left\{n^{\alpha-\frac{1}{k^{\prime}}}\left(\frac{p_{n}}{P_{n}}\right) \epsilon_{n}\right\} \in l_{k^{\prime}}, \alpha>1, \tag{7}
\end{align*}
$$

where

$$
\begin{equation*}
\text { (a) } \frac{p_{n}}{p_{n+1}}=O(1),(b)(n+1) \frac{p_{n}}{P_{n}}=O(1) \text { and (c) } \frac{P_{n}}{n^{\alpha} p_{n}}=O(1),(\alpha>1) . \tag{8}
\end{equation*}
$$

Theorem 1.3. (Sarigol, 1993a and Sarigol \& Bor, 1995). The necessary and sufficient conditions for $\epsilon \in\left(|C, 1|_{k},\left|\bar{N}, p_{n}\right|\right), k>1$, are

$$
\begin{gathered}
\sum_{m=1}^{\infty} m^{k^{\prime}-1}\left(\frac{p_{m}}{P_{m}}\left|\epsilon_{m}\right|\right)^{k^{\prime}}<\infty, \\
\sum_{m=1}^{\infty} m^{k^{\prime}-1}\left|\Delta \epsilon_{m}+\frac{\epsilon_{m+1}}{m+1}\right|^{k^{\prime}}<\infty .
\end{gathered}
$$

MAIN RESULTS

Theorem 1.2 does not include the case $-1<\alpha<0$ and arbitrary positive sequence $\left(p_{n}\right)$. So, motivated by this theorem, a natural problem is that, what are the necessary and sufficient conditions in order that these results should be satisfied for $\alpha>-1$ and arbitrary positive sequence $\left(p_{n}\right)$. The aim of this paper is to answer the problem by establishing the following theorem, giving also a new characterization of the matrix $C: l_{k} \rightarrow l$, and deduce some known results.

Theorem 2.1. Let $\alpha>-1$ and $k>1$. Then the necessary and sufficient conditions for $\epsilon \in\left(|C, \alpha|_{k},\left|\bar{N}, p_{n}\right|\right)$ are

$$
\begin{equation*}
\sum_{m=1}^{\infty} m^{\alpha k^{\prime}+k^{\prime}-1}\left(\sum_{n=m}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left|\sum_{r=m}^{\infty} A_{r-m}^{-\alpha-1} \frac{\epsilon_{r}}{r} P_{r-1}\right|\right)^{k^{\prime}}<\infty \tag{9}
\end{equation*}
$$

It may be remarked that, in the case when $\alpha \geq 0$ and $\left(p_{n}\right)$ is a sequence satisfying the condition (8), Theorem 2.1 is reduced to Theorem 1.2. In fact, now $\epsilon \in\left(|C, \alpha|_{k},\left|\bar{N}, p_{n}\right|\right) \subset\left(|C, 0|_{k},|C, \alpha|_{k}\right)$, since $1 \in\left(|C, 0|_{k},|C, \alpha|_{k}\right)$, see (Flett, 1957) and Therefore, if $\epsilon \in\left(|C, \alpha|_{k},\left|\bar{N}, p_{n}\right|\right)$, then $\epsilon \in\left(|C, 0|_{k},\left|\bar{N}, p_{n}\right|\right)$. By applying Theorem 2.1 with $\alpha=0$, we have $\left(m^{-1 / k^{\prime}} \epsilon_{m}\right) \in l_{k^{\prime}}$ which implies $\epsilon_{m}=O(m)$. Thus, considering that

$$
\begin{aligned}
& \sum_{n=m}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{r=m}^{\infty}\left|A_{r-m}^{-\alpha-1}\right| \frac{\left|\epsilon_{r}\right|}{r} P_{r-1} \\
& =\sum_{r=m}^{\infty}\left|A_{r-m}^{-\alpha-1}\right| \frac{\left|\epsilon_{r}\right|}{r} P_{r-1} \sum_{n=r}^{n} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =\sum_{r=m}^{\infty}\left|A_{r-m}^{-\alpha-1}\right| \frac{\left|\epsilon_{r}\right|}{r} P_{r-1}=O(1) \sum_{r=m}^{\infty}\left|A_{r-m}^{-\alpha-1}\right|<\infty,
\end{aligned}
$$

