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The eigenvalues of some anti-tridiagonal Hankel matrices
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Abstract

We determine the spectra of two families of anti-tridiagonal Hankel matrices of any order. The approach
is much stronger and more concise than those particular cases appearing in the literature. At the same
time, it simplifies significantly all the known results up to now.
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1. Introduction

In general, an anti-tridiagonal Hankel matriz of or-
der n, H,(b,a,c), is a matrix of the form

b a
H,(b,a,c) = b C

a c
nxn

In the recent years anti-tridiagonal Hankel ma-
trices and their eigenvalues revealed to be of signifi-
cant importance in many areas of pure and applied
mathematics (see (Gutiérrez-Gutiérrez, 2011 and
2008; Gutiérrez-Gutiérrez & Zarraga-Rodriguez,
2016; El-Mikkawy & Rahmo, 2008; Rimas, 2013,
2009, and 2008; Wang, 2014; Wu, 2010; Yin, 2008)
and the references therein). For different reasons,
the main study is commonly diverted to the analysis
of the powers of these matrices. Inevitably, finding
the eigenvalues of these matrices is always a key
step. In particular, quite recently (Rimas; 2013)
found the spectra of

Hy(b,a,-b) = | L ,
a —b

nxn

extending some results in his previous paper (Ri-
mas, 2009), through a very intricate method. A per-
symmetric case was investigated lately in (Akbulak,
da Fonseca, & Yilmaz, 2013). The case H, (b, a,b)
can be found, for example, in (Gutiérrez-Gutiérrez,
2011 and 2008; Wang, 2014).
Another type of anti-tridiagonal Hankel matri-
ces which has become of interest is
b 0
H,(b,0,¢) = ¢

S

nxn

The powers of H,,(b,0, c) were recently discussed in
(da Silva, 2015; Wang, 2014).

Our main aim here is to provide a com-
mon frame for the eigenvalues of H, (b, a,+b) and
H,,(b,0,c), providing a direct approach and a better
understanding to them.

2. The eigenvalues of H,(b,a, —b)
Let us write H,(b,a,—b) = aK, + bH,(1,0,-1),
where K, is the backwards identity of order
n. Since K2 = 1, and K,H,(b,0,—b) =
—H,(b,0,-b)K,, we have K,H,(b,0,-0)K, =
—H,(b,0,-b), ie., H,(b,0,—b) and —H,(b,0,—b)
are similar. Consequently the eigenvalues of
H,(b,0,—b) are coming in pairs, say, A, —\.

Lemma 2.1. The eigenvalues of H,(1,0,—1) are
simple.

Proof. Rearranging conveniently the rows and
columns of H,,(1,0,—1), this matrix is permutation
similar to

pPXp



where n = 2p. Otherwise, it is permutation similar
to

nxn

Hence, in the even case, the eigenvalues of
H,(1,0,—1) are (cf. (Akbulak, da Fonseca, &
Yilmaz, 2013; da Fonseca, 2007)

Af:ﬁ:Qcos(
n

2k +1 >
u )
+1

fork:(),...,"gz,

while in the second case, they are 0 together with

2k
A :j:\/Q <1+cos <W>),
n+1

_ -1
for k=1,..., %5~

In each case, they are all distinct. O

Remark 2.1. Obviously, the eigenvalues are, respec-
tively, the same as

+1 1

1 0
1

1 0
and
0 1
1
1 0

nxn

Observe that if n is even, H,,(b,0, —b) is clearly
nonsingular.

In general, if w is an eigenvector of H,(b,0, —b)
associated with A, then K,u is an eigenvector of
H,(b,0,—0b) associated with —A. If n is odd, then
(1,0,1,...,0,1) is an eigenvector associated with 0.

Taking into account the orthogonality of the
eigenvectors of H,(b,0,—b), it is possible to con-
struct an orthonormal basis in R™ such that it is a
direct sum of blocks diag (bA;,bA;). If n is odd,
there is an additional 1 x 1 block with a zero entry.
In this basis, K, is represented by a direct sum of
K. Again, if n is odd, there is an additional 1 x 1
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block with a sole entry equal to 1. Consequently,
H,,(b,a, —b) is similar to

a
W[ a
a  bAT
bAT  a )
a  bA\;
if n is odd, and to
b\§  a
a b\,
b\T a
a  bA] ’

if n is even.

