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ABSTRACT
In this paper, we consider that the curvature conditions of Aw(k)-type ( )1 3k≤ ≤  quaternionic 
curves in Euclidean space E3 and investigates quaternionic Mannheim curves  :I Qα →  with 
k 0≠   and 0r ≠  . Besides, we show that quaternionic Mannheim curves are Aw(2) -type and 
Aw (3)-type quaternionic curves in  E3. But, there is no such a Mannheim curve of Aw(1) -type. 
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INTRODUCTION

The quaternion was introduced by Hamilton. His initial attempt to generalize the 
complex numbers by introducing a three-dimensional object failed in the sense 
that the algebra he constructed for these three-dimensional object did not have the 
desired properties. On the 16th October 1843 Hamilton discovered that the appropriate 
generalization is one in which the scalar (real) axis is left unchanged whereas, the 
vector (imaginary) axis is supplemented by adding two further vector axis. 

Besides, there are three different types of quaternions, namely real, complex 
and dual quaternions. A real quaternion is defined as 3322110= eqeqeqqq +++  
is composed of four units (1, )321 ,, eee  where 321 ,, eee  are orthogonal unit spatial 
vectors, ( )0,1,2,3=iqi  are real numbers and this quaternion may be written as a 
linear combination of a real part(scalar) and vectorial part(a spatial vector). 

Quaternions uses in both theoretical and applied mathematics, in particular for 
calculations involving three-dimensional rotations such as in three-dimensional 
computer graphics and computer vision. They can be used alongside other methods, 
such as Euler angles and matrices, or as an alternative to them depending on the 
application. Furthermore, Bharathi & Nagaraj (1985) represented the curves by unit 
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quaternions in 3E  and 4E and called these curves as quaternionic curves. They studied 
the differential geometry of space curves and introduced Frenet frames and formulae 
by using quaternions. After them, Çöken & Tuna (2004) studied quaternionic inclined 
curves in the semi-Euclidean space 4

2E . Gök et al.(2011) have defined Quaternionic B
2 -Slant Helices in the Euclidean Space 4E . Karadağ & Sivridağ (1997) have studied 
quaternionic inclined curves.  Many interesting results on curves of Aw(k)-type have 
been obtained by many mathematicians. Özgür & Gezgin (2005) studied a Bertrand 
curve of Aw(k)-type and showed that there was no such Bertrand curve of Aw(1)-type 
and was of Aw(3)-type if and only if it was a right circular helix. In addition they 
studied weak Aw(2)-type and Aw(3)-type conical geodesic curves in 3E . K z ltuğ & 
Yayl (2014) investigated curves Aw(k)-type in the equiform geometry of the Galilean 
space. In this paper, we have done a study on quaternionic Mannheim partner curves 
of Aw(k)-type. However, to the best of author’s knowledge, quaternionic Mannheim 
partner curves of Aw(k)-type have not been presented in three dimensional Euclidean 
space 3E . Therefore, this study is proposed to serve such a need.

PRELIMINARIES

In this sectio n, we give the basic elements of the theory of quaternions and quaternionic 
curves. A more complete elementary treatment of quaternions and quaternionic curves 
can be found inin (Bharathi & Nagaraj, 1985) and (Karadağ & Sivridağ, 1997), 
respectively..

A real quaternion q  is an expression of the form

       44332211= eaeaeaeaq +++               (1)

where ia , ( )41 ≤≤ i  are real numbers, and ie , ( )41 ≤≤ i  are quaternionic units 
which satisfy the non-commutative multiplication rules

        ( )31,= 4 ≤≤−× ieee ii           (2)

( )3,1,== ≤≤×−× jieeeee ijkji

where ( )ijk  is an even permutation of ( )123  in the Euclidean space. The algebra of 
the quaternions is denoted by Q  and its natural basis is given by ( )4321 ,,, eeee . A 
real quaternion can be given by the form

          qq vsq +=             (3)

where 4= asq  is scalar part and 332211= eaeaeavq ++  is vector part of .q
The conjugate of qq vsq +=  is defined by

               .= qq vsq −                 (4)



