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ABSTRACT

In this paper, we consider that the curvature conditions of Aw(k)-type (1 <k < 3) quaternionic
curves in Euclidean space E* and investigates quaternionic Mannheim curves «:/ —Q with
k#0 and r #0 . Besides, we show that quaternionic Mannheim curves are Aw(2) -type and
Aw (3)-type quaternionic curves in £°. But, there is no such a Mannheim curve of Aw(1) -type.
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INTRODUCTION

The quaternion was introduced by Hamilton. His initial attempt to generalize the
complex numbers by introducing a three-dimensional object failed in the sense
that the algebra he constructed for these three-dimensional object did not have the
desired properties. On the 16" October 1843 Hamilton discovered that the appropriate
generalization is one in which the scalar (real) axis is left unchanged whereas, the
vector (imaginary) axis is supplemented by adding two further vector axis.

Besides, there are three different types of quaternions, namely real, complex
and dual quaternions. A real quaternion is defined as g = g, +¢q,e, + q,e, + q,e,
is composed of four units (1, 61,62,63) where €;,€,,€; are orthogonal unit spatial
vectors, ¢, (i = 0,1,2,3) are real numbers and this quaternion may be written as a
linear combination of a real part(scalar) and vectorial part(a spatial vector).

Quaternions uses in both theoretical and applied mathematics, in particular for
calculations involving three-dimensional rotations such as in three-dimensional
computer graphics and computer vision. They can be used alongside other methods,
such as Euler angles and matrices, or as an alternative to them depending on the
application. Furthermore, Bharathi & Nagaraj (1985) represented the curves by unit
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quaternionsin 3 and f*and called these curves as quaternionic curves. They studied
the differential geometry of space curves and introduced Frenet frames and formulae
by using quaternions. After them, Coken & Tuna (2004) studied quaternionic inclined
curves in the semi-Euclidean space E; . GOk et al.(2011) have defined Quaternionic B
2 -Slant Helices in the Euclidean Space E*.Karadag & Sivridag (1997) have studied
quaternionic inclined curves. Many interesting results on curves of Aw(k)-type have
been obtained by many mathematicians. Ozgiir & Gezgin (2005) studied a Bertrand
curve of Aw(k)-type and showed that there was no such Bertrand curve of Aw(1)-type
and was of Aw(3)-type if and only if it was a right circular helix. In addition they
studied weak Aw(2)-type and Aw(3)-type conical geodesic curves in f3. K z Itug &
Yayl (2014) investigated curves Aw(k)-type in the equiform geometry of the Galilean
space. In this paper, we have done a study on quaternionic Mannheim partner curves
of Aw(k)-type. However, to the best of author’s knowledge, quaternionic Mannheim
partner curves of Aw(k)-type have not been presented in three dimensional Euclidean
space E3. Therefore, this study is proposed to serve such a need.

PRELIMINARIES

In this section, we give the basic elements of the theory of quaternions and quaternionic
curves. A more complete elementary treatment of quaternions and quaternionic curves
can be found inin (Bharathi & Nagaraj, 1985) and (Karadag & Sivridag, 1997),
respectively..

A real quaternion ¢ is an expression of the form
q=ae +a,e,+ae,+a,e, (1)
where 4@;, (l <i< 4) are real numbers, and €;, (1 <i< 4) are quaternionic units
which satisfy the non-commutative multiplication rules

e xe =—e, (1<i<3) ()
e xe,=e,=—e xe,(1<i,j<3)

where (l]k ) is an even permutation of (123) in the Euclidean space. The algebra of
the quaternions is denoted by O and its natural basis is given by (61,62,63,64). A
real quaternion can be given by the form

q4=S,%Y, 3)
where S, = Q4 is scalar part and Yy = %1€ T @,€, + ;€3 s vector part of .