Theorem 2.2. The eigenvalues of H,(b,a,
a, together with

2
i\/a2—|—2b2 <1+COS( kﬂ)),
n+1

fork=1,... 22

2
if n 1s odd, and

2k +1
:I:\/a2 + 4b2 cos? (+ 71'),
n+1

fork:O,...,"T_Q,

—b) are

otherwise.

3. The eigenvalues of H,, (b, a,b)

We start with the even order. From the previous
case, H,(1,0,1) is permutation similar to

1 1 1 1
1 0 1 0
@ )
1 1
1 0 1 0
pPXp pPXp
(3.1)
where n = 2p. This means the eigenvalues of

H,(1,0,1) are

2k +1
n+

>\k:2COS< 7r>, for k=0,...,252,

each of multiplicity 2. In this case one eigenvec-
tor associated with an eigenvalue in H, (1,0, 1) cor-
responds to a certain zero-nonzero pattern, where
the nonzero entries are from the eigenvector of the
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matrix in the decomposition (3.1) associated to the
same eigenvalue. The other eigenvector has an op-
posite pattern. Therefore, H,, (b, a,b) is similar to

b/\o a
a b)\o

b)\l a
a b)\l

So, we have the following theorem
Theorem 3.1. The eigenvalues of Hap, (b, a,b) are

+1
+1

2k
j:a+2bcos< 7r>7 fork=0,....,p—1.
n
Let us focus now on the odd order, say n =
2p+1. This case is very similar to the H,(b,a, —b),
with the same parity. However, here H,, (b, a,b) will
be similar to the diagonal matrix

(=)Pa
a+ AT
a+bAT
—a+bAf
—a + bA;

In conclusion, we have the following theorem.

Theorem 3.2. The eigenvalues of Hapi1(b,a,b) are
(—=1)Pa, together with

(—1)F~lg + b\/z (1 + cos <n2]_‘:r1>>

fork=1,... p.

About of

H,(b,0,c)

In this section, we extend the previous analysis to
the matrices of the type H,(b,0,c). We recall the
notion of symmetric tridiagonal 2-Toeplitz matrix
(da Fonseca & Petronilho, 2001 and 2005; Gover,
1994)

4. the spectra

a1 bl
b1 a9 b2
T(2) _ 1 b2 a1 bl
by

nxn

and the characteristic polynomials of some pertur-
bations (Akbulak, da Fonseca & Yilmaz, 2013),
which will be crucial for the understanding of the
spectra of this family of matrices.

Let us define the polynomials
ma(x) = (z — a1)(z — a2)

and

x — b2 — b2
Pi(x) = (bibo)" Up | —5 52
(o) = (uta) O (T )
where Uy’s are the Chebyshev polynomials of sec-
ond kind satisfying the three-term recurrence rela-
tions

Upt1(z) = 22U, (2)—Up—1(x), forallk=1,2,...
(4.1)
with initial conditions Uy(z) = 1 and Uy (z) = 2z.

It is well-known that each U}, satisfies

sin(k + 1)0

. ,  with z = cosf
sin 6

Up(z) = (0<0 <),

4.2
for all £k = 0,1,2.... Naturally, we assume (thai
TT(LQ) is irreducible, i.e., biby # 0.

The eigenvalues of T? are the zeros of the
(characteristic) polynomial @,, defined by

Qak+1(7) = (z — a1) Pig(m2(x))
and
Q2k(z) = Pi(ma(x)) 4 b3 Py (ma(2)),

fork=1,2,....
In the case of n = 2k + 1, the eigenvalues of Tr(l2
are A\g = a; and

)

a1 + as
2

(a1 —a2)? 12
\/4+b%+b%+2b1b2COS m s

for  =1,... k. If n =2k, the eigenvalues are

= +

)\?::aleCLQi
2
EPRY)
\/W+bg+bg+2b1b2cos9u,

for ¢ = 1,...,k, where each 0, is a solution in
the interval (0,7) of the trigonometric equation
by sin((k + 1)0) + by sin(k6) = 0.