130 Sezai Kiziltuğ  and Yusuf Yayli

 This defines the symmetric real-valued, non-degenerate, bilinear form as follows:

   ( ) ( ) ( )1: , , , =
2

h Q Q p q h p q q p p q× → → × + ×R           (5)

 which is called the quaternion inner product (Bharathi & Nagaraj, 1985). Then the 
norm of q  is given by

   ( ) .===,= 2
4

2
3

2
2

2
1

2 aaaaqqqqqqhq +++××           (6)

If 1=q , then q  is called unit quaternion. Then, inverse of the quaternion q  is 
given by

          .1

q
qq−              (7)

 Let 44332211== eaeaeaeavsq qq ++++  and 44332211== ebebebebvsp pp ++++  
two quaternions in Q . Then the quaternion product of q  and p  is given by

    pqqppqpqpq vvvsvsvvsspq ∧+++−× ,=        (8)

where ,  and ∧  denote the inner product and vector product in Euclidean 3-space 

.3E
q  is called a spatial quaternion whenever q  +  q  0=  and called a temporal 

quaternion whenever q  −  q  0= .Then a general quaternion q  can be given as

( ) ( ).
2
1

2
1= qqqqq −++

 The quaternion ( )qq −
2
1  is a spatial quaternion and called spatial part of q  and 

the quaternion ( )qq +
2
1  is a temporal quaternion and called temporal part of q  

(Bharathi & Nagaraj, 1985).

The three-dimensional Euclidean space 3E  is identified with the space of spatial 
quaternions { }0=: qqQq +∈  in an obvious manner. Let [ ]0,1=I  be an interval 
in real line R  and Is ∈  be parameter along the regular curve

     ( ) ( ) ii
i

esssQI ααα ∑→→⊂
3

1=
=,: R        (9)

chosen such that the tangent α (s)= t is unit, i.e., 1=t  for all s . Then ( )sα  is called 

spatial quaternionic curve (Bharathi & Nagaraj, 1985). Since 1=t , 0=′×+×′ tttt  

holds and it means that t is orthogonal to t and moreover t t×ˆ  is a spatial quaternion. 
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Since t' is itself a spatial quaternion, we define a spatial quaternion 1n  and non-
negative scalar function )(= skk  is called principal curvature. 1n  is orthogonal to 
t. Then by considering that t t×  is a spatial quaternion, there exists a unit spatial 
quaternion )()(=)()(=)( 112 stsnsnstsn ×−× . Then the set  { }1 2( ), ( ), ( )t s n s n s is 
called Frenet frame along the quaternionic curve )(sα , where )(st  is unit tangent, 

)(1 sn  is unit principal normal and )(2 sn  is unit binormal of the curve )(sα . The 
Frenet formulae of the quaternionic curve )(sα  are

    

'

'
1 1
'
2 2

( ) 0 ( ) 0 ( )
( ) = ( ) 0 ( ) ( )
( ) 0 ( ) 0 ( )

t s k s t s
n s k s r s n s
n s r s n s

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

          (10)

where ( )skk =  is principal curvature and ( )srr =  is torsion of ( )sα . (For Details 
(Bharathi & Nagaraj, 1985)).

Theorem 1 (8) (Karada g & Sivrida g , 1997) Let QI →:α  be a real spatial 
quaternionic curve with arc length parameter s  and nonzero curvatures { ( ), ( )}k s r s . If 
α  is general helix if and only if

         i
)(
)(

sk
sr

 is constant.              (11)
 

QUATERNIONIC CURVES OF AW(K)-TYPE

Let QI →:α  be an arc-lenght parametrized unit speed real spatial quaternionic 
curve in Eucli dean 3-space. The curve )(= sαα  is called a Frenet curve of 

osculating order 3 if its derivatives ( ), ( ), ( ), ( )
' '' ''' ''''

s s s sα α α α are linearly 

dependent and ( ), ( ), ( ), ( )
' '' ''' ''''

s s s sα α α α  are no longer linearly independent 

for all Is ∈ . To each Frenet curve of order 3 one can associate an orthonormal 
3-frame 1 2( ), ( ), ( )t s n s n s  along α  such that ( )'( ) =s tα  called the Frenet frame 
and functions k , :r I → R  called the Frenet curvatures.