The conjugate of ¢ =8, +V, is defined by

q=S5,~V,. 4)
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This defines the symmetric real-valued, non-degenerate, bilinear form as follows:

h:0x0 %R,(p,q)—)h(p,q)=%(qxp_+pxq_) Q)

which is called the quaternion inner product (Bharathi & Nagaraj, 1985). Then the
norm of ¢ is given by

la = hlg.q)=axq=gxq=a} +a} +a} +a;. (6)

If ||q|| =1, then ¢ is called unit quaternion. Then, inverse of the quaternion ¢ is
given by

g' L. 7
lal

Let ¢=s,+v, = ae +ae, +ae;+ae, and p=5,+v,= be +be, +be, +bse,
two quaternions in (J. Then the quaternion product of ¢ and P is given by
qxpzsqsp—<vq,vp>+sqvp+spvq+vq/\vp (8)
where <,> and A denote the inner product and vector product in Euclidean 3-space
B}
q is called a spatial quaternion whenever ¢ + ¢ =() and called a temporal
quaternion whenever ¢ _ ¢ =0 .Then a general quaternion ¢ can be given as

0=+ (g-7)

The quaternion l (q — q_) is a spatial quaternion and called spatial part of 4 and

the quaternion —(q + q_) is a temporal quaternion and called temporal part of ¢
2

(Bharathi & Nagaraj, 1985).

The three-dimensional Euclidean space E* is identified with the space of spatial
quaternions I'\iq €eQ:q+q = ()} in an obvious manner. Let / = [0,1] be an interval
in real line R and S €7 be parameter along the regular curve

a,(s)e, ©)

M-

a:IcR—>Q0,5s>als)=
i=1

chosen such that the tangent & (s)=¢is unit, i.e., ”l‘” =1 forall 5. Then a(s) is called
spatial quaternionic curve (Bharathi & Nagaraj, 1985). Since ”t” =1,t'xt+txt="0

holds and it means that ¢ is orthogonal to ¢ and moreover ¢x ¢ is a spatial quaternion.



131  On the quaternionic Mannheim curves of Aw(k)-type in Euclidean space E?

Since ¢’ is itself a spatial quaternion, we define a spatial quaternion #; and non-
negative scalar function k = k(s) is called principal curvature. s, is orthogonal to
t. Then by considering that £x¢ is a spatial quaternion, there exists a unit spatial
quaternion 7, (s) = #(s)xn,(s) = —n,(s)x £(s) . Then the set {£(s),n,(s),n,(s)}is
called Frenet frame along the quaternionic curve @(s), where #(s) is unit tangent,
n,(s) is unit principal normal and n,(s) is unit binormal of the curve a(s). The
Frenet formulae of the quaternionic curve a(s) are

t(s) 0 k(s) O t(s)
n(s) [=|—k(@s) 0 r(s)| ns) (10)
n,(s) 0 -r(s) 0 || n,(s)

where k = k(s) is principal curvature and 7 = r(s) is torsion of Ot(s). (For Details
(Bharathi & Nagaraj, 1985)).

Theorem 1 (8) (Karadag & Sivridag, 1997) Let a:I — Q be a real spatial
quaternionic curve with arc length parameter s and nonzero curvatures {k (s),7(s)} . If
o is general helix if and only if

r(s)
k(s)

is constant. (11)

QUATERNIONIC CURVES OF AW(K)-TYPE

Let :1 — Q be an arc-lenght parametrized unit speed real spatial quaternionic
curve in Buclidean 3-space. The curve @ =a(s) is called a Frenet curve of

osculating order 3 if its derivatives a (s ),a" (s ),am (s ),aw (s)are linearly
dependent and a' (s ),a” (s ),am (s ),aw (s) are no longer linearly independent

for all § € . To each Frenet curve of order 3 one can associate an orthonormal

3-frame #(s),n,(s),n,(s) along ¢ such that (& (s))=¢ called the Frenet frame
and functions k, : ] — R called the Frenet curvatures.

Proposition 2 & :1 —> O be an arc-lenght parametrized unit speed real spatial
quaternionic curve in Euclidean 3-space, then we have

a (s)=1(s)

a (s)=k(s)n (s)

a (s)=—k>()(s)+k (s)n,(s)+k (s)r(s)n,(s)

a (s)=(=3k(s)k (s) t(s)+(k (5)—k*(s)—k(s)r’(s) m(s)
2k ($)r(s)+k (s)r (s)ny(s).
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Notation 3 Let us write
N,(s) =k(s)n,(s), (12)
N,(s)=k (s)n,(s)+k(s)r(s)n,(s), (13)
N, (s)= (k" (s)—k>(s) =k (s)r’(s)n,(s)+(2k ’ (s)r(s)+ (14)
k($)r (), (s).