it follows that

$$
\begin{aligned}
& \sum_{m=1}^{\infty} m^{\alpha k^{\prime}+k^{\prime}-1}\left(\left.\sum_{n=m}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left|\sum_{r=m}^{\infty} A_{r-m}^{-\alpha-1} \frac{\epsilon_{r}}{r} P_{r-1}\right| \right\rvert\,\right)^{k^{\prime}} \\
& \geq \sum_{m=1}^{\infty} m^{\alpha k^{\prime}+k^{\prime}-1}\left|\sum_{r=m}^{\infty} A_{r-m}^{-\alpha-1} \frac{\epsilon_{r}}{r} P_{r-1} \sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\right|^{k^{\prime}} \\
& \quad=\sum_{m=1}^{\infty} m^{\alpha k^{\prime}+k^{\prime}-1}\left|\Delta^{\alpha}\left(\frac{\epsilon_{m}}{m}\right)\right|^{k^{\prime}}
\end{aligned}
$$

which gives that (9) implies (5), and clearly (7). The sufficiency can be shown as in the result of Mazhar (1971). So Theorem 2.1 includes Theorem 1.2.

For $p_{n}=1$, Theorem 2.1 is extended Theorem 1.1 of Mehdi (1960) to $\alpha>-1$.
Also, if we take $\alpha=1$, we get Theorem 1.3 contained in Theorem 2.2 in (Sarigol, 1993a; Sarigol \& Bor, 1995).

On other hand, if $-1<\alpha<0$, then

$$
\Delta^{\alpha}\left(\frac{1}{m}\right)=\sum_{n=m}^{\infty} \frac{A_{n-m}^{-\alpha-1}}{n}=\frac{1}{m A_{m}^{\alpha}} \sim \frac{\Gamma(n+1)}{m^{\alpha+1}}
$$

see (Chow, 1954 and Peyerimhoff, 1954). Hence, by considering the above comment for $\alpha \geq 0$ the condition (9) is reduced to

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{1}{m}<\infty \tag{10}
\end{equation*}
$$

for >-1, which is impossible. So we have the interesting following result.
Corollary 2.2. If $k>1$, then $1 \notin\left(|C, \alpha|_{k},\left|\bar{N}, \underline{p_{n}}\right|\right)$ for all $\alpha>-1$ and positive sequence $\left(p_{n}\right)$, i.e., there is no a series summable $\left|\bar{N}, p_{n}\right|$, whenever it is summable by $|C, \alpha|_{k}$.

For the proof of the Theorem, we need the characterization of the matrices $C: l_{k} \rightarrow l$, which established in (Stieglitz \& Tietz, 1977). However, it exposes a rather difficult condition to apply in applications. Therefore we need a new characterization of the class of these matrices with a simpler condition as follows.

Lemma 2.3. Let $1<k<\infty$. Then, the necessary and sufficient conditions for an infinite matrix $C: l_{k} \rightarrow l$ are

$$
\begin{equation*}
U(C)=\left\{\sum_{m=0}^{\infty}\left(\sum_{n=0}^{\infty}\left|c_{n m}\right|\right)^{k^{\prime}}\right\}^{\frac{1}{k^{\prime}}}<\infty . \tag{11}
\end{equation*}
$$

Proof. We first note that $\|C\|_{\left(l^{k}, l\right)}=\left\|C^{t}\right\|_{\left(l_{\infty}, l^{k^{\prime}}\right)}<\infty$, i.e., $C: l_{k} \rightarrow l$ if and only if $C^{t}: l_{\infty} \rightarrow l_{k^{\prime}}$, see (Jakimovsky \& Russel, 1972). Now if the condition (11) is satisfied, then it is seen that

$$
\begin{aligned}
\left\|C^{t}(x)\right\|_{l^{k^{\prime}}} & =\left\{\sum_{m=0}^{\infty}\left|\sum_{n=0}^{\infty}\right| c_{n m} x_{n}| |^{k^{\prime}}\right\}^{\frac{1}{k^{\prime}}} \\
& \leq\|x\|_{\infty}\left\{\sum_{m=0}^{\infty}\left(\sum_{n=0}^{\infty}\left|c_{n m}\right|\right)^{k^{\prime}}\right\}^{\frac{1}{k^{\prime}}} \\
& =U(C)\|x\|_{\infty}
\end{aligned}
$$