Proposition 2 QI →:α  be an arc-lenght parametrized unit speed real spatial 
quaternionic curve in Euclidean 3-space, then we have

 ( ) )(= sts
'

α

 ( ) )()(= 1 snsks
''

α

 ( ) 2 '
1 2= ( ) ( ) ( ) ( ) ( ) ( ) ( )

'''
s k s t s k s n s k s r s n sα − + +

 ( ) )())()()()(()())()(3(= 1
23 snsrskskskstsksks

'''''''
−−+−α

 2(2 ( ) ( ) ( ) ( )) ( ).
' '

k s r s k s r s n s+ +
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Notation 3 Let us write

      ,)()(=)( 11 snsksN                    (12)

    ,)()()()()(=)( 212 snsrsksnsksN
'

+              (13)

    3 2
3 1

2

( ) = ( ( ) ( ) ( ) ( )) ( ) (2 ( ) ( )

( ) ( )) ( ).

'' '

'

N s k s k s k s r s n s k s r s

k s r s n s

− − + +     (14)

 

Remark 1. )(s
'

α , )(s
''

α , )(s
'''

α , )(s
''''

α  are linearly dependent if and only if 

)(1 sN , )(2 sN , )(3 sN  are linearly dependent. 

As the definition of Aw(k) type curves in (Arslan & Özgür, 1999), we have

Definition 1. Real spatial quaternionic curves (of osculating order 3) in Euclidean 
space are (Arslan & Özgür, 1999)

(i) of type weak Aw(2) if they satisfy

       3 3 2 2( ) = ( ( ), ( )) ( ),N s h N s N s N s∗ ∗            (15)

(ii) of type weak Aw(3) if they satisfy

       3 3 1 1( ) = ( ( ), ( )) ( )N s h N s N s N s∗ ∗            (16)

where

 

 
1 2 2 1 1

1 2
1 2 2 1 1

( ) ( ) ( ( ), ( )) ( )( ) = , ( ) = .
( ) ( ) ( ( ), ( )) ( )

N s N s h N s N s N sN s N s
N s N s h N s N s N s

∗ ∗
∗ ∗

∗ ∗

−
−

Proposition 2. Let α  be a real spatial quaternionic curve (of osculating order 3) in 
Euclidean space. If α  is of type weak Aw (2) then

       .0=)()()()( 23 srsksksk
''

+−            (17)

Proposition 3. Let α  be a real spatial quaternionic curve (of osculating order 3) in 
Euclidean space. If α  is of type weak Aw (3) then

             .0=)()()()(2 srsksrsk
'

+                (18)

 

Definition 2. Real spatial quaternionic curves (of osculating order 3) in Euclidean 
space are
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(i) of type Aw (1) if they satisfy ( ) =3 sN 0,

(ii) of type Aw (2) if they satisfy

     2
2 3 3 2 2( ) ( ) = ( ( ), ( )) ( ),N s N s h N s N s N s            (19)

(iii) of type Aw(3) if they satisfy

     
2

1 3 3 1 1( ) ( ) = ( ( ), ( )) ( ).N s N s h N s N s N s        (20)

Theorem 2. Let α  be a real spatial quaternionic curve (of osculating order 3) in 
Euclidean space. Then α  is of type Aw(1) if and only if

       0=)()()()( 23 srsksksk
''

+−         (21)

and

       =)()()()(2 srsksrsk
'

+  0.             (22)

Proof. Since α  is a curve of type Aw(1), we have 0=)(3 sN . Then from Eq. 14, 
we have

 =)())()()()(((2)())()()()(( 21
23 snsrsksrsksnsrsksksk

'''
+++− 0.

Furthermore, since )(1 sn  and )(2 sn  are linearly independent, we get

 3 2( ) ( ) ( ) ( ) = 0 and ( ) ( ) ( ) ( ) = 0.
'' '

k s k s k s r s k s r s k s r s− + +

 The converse statement is trivial. Hence our theorem is proved.   

Theorem 3. Let α  be a real spatial quaternionic curve (of osculating order 3) in 
Euclidean space. Then α  is of type Aw(2) if and only if

    
2

4 2 3

2( ( )) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) = 0.