Remark 1. o (s), a (s), a (s), a (s) are linearly dependent if and only if

N,(s), N,(s). N5(s) are linearly dependent.

As the definition of Aw(k) type curves in (Arslan & Ozgiir, 1999), we have

Definition 1. Real spatial quaternionic curves (of osculating order 3) in Euclidean
space are (Arslan & Ozgiir, 1999)

(i) of type weak Aw(2) if they satisfy
N3(s)=h(N;(s),N; ()N, (s), (15)

(ii) of type weak Aw(3) if they satisfy

No(s)=h(N (), N[ ()N (5) (16)
where
N )=ty sy = M) AW, N DN, (5)
[V1(s) [N 2 ()= (N (), N (5N ()]

Proposition 2. Let o be a real spatial quaternionic curve (of osculating order 3) in
Euclidean space. If ¢ is of type weak Aw (2) then

K (s)—k (s)+k(s)r*(s)=0. (17)
Proposition 3. Let @ be a real spatial quaternionic curve (of osculating order 3) in
Euclidean space. If & is of type weak Aw (3) then

2%k (s)r(s)+k(s)r(s) =0. (18)

Definition 2. Real spatial quaternionic curves (of osculating order 3) in Euclidean
space are
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(i) of type Aw (1) if they satisfy N, (S) =0,
(ii) of type Aw (2) if they satisfy
INS 6 N5(5)= AN (5),N (s N, (s), (19)

(iii) of type Aw(3) if they satisfy
IN ()" N (5)= (N, (5),N ()N (5)- (20)

Theorem 2. Let ¢ be a real spatial quaternionic curve (of osculating order 3) in
Euclidean space. Then « is of type Aw(1) if and only if

K (s)—k (s)+k(s)r(s)=0 @1
and
2k (5)r(s)+k(s)r(s) =0- (22)

Proof. Since ¢ is a curve of type Aw(1), we have N,(s)=0. Then from Eq. 14,
we have

(K (s) =k (5)+k(s)r(s) n,(s)+(k (s)r(s)+k(s)r(s) ny(s)=0.
Furthermore, since n,(s) and n,(s) are linearly independent, we get

ki (s)—k (s)+k(s)ri(s)=0 and k (s)r(s)+k(s)r(s)=0.
The converse statement is trivial. Hence our theorem is proved.

Theorem 3. Let ¢ be a real spatial quaternionic curve (of osculating order 3) in
Euclidean space. Then & is of type Aw(2) if and only if

2k () r(s)+k (s)k(s)r (s)—

, (23)
k (s)k(s)r(s)+k*(s)r(s)+k>(s)r’(s)=0.

Proof. Suppose that & is a Frenet curve of order 3, then from 13 and 14, we can write
N, (s)=y(s)n (s)+ B(s)n,(s), (24)
N;(s)=n(s)n,(s)+(s)n,(s), (25)

where ¥, [, 17 and § are differentiable functions. Since N,(s) and N,(s) are
linearly dependent, coefficients determinant is equal to zero and hence one can write

y(s)  p(s)

=0. 26
n(s) () 20

Here,

y(s)=k (s),B(s)=k(s)r(s)
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and
ns)=k (S) K (s)~ k(S)V (5),
o(s)= 2% (s)r(s)+k(s)r (s).

Substituting these into (26), we obtain (23).
Conversely if the equation 23 holds, it is easy to show that & is of type Aw(2).
This completes the proof.

Corollary 1. Let a real spatial quaternionic curve (of osculating order 3). If it is
quaternionic cylindrical helix and & is of type Aw (2) then

3k ()’ —k k() +k*(s)(1+¢?)=0 27)
r(s)
k(s)
Theorem 4. Let @ be a quaternionic general helix in Euclidean 3-space. If & is of
type Aw(2), then

K(s)= = ! and r(s)=+4 —1x(s) (28)
\/—As +Bs +C

where C = is constant.

where 4 =1+ ¢?, B and C are real constants.