Therefore, the characteristic polynomial of the
Jacobi matrix

~ (2
Tz(kzﬂ =



is

p(z) = (x — b)P(2?) + bc? Pp_1 (2?), (4.3)
while of the matrix
0 b
b 0 ¢
Tz(i) = ¢
0 b
b ¢
is
p(z) = Pp(x?) — bz — b) Pp_1(2?). (4.4)

In both cases, the determinant is 0™, where n is the
order of the tridiagonal matrix. For more details,
the reader is referred to (Akbulak, da Fonseca, &
Yilmaz, 2013).

Now, if we want to get the eigenvalues of
H, (b,0,c), we only need to find an appropriate per-
mutation matrix such that it will be similar to a
convenient Jacobi matrix. Let us start with the
odd case.

Set the permutation

(1 2 3 4 n+1

77\1 2n 3 2n-2 n+1
2n—2 2n—1 2n 2n+1

4 2n—1 2 2n+1 )~

Clearly, the permutation matrix P, is an in-
volution and P,Ha,+1(b,0,¢)P, is equal to the
(2n + 1) x (2n + 1) 2-Toeplitz tridiagonal matrix

0 b
b 0 ¢
c 0 b
b

. c
c 0

Thus the eigenvalues of Ha,11(b,0,¢) are 0 and

Ir

+

=+ B2+ 2 +2

by, \/b +c? + bccos(TH_l)7

for{=1,...,n.

In conclusion, since the powers of this tridiago-
nal matrix are known, even in a more general form
(cf. Theorem 3.2 in (Rimas, 2012)), if we want to
find the powers of Ha,11(b,0,c¢), one just need to
rearrange the rows and columns via the permuta-
tion o and we get Theorem 3 of (da Silva, 2015).
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For the even case, in general, we cannot obtain
explicit expressions of the eigenvalues. Neverthe-
less, the formulas arise in a natural way. For, if we
consider the permutation

(1 2 3 4 ceem
=\ 1 n+2 3 n+4d - o
n+1 2n—3 2n—2 2n-—1 2n

).

then Hs, (b, 0, ¢) becomes permutation similar to

2n 4 n+3 2 n+1
0 b 0 ¢

b .

9]
S
(=)

if n is odd, and to

0 b 0 c
b 0 ¢ c 0 b
c .. @ b
b ¢ c b

otherwise. Thus, for p odd, from (4.3), the eigenval-
ues of Hyp(b, 0, c) are the solutions of the equations

(x — b)Py(2?) + bc® Py 1 (2*) =0

and
(x — )Py (2?) + bc*Py_1(2%) = 0,

while, for p even, from (4.4), the eigenvalues are the
solutions of the equations

Py(2?) —c(xz —¢) Py_q1(2*) =0

and
Py(x*) —b(z — b) P,_1(2®) = 0.

In any case, the determinant is always equal to

(be)™.

5. Conclusion

We believe that this strategy of rearranging indexes
is convenient and more powerful than ones that
can be found in the recent literature to calculate
the powers of different types of matrices. Unfortu-
nately, this simple approach has not been appropri-
ately explored.

For example, in (da Silva, 2015) it is not clear
what are the eigenvalues of H,(b,0,c¢) and where
they come from. To compute the determinant of
H,(b,0,c), we can use the direct sum above or use
the Laplace expansion. Still in this paper, it is
worth mentioning that the proof of Lemma 2 in
(da Silva, 2015) is not complete, since we have a
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three terms recurrence relation. Moreover, the re-
sult is standard because P, (x) is the characteristic
polynomial of

As a last remark, a “negative” power, say —n, of a
nonsingular matrix A is simply the inverse of A".
The rest is elementary linear algebra. Therefore, it
is unnecessary to state and prove results involving
“negative” powers as was done, for example, in (da
Silva, 2015; Wang, 2014).
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