' ' '

''

k s r s k s k s r s

k s k s r s k s r s k s r s

+ −

+ +
       (23)

 

Proof. Suppose that α  is a Frenet curve of order 3, then from 13 and 14, we can write 

       ()()()(=)( 212 snssnssN βγ + ),          (24)

       ()()()(=)( 213 snssnssN δη + ),           (25)

where γ , β , η  and δ  are differentiable functions. Since )(2 sN  and )(3 sN  are 
linearly dependent, coefficients determinant is equal to zero and hence one can write

          =
)()(
)()(

ss
ss

δη
βγ

 0.             (26)

 Here,

( ) = ( ), ( ) = ( ) ( )
'

s k s s k s r sγ β
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 and

 ,)()()()(=)( 23 srsksksks
''

−−η
.)()()()(2=)( srsksrsks

''
+δ

 Substituting these into (26), we obtain (23).

Conversely if the equation 23 holds, it is easy to show that α  is of type Aw(2). 

This completes the proof.   

Corollary 1. Let a real spatial quaternionic curve (of osculating order 3). If it is 
quaternionic cylindrical helix and α  is of type Aw (2) then

         ( )2 4 23( ( )) ( ) ( ) ( ) 1 = 0
' ''

k s k s k s k s c− + +       (27)

 where 
)(
)(=

sk
src  is constant. 

Theorem 4. Let α  be a quaternionic general helix in Euclidean 3-space. If α  is of 
type Aw(2), then 

   
2

1( ) = and ( ) = 1 ( )s r s A s
As Bs C

κ κ−
− + +

        (28)

 where 21= cA + , B  and C  are real constants. 

Proof. Suppose that α  is a general helix of type Aw(2). Then Eq. 27 holds. If we 
substitute xs =)(κ  in 27, we get

      
22

4 2
2 3 = , = 1 .d x dxx Ax A c

ds ds
⎛ ⎞− +⎜ ⎟
⎝ ⎠

         (29)

Let us take pyx =  and differentiating it twice we obtain

         1= ,pdx dypy
ds ds

−              (30)

             
22 2

2 1
2 2= ( 1) .p pd x dy d yp p y py

ds ds ds
− −⎛ ⎞− +⎜ ⎟

⎝ ⎠
          (31)

 Now, the substitution of 30 and 31 into 29, weget
2 22

1 2 2 2 2 4
2 ( 1) 3 = ,p p p p pd y dy dyy py p p y p y Ay

ds ds ds
− − −

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

2 22
2 1 2 2 2 2 2 4

2 ( 1) 3 = .p p p pd y dy dypy p p y p y Ay
ds ds ds

− − −⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Putting  ( 
2( 1) = 3p p p−    i.e. )

2
1= −p  into the last equation we get

2
2 1 4

2 = .p pd ypy Ay
ds

−

So,
2

2 = 2 .d y A
ds

−
 

 Now, we solve this last equation. Since = 2dy As B
ds

− + , we get

2= .y As Bs C− + +

 Furthermore, use of 2
1

=
−

yx  we obtain
1

2 2= ( ) .x As Bs C− + +

 Since 
)(
)(=

sk
src , we have the result.   

Corollary 2. Let α  be a real spatial quaternionic curve (of osculating order 3) in 
Euclidean space. If α  is of type Aw(2), then α  can not be a circular helix. 

Theorem 5. Let α  be a real spatial quaternionic curve (of osculating order 3) in 
Euclidean space. Then α  is of type Aw(3) if and only if

          .
)(

=)( 2 sk
csr              (32)

Proof. Since α  is a curve of type Aw (3), then 20 holds on α . Substituting 12 and 
14 into 20, we get

=)()()()(2 srsksrsk
'

+  0.

 If we solve above differential equation, we get

.
)(

=)( 2 sk
csr

The converse statement is trivial. Hence our theorem is proved.   

Corollary 3. Let α  be a general helix of osculating order 3.Then α  is of type Aw (3) 
if and only if α  is a circular helix. 