for all $x \in l_{\infty}$, which implies $C: l_{k} \rightarrow l$. Hence the condition (11) is sufficient.
Conversely, if $C: l_{k} \rightarrow l$, then $C^{t}: l_{\infty} \rightarrow l_{k^{\prime}}$. Because of the fact that l_{∞} is $b k$ space, the mapping C^{t} is continuous and so there exists a constant M such that

$$
\begin{equation*}
\left\|C^{t}(x)\right\|_{l^{k^{\prime}}} \leq M\|x\|_{\infty} \tag{12}
\end{equation*}
$$

for all $x \in l_{\infty}$. Let N be any finite subset of all nonnegative integers. Define the sequence x as $x_{n}=1$ for $n \in N$, and zero otherwise. Then it follows from (12) that

$$
\sum_{m=0}^{\infty}\left|\sum_{n \in N} c_{n m}\right|^{k^{\prime}} \leq M^{k^{\prime}}
$$

If $c_{n v}(n, v=0,1, \ldots)$ are real numbers, then, by Minkowsky's inequality, we have

$$
\begin{aligned}
& U(C)=\left\{\sum_{m=0}^{\infty}\left(\sum_{n \in N}\left|c_{n m}\right|\right)^{k^{\prime}}\right\}^{\frac{1}{k^{\prime}}} \\
&=\left\{\sum_{m=0}^{\infty}\left(\sum_{n \in N_{+}} c_{n m}+\sum_{n \in N_{-}}\left(-c_{n m}\right)\right)^{k^{\prime}}\right\}^{\frac{1}{k^{\prime}}} \\
& \leq\left\{\sum_{m=0}^{\infty}\left(\sum_{n \in N_{+}} c_{n m}\right)^{k^{\prime}}\right\}^{\frac{1}{k^{\prime}}}+\left\{\sum_{m=0}^{\infty}\left(\sum_{n \in N_{-}}\left(-c_{n m}\right)\right)^{k^{\prime}}\right\}^{\frac{1}{k^{\prime}}} \\
& \leq 2 M,
\end{aligned}
$$

where $N_{+}=\left\{n \in N: c_{n m} \geq 0\right\}$ and $N_{-}=\left\{n \in N: c_{n m}<0\right\}$. So, if $c_{n v}$ is complex number, $c_{n v}=c_{n v}^{(1)}+i c_{n v}^{(2)}$ say, then, since $U\left(C_{1}\right) \leq U(C)$ and $U\left(C_{2}\right) \leq U(C)$, it follows that $U(C) \leq 4 M<\infty$. This shows that the condition (11) is necessary, completing the proof.

Proof of Theorem 2.1. By the definition of t_{n}^{α} and T_{n}, we can write $t_{0}^{\alpha}=a_{0}$,

$$
t_{n}^{\alpha}=\frac{1}{n^{1 / k} A_{n}^{\alpha}} \sum_{r=1}^{\infty} A_{n-r}^{\alpha-1} v a_{v}, n \geq 1
$$

and

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) a_{\nu} \epsilon_{v}, P_{-1}=0
$$

which implies
$y_{n}=T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{r=1}^{n} P_{r-1} a_{r} \epsilon_{r}, n \geq 1, y_{0}=a_{0} \epsilon_{0}$.
Hence we have

$$
\begin{aligned}
y_{n} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{r=1}^{n} P_{r-1} a_{r} \epsilon_{r} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{r=1}^{n} \frac{\epsilon_{r}}{r} P_{r-1} \sum_{m=1}^{r} A_{r-m}^{-\alpha-1} m^{1 / k} A_{m}^{\alpha} t_{m}^{\alpha} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{m=1}^{n} m^{1 / k} A_{m}^{\alpha} \sum_{r=m}^{n} A_{r-m}^{-\alpha-1} \frac{\epsilon_{r}}{r} P_{r-1} t_{m}^{\alpha} \\
& =\sum_{m=1}^{n} C_{n m} t_{m}^{\alpha}
\end{aligned}
$$

where

$$
C_{n m}= \begin{cases}\frac{p_{n}}{P_{n} P_{n-1}} m^{1 / k} A_{m}^{\alpha} \sum_{r=m}^{n} A_{r-m}^{-\alpha-1} \frac{\epsilon_{r}}{r} P_{r-1}, & m \leq n \\ 0 & , m>n\end{cases}
$$