Proof. Suppose that ¢ is a general helix of type Aw(2). Then Eq. 27 holds. If we
substitute x(s) = x in 27, we get

L4 3(de —Ax* A =1+c> (29)

ds ds

Let us take x = p? and differentiating it twice we obtain

dl:pypfldl (30)
ds ds’
d’x L(dy ? L d%y
=p(p-y"?| = e
5 pp-ly (ds) ey €Y

Now, the substitution of 30 and 31 into 29, weget

2 2 2
v’ py?” 622 +p(p-Dy”” Z(i,yj }—3p2y2”(jlj =Ay ™,
A) A)

d’y dy Y dy Y
2p-1 + _1 2p-2 we _3 2. 2p-2 w :A 4p.
Py =3 p(p—1y (dsj Dy (dsj y
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1
Putting ( p (p - 1) = 3p ? iLe. p= —E) into the last equation we get

pyprldzy :Ay4p.

ds?
So,
d 2
2 =24
ds
. . . dy
Now, we solve this last equation. Since d_ =-2A4s +B ,weget
S

y =—As’>+Bs +C.
-1

Furthermore, use of X = y 2 we obtain
1

x =(—-As*+Bs +C)>.

: r(s)

Since ¢ = ———, we have the result.
k(s)

Corollary 2. Let & be a real spatial quaternionic curve (of osculating order 3) in

Euclidean space. If & is of type Aw(2), then & can not be a circular helix.

Theorem 5. Let @ be a real spatial quaternionic curve (of osculating order 3) in
Euclidean space. Then & is of type Aw(3) if and only if
c
r(s)=——.
k*(s)
Proof. Since ¢ is a curve of type Aw (3), then 20 holds on « . Substituting 12 and
14 into 20, we get

(32)

2% (s)r(s)+k(s)r(s) = 0.

If we solve above differential equation, we get

The converse statement is trivial. Hence our theorem is proved.

Corollary 3. Let ¢ be a general helix of osculating order 3.Then & is of type Aw (3)
if and only if ¢ is a circular helix.

Proof. Suppose that & is a general helix of type Aw (3). Combining 11 and 32 we
find k(s) and r(s) are nonzero constants. Thus, ¢ is circular helix. The converse
statements is trivial.
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AW (k)-TYPE QUATERNIONIC MANNHEIM CURVES IN E3

This section characteries the curvatures of AW(k)-type quaternionic Mannheim
curves in E£° We provided some theorems and conclusion on Aw(k)-type (k = 1,2,3)
quaternionic Mannheim Curves in E°.

Definition 3. (Liu & Wang, 2008). A curve a:l —>Q with k£0 is called a
Mannheim curve if there exist a curve ¢ :/ — Q such that, at the corrsponding
points of curves, the principal normal lines of & coincides with binormal lines of ¢ .
In this case ¢ is called Mannheim partner curve of & the pair (a, a ) is said to be a
Mannheim pair (Liu, H. & Wang. 2008; F, Orbay, K. & Kasap, E. 2009).

Theorem 6. The distance between the corresponding points of the quaternionic
Mannheim curves is constant in £°.

Proof. Suppose that & is a Mannheim curve. Then by the definition we can assume
that

a(s)=a(s)+A(s)n,(s) (33)

for some function A(s). By taking the derivative of 33 with respect to s and applying
Equations 10, we have

t(S)=t~(s)—ﬁ,(s)77(s)ﬁl(s)+ﬂ'.(s)ﬁ2(s). (34)
Since 71,(s) is coincident with 7,(s) in direction, we get
A(s)=0.
This means that A(s) is a nonzero constant. Thus we have

t=7(s)—A(s)7(s)7 (s). (35)

On the other hand, from the distance function between two points, we have
d (a(s),als)) = |als)—a(s)|=|Ar, )| =|Al.

Namely, d (a(s), a(s)) = constant. Hence, the proof is completed.

Theorem 7. Let & be a quaternionic Mannheim partner curve of ¢ . Then there is
a following relation between Mannheim curve @ and Mannheim partner curve ¢

a(s)=als)-An,(s) (36)
where A 1S nonzero constant.

Proof. Since 7,(S) and 7,(5) are linearly dependent, Eq. 33 can be written as

a(s)=als)-An,(s)
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Now, there is a curve & for all values of nonzero constant A .