Proof. Suppose that α  is a general helix of type Aw (3). Combining 11 and 32 we 
find )(sk  and )(sr  are nonzero constants. Thus, α  is circular helix. The converse 
statements is trivial.   
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 AW (k)-TYPE QUATERNIONIC MANNHEIM CURVES IN E3

This section characteries the curvatures of AW(k)-type quaternionic Mannheim 
curves in E3 We provided some theorems and conclusion on Aw(k)-type ( )1,2,3=k  
quaternionic Mannheim Curves in E3.

Definition 3. (Liu & Wang, 2008). A curve QI →:α  with 0≠k  is called a 
Mannheim curve if  there exist a curve QI →:~α  such that, at the corrsponding 
points of curves, the principal normal lines of α  coincides with binormal lines of α~ . 
In this case α~  is called Mannheim partner curve of α  the pair ( )αα ~,  is said to be a 
Mannheim pair (Liu, H. & Wang. 2008; F, Orbay, K. & Kasap, E. 2009). 

Theorem 6. The distance between the corresponding points of the quaternionic 
Mannheim curves is constant in E3. 

Proof. Suppose that α  is a Mannheim curve. Then by the definition we can assume 
that

          )(~)()(~=)( 2 snsss λαα +          (33)

 for some function (sλ ). By taking the derivative of 33 with respect to s  and applying 
Equations 10, we have

   ( ) 1 2( ) = ( ) ( ) ( ) ( ) ( ).t s t s s r s n s s n sλ λ− +          (34)

 Since )(~
2 sn  is coincident with )(1 sn  in direction, we get

( ) = 0.sλ  

This means that ( )sλ  is a nonzero constant. Thus we have

         ( ) (~~)()(~= 1 snsrsstt λ− ).            (35)

 On the other hand, from the distance function between two points, we have

( ) 2( ), ( ) = ( ) ( ) = ( ) = .d s s s s n sα α α α λ λ−
 

Namely, ( )( ), ( ) =d s sα α constant. Hence, the proof is completed.   

Theorem 7. Let α~  be a quaternionic Mannheim partner curve of α . Then there is 
a following relation between Mannheim curve α  and Mannheim partner curve α~

         ( ) ( ) ( )snss 1=~ λαα −            (36)

 where λ  is nonzero constant. 

Proof. Since )(1 sn  and )(~
2 sn  are linearly dependent, Eq. 33 can be written as

( ) ( ) ( )snss 1=~ λαα −
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 Now, there is a curve α~  for all values of nonzero constant λ .   

Proposition 4. Let ),~( αα  be a quaternionic Mannheim pair in 3E . The linear 
relation between the curvature and torsion of the curve α  is given as follows:

         ( ) ( ) 1.=sksr λµ −         (37)

 Proof. Denote the Darboux frames of ( )sα  and ( )sα~  by 1 2{ ( ), ( ), ( )}t s n s n s  and 
1 2{ ( ), ( ), ( )}t s n s n s , respectively. Let angle between )(st  and )(~ st , which is 

tangent vector of )(~ sα  be .θ  Thus, we have

        2( ) = cos ( ) sin ( ).t s t s n sθ θ−             (38)

 Since ( )sα  and ( )sα~  are Mannheim curve mate, we have

         .)()(=)(~
1 snss λαα −            (39)

 If differentiating 39 with respect to s , we get

      ( )( ) ( ) 2( ) = 1 ( ) ( ).dst s k s t s r s n s
ds

λ λ+ −           (40)

 Thus, from 38 and 40 we have

         ( ) .
sin

)(=
cos

)(1
θ

λ
θ

λ srsk −+             (41)

 From Above equation, we obtain

      ( ) cot ( ) = 1.k s r sλ θλ− +  

 If take cot =θλ µ ,  we get

       .1=)()( sksr λµ −

Corollary 4. Suppose that 0)( ≠sk  and 0)( ≠sr . Then α  is a quaternionic 
Mannheim curve if and only if there exist a nonzero real number λ  such that

      ( ) =)())()()(( srsrsksrsk
'''

−−λ 0.          (42)

 Proof. By the proposition 19, α  is a Mannheim curve if and only if there exist 
real numbers 0≠λ  and µ  such that 1=)()( sksr λµ − . This is equivalent to the 

condition that there exists a real number 0≠λ  such that 
)(

)(1
sr

skλ+  is constant. 
Differentiating both sides of the last equality, we have

( ) =)())()()(( srsrsksrsk
'''

−−λ  0.