Then, $\sum \epsilon_{n} a_{n}$ is summable $\left|\bar{N}, p_{n}\right|$ whenever $\sum a_{n}$ is summable $|C, \alpha|_{k}$ if and only if $y \in l$ whenever $t^{\alpha} \in l_{k^{\prime}}$, or, equivalently,

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left(\sum_{n=m}^{\infty}\left|c_{n m}\right|\right)^{k^{\prime}}<\infty, \tag{13}
\end{equation*}
$$

by Lemma 2.3. Since $A_{n}^{\alpha} \sim \frac{n^{\alpha}}{\Gamma(\alpha+1)}$ for $\alpha>-1$, see (Flett, 1957), it follows from the definition C that

$$
\begin{gathered}
\sum_{m=1}^{\infty}\left(\sum_{n=m}^{\infty}\left|c_{n m}\right|\right)^{k^{\prime}} \\
=\sum_{m=1}^{\infty} m^{\alpha k^{\prime}+k^{\prime}-1}\left(\sum_{n=m}^{\infty}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{r=m}^{n} A_{r-m}^{-\alpha-1} \frac{\epsilon_{r}}{r} P_{r-1}\right|\right)^{k^{\prime}},
\end{gathered}
$$

which completes the proof with (13).

REFERENCES

Bor, H. \& B. Kuttner, B. 1989. On the necessary condition for absolute weighted arithmetic mean summability factors. Acta Mathematica Hungarica 54: 57-61.

Bosanquet, L. S. \& Das, G. 1979. Absolutely summability factors for Nörlund means. Proceedings London Mathematical Society 838: 1-52.

Chow, H. C. 1954. Note on convergence and summability factors. Journal of the London Mathematical Society 29: 459-476.

Flett, T. M. 1957. On an extension of absolute summability and some theorems of Littlewood and Paley. Proceedings London Mathematical Society 7: 113-141.

Jakimovsky, A. \& Russel, D. C. 1972. Matrix mapping between BK-spaces, Bulletin London Mathematical Society 4: 345-353.

Mazhar, S. M. 1971. On the Absolute summability factors of infinite series. Tohoku Mathematical Journal 23: 433-451.

Mehdi, M. R. 1960. Summability factors for generalized absolute summability I. Proceedings London Mathematical Society. 10: 180-200.

Peyerimhoff, A. 1954. Summierbarkeitsfactoren für absolut Cesàro summierbareReihen. Mathematische Zeitschrift 59: 417-424.

Rhoades, B. E. \& Savas, E. 2004. A characterization of absolute summability factors. Taiwanese Journal of Mathematics 8: 453-465.

Sarigol, M. A. 1993a. On two absolute Riesz summability factors of infinite series. Proceedings of the American Mathematical Society 118: 485-488.

Sarigol, M. A. 1993b. A note on summability. Studia Scientiarum Mathematicarum Hungarica 28; 395400.

Sarigol, M. A. \& Bor, H. 1995. Characterization of absolute summability factors. Journal of Mathematical Analysis and Applications 195: 537-545.

Sarigol, M. A. 2011a. Matrix transformations on fields of absolute weighted mean summability. Studia Scientiarum Mathematicarum Hungarica 48; 331-341.

Sarigol, M. A. 2011b. Characterization of general summability factors and applications, Computers and Mathematics with Applications 62: 2665-2670.

Stieglitz, M. \& Tietz, H. 1977. Matrixtransformationen von Folgenraumen Eine Ergebnisübersicht. Mathematische Zeitschrift 154: 1-16.

Sulaiman, W. T. 1992. On summability factors of infinite series. Proceedings of the American Mathematical Society 115: 313-317.

Submitted : 19/01/2014
Revised : 13/03/2014
Accepted : 19/03/2014

تطوير نظرية مظهر حول عوامل التجميعية

محمد علي سر جول
قسم الرياضيات- جامعة بامو كالي- دنيزلي- تركيا
خالاصة

نرمز بالرمز (X,Y) لمجموعة كل المتتاليات E بحيث قابلة للجمع Y عندما تكون قابلة للجمع هي طرق تجميعية . نقوم في هذا البحث بالحصول على خصائص المجموعة (p متتاليات موجبة إختيارية ، وذلك بإستخدام تقنيات دالية تحليلية. ونتيجة لدراستنا هذه نقوم بتطوير بعض النتائج المعروقة.