Proposition 4. Let (&,&) be a quaternionic Mannheim pair in 3. The linear
relation between the curvature and torsion of the curve & is given as follows:

wr(s)—Ak(s)=1 (37)
Proof. Denote the Darboux frames of a(s) and &(s) by {t(s ),nlis),nz(s)} and

{t (s),7,(s),7,(s)}, respectively. Let angle between #(s) and 7 (s), which is
tangent vector of a(s) be . Thus, we have

£ (s)=cost(s)—sin O, (s). (38)
Since a(s) and ¢ (S) are Mannheim curve mate, we have
a(s)=a(s)—An(s). (39)
If differentiating 39 with respect to S, we get
t~(§)fl—z=(l+ik (s))e(s)=Ar (s)ny(s). (40)
Thus, from 38 and 40 we have
0 +2k(s)) _ —Ar(s). 1)
cos@ sind

From Above equation, we obtain

—Ak (s)+cotOAr(s)=1.

If take cotOA = 1, we get
wr(s)—Ak(s)=1.

Corollary 4. Suppose that k(s)#0 and 7(s)#0. Then ¢ is a quaternionic
Mannheim curve if and only if there exist a nonzero real number A such that

Ak (s)r(s)—k(s)r (s) —r (5)=0. 42)

Proof. By the proposition 19, & is a Mannheim curve if and only if there exist
real numbers 4 %= () and 4 such that tr(s)—Ak(s)=1. This is equivalent to the

1+ Ak(s)
r(s)

condition that there exists a real number 4 %= () such that is constant.

Differentiating both sides of the last equality, we have

Ak (s)r(s)—k(s)r (s) —r (s)=0.
Proposition 5. Let @ :/ — O be a quaternionic Mannheim curve with k(s) # 0
and 7(s)# 0. Then ¢ is of Aw(2)-type if and only if there is a non zero rael number
A such that

A () () (k2(s) =12 (s)) = Ar (s)(Ak (s)+1)=0. (43)
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Proof. Since o is of type Aw (2), Eq.23 holds and since & is a real spatial
quaternionic Mannheim curve, Eq. 42 holds. If both of these equations are considered,
43 is obtained.

Theorem 8. Let & : I — O be a quaternionic Mannheim curves with k(s) # 0 and
r(s)# 0. Then & is of Aw(3)-type if and only if ¢ is a right circular helix.

Proof. Now suppose that & : I —> Q is a quaternionic Mannheim curve of Aw(3)-type
with k(s) #0 and r(s) # (. Then the Egs. 32 and 42 hold on « . Differentiating
32, we have

. (s)= M (44)
k=(s)
Substituting 32 and 44 in 42, we get
k(s)= 2 const (45)
32 '

If substituting 45 in 32, the following equation is obtained,
2

r(s)= 91 ¢

Since k(s) and 7(s) are nonzero constants, & is a right circular helix.

= const.

Theorem 9. Let & : I — O be a quaternionic Mannheim curves with £(s) # 0 and
r(s)#0.If & is of weak Aw(2)-type, then following equation hold
Ak (5 )r(s)(k 2(s) +72(s)) = Ar (s)(1= Ak (5)) =0, (46)

Proof. Since & is of type weak AW(2), Eq. 17 holds and since ¢ is a quaternionic
Mannheim curve, Eq. 42 holds. Arranging Eq. 17, we have

k (s) =K (s)+ k(s)r(s). (47)
Differentiating 42, we get
Ak (s)r(s)—k(s)r (s) —r (s)=0. (48)

If Eq. 42 is substituted in 48 , then 46 is obtained.
Theorem 10. There is not a quaternionic Mannheim curve & : [ — Q with k(s) # 0
and 7(s) # 0 of AW(1)-type-

Proof. Since & is of type AW(1), Eq.21 and 22 holds and since & is a quaternionic
Mannheim curve, Eq.42 holds. If we solve this differential equation 22, we get
c
r(s)= .

k*(s)

(49)
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Differentiating 49, we get

F (s)= =€ (50)
ki (s)
So substituting 49 and 50 in 42 and making necessary arrangements, we get
2
12 _ —2c . (51)

72

Whic givenus A* < 0. Since A is real number, this isnt possible. So ¢ : I — Q
isnt a AW(1)-type Mannheim curve. This completes proof.
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