Proposition 5. Let QI →:α  be a quaternionic Mannheim curve with 0)( ≠sk  
and 0)( ≠sr . Then α  is of Aw(2)-type if and only if there is a non zero rael number 
λ  such that

   2 2( ) ( )( ( ) ( )) ( )( ( ) 1) = 0.
''

k s r s k s r s r s k sλ λ λ− − +         (43)
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Proof. Since α  is of type Aw (2), Eq.23 holds and since α  is a real spatial 
quaternionic Mannheim curve, Eq. 42 holds. If both of these equations are considered, 
43 is obtained.   

Theorem 8. Let QI →:α  be a quaternionic Mannheim curves with 0)( ≠sk  and 
0)( ≠sr . Then α  is of Aw(3)-type if and only if α  is a right circular helix. 

Proof. Now suppose that QI →:α  is a quaternionic Mannheim curve of Aw(3)-type 
with 0)( ≠sk  and 0)( ≠sr . Then the Eqs. 32 and 42 hold on α . Differentiating 
32, we have

         
3

2 ( )( ) = .
( )

'
' ck sr s

k s
−                 (44)

Substituting 32 and 44 in 42, we get

          .const=
3
2=)(
λ

sk            (45)

 If substituting 45 in 32, the following equation is obtained,

( ) .const=
4

9=
2csr λ

 Since )(sk  and )(sr  are nonzero constants, α  is a right circular helix.   

Theorem 9. Let QI →:α  be a quaternionic Mannheim curves with 0)( ≠sk  and 
0)( ≠sr . If α  is of weak Aw(2)-type, then following equation hold

  2 2( ) ( )( ( ) ( )) ( )(1 ( )) = 0.
''

k s r s k s r s r s k sλ λ λ+ − −         (46)

 Proof. Since α  is of type weak AW(2), Eq. 17 holds and since α  is a quaternionic 
Mannheim curve, Eq. 42 holds. Arranging Eq. 17, we have

       .)()()(=)( 23 srsksksk
''

+            (47)

 Differentiating 42, we get

     .0=)())()()()(( srsrsksrsk
''''''

−−λ           (48)

 If Eq. 42 is substituted in 48 , then 46 is obtained.   

Theorem 10. There is not a quaternionic Mannheim curve QI →:α  with 0)( ≠sk  
and 0)( ≠sr  of AW(1)-type. 
Proof. Since α  is of type AW(1), Eq.21 and 22 holds and since α  is a quaternionic 
Mannheim curve, Eq.42 holds. If we solve this differential equation 22, we get

         .
)(

=)( 2 sk
csr                (49)
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Differentiating 49, we get

         .
)(

2=)( 3 sk
csr

' −
               (50)

 So substituting 49 and 50 in 42 and making necessary arrangements, we get

         
2

2 2= .
72

cλ −                   (51)

 Whic given us 0<2λ . Since λ  is real number, this isnt possible. So QI →:α  
isnt a AW(1)-type Mannheim curve. This completes proof.   
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E3 في الفضاء الاقليدي AW (k) حول منحنيات مانهايم المرباعية من النوع

* سيزاي كيزلدج ، **يوسف يالي
*جامعة ارزينكان - كلية العلوم والآداب - قسم الرياضيات - ارزينكان - تركيا

* جامعة أنقرة - كلية العلوم - قسم الرياضيات - أنقرة - تركيا

خلاصة
 (1≤  k ≤ 3 ) ، AW (k)  نقوم في هذا البحث بدراسة شروط التقوس لمنحنيات من النوع
المرباعية ودراسة منحنيات مانهايم. نثبت إضافة إلى ذلك، أن منحنيات مانهايم المرباعية هي 
من النوع AW (2) ومن النوع AW (3) في E3. لكن لا يوجد منحنيات مانهايم مرباعية من 

.AW (1) النوع


