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The Lehmer matrix with recursive factorial entries
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ABSTRACT

A generalized Lehmer matrix with recursive entries from Kili¢ et al. (2010b) is further
generalized, introducing three additional parameters and taking recursive factorials instead of
a term. Certain formulae are derived for the LU and Cholesky factorizations and their inverses,
as well as the determinants. Then we precisely compute the elements of the inverse of the
generalized Lehmer matrix.
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INTRODUCTION
The generalized Fibonacci sequence {Un (p, q)} is defined by

U,(p.q9)=pU,. (p,q)-qU, ,(p.q),

with the initial conditions U (p,q) =0 and U,(p,q) =1 for n>1 .

When p = 2 and ¢ = 1, the sequence {U \ (2,1)} is reduced to the sequence of
natural numbers. When p = 1 and ¢ = -1, the sequence {U (1, -1)} is reduced to the
well known Fibonacci sequence {F }. Throughout this paper, we consider the case
g = -1 and we denote U (p,-1) with u,,.

An nxn generalized Lehmer matrix 7, =(g,) is defined by

1<i,j<n

L iy >,
. z’lj+l
_ mln{ui+l9uj+l} _
gij - -
maX{uiJrl’ujH}
j +1 L .
= ifi >,
ui+1
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as a recursive analogue of the Lehmer matrix where u_is the nth term of the sequence
{u}, Kilig et al. (2010b) defined the recursive analogue of the Lehmer matrix
and derived its algebraic properties. The authors also gave its LU and Cholesky
factorizations and so derived explicit formulae for the determinant and inverse.

The Lehmer matrix and its recursive analogue are known as special matrices
with known inverses, determinants, etc. For other known special matrices and their
properties (inverses, determinants, etc.), we refer to Kilig¢ (2010), Kili¢ ef al. (2010a),
Kilig et al. (2013), Marcus (1960), Newman et al. (1958), Stanica (2005).

The purpose of this paper is to introduce a new kind further generalization of the
Lehmer matrix. Our approach to the subject will be as follows:

+  We consider product of consecutive k terms of the sequence {u,} and briefly
denote this product with three parameters by X ,

*  We define the generalized Lehmer matrix, namely, ¥, in terms of X ’s,

*  We give LU factorization of 7 as 7 = PL U , where p is an 1 X n unit matrix,
*  We derive explicit formula for the determinant,

*  We give Cholesky factorization F=C cT

n~"n?

. . . —1
e We determine the inverse matrix 7, .

A GENERALIZED LEHMER MATRIX
WITH 3 ADDITIONAL PARAMETERS

Definition 1. For any integer parameters A >1, 7 > (0 and k =1,

k
Xn = Hu/'t(n+s—l)+r’n = 19
s=1

where U, is defined as before.

For =0 and A=k =1, this definition is reduced to the usual recursive
coefficients denoted by u,, .

Definition 2. An n X 1 recursive generalized Lehmer matrix, say J, =(g,)\<; j<u. has
the following entries:

X, .
S ifj >,
. Xj+1
mln{XHl’XjH}
gy = =
! maX{XiJrl’XjH} X
2Lifi >,
i+l
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where u,, is the nth term of the sequence {u,} and A>1, p>( and k>1 are
integer parameters.

Here we note that the case » =( and A =k =1 was given in Kili¢ ez al. (2010b)
so that we shall study the case » > () and A,k >1 throughout this paper.

In order to give the LU factorization of the matrix ¥, we define two triangular
matrices. First, define the 7 xn unit lower triangular matrix [, = (£;) with

i+l e .
I ifi >,
Eij o i+l
0 ifi<j.
For example, when n = 4, the matrix has the following form:
1 0 0 0]
Loyo0 o
X3
L= & & 1 ol
X4 X4
X, X X,
_XS XS XS _

Before defining an upper triangular matrix for the LU factorization of the matrix
¥, we need to introduce another new sequence.
Definition 3. The sequence {Y,} is defined as follows
Y, =X, ,—X,,n>1,

n

where A 21, r >0 and k >1 are integers and u, is defined as before.

When =( and A=k = 1, this definition is reduced to the sequence {f,}
defined in Kilig er al. (2010b).

Secondly, now define the mxn upper triangular matrix U, :(Dl.j) with

X for 1< j<mn, and

Ulj:

J+l
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(X"“&“yfiﬂ<i3jsm
Ul'j = Xl+1X
0 ifi> ;.

From the definition of the sequence {Y }, we restate the matrix U, with

v, = X for 1< j<n, and

J X ) )
j+1
J X2 -xr
——L ifl<i <j <n,
Uij - Xi+1 Jj+l
0 ifi>].
For example, when n = 4, the matrix has the following form:
TS S
3 X, X
2 2 2 2 2 2
0 X=X, X;j-X, X;-X,
2
U. = Xy X, X, X, X
4 X2 _XZ X2 _X2 *
O 0 4 3 4 3
X; X, X
XI-X;
0 0 0 s 2
L XS _

Theorem 4. The PLU factorization of generalized Lehmer matrix is given by

?—I’l = PLHU”I
wheren >0, P , L, and U, as defined earlier.

Proof. Assume that L U, = (h,-,-)' We consider two cases, i > j and i < j. For the

first situation,
Zf U =St

m=1

X2 _x?
=Ly, + Z[ Xm+l <Xm+l XXm )J

m+l1

X 1
X1+1X ' Xl+1X]+1 mzz()(2 _Xi)
> 1
- XX +X X (XJZH X22)

i+1




llker Akkus 38

Secondly, for i < j,

Zf,m Zf,m Oy

2
f,1UIJ +mzz Xm+1 ()(mH XX )

i+ m+l

2 1 i
_XXX +X X Z(X:HI_X;)

i+1 i+14% j+1 m=2

Corollary 5. For any integers n >0, A =1, r 2 0,k >1, then

det (F) = H(X}—ZXJ

i=2 i+l

Now, we give the Cholesky factorization of the generalized Lehmer matrix #,. For

this we define a lower triangular matrix C, = (c[.j) with c, = for ] <j<n, and
i+l

R

X7, -X7 ifl<j<i<n,

4l
0 ifi <.
Theorem 6. The Cholesky factorization of the generalized Lehmer matrix is given by
¥, = Can
where C, is the lower triangular matrix defined as above.

Proof. The proof can be done similarly as in Theorem 1.

. . L . . -1

Next, we give the inverse of the Lehmer matrix with recursive coefficients 7, by
considering its LU factorization. Before this, we give the inverses of the matrices L,
and U, in the following lemma, whose proof is as routine as before.
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Lemma 7.

(i) LetU ;1 = (al.j) denote the inverse of U,. Then

1 ifi =j =1,
X2 .
—Z—IHZ if i :j >1,
a. = Xi _Xi+1
Y X. . X, )
21+1 z+22 lfl :j —1,
Xi+1 _Xi+2
0 otherwise.

(i) LetL'= (b, ) denote the inverse of L,. Then

1 ifi =7,
X
b, ={——~1 ifi=j+1,
! Xi+1 J
0 otherwise.

Thus the inverse of the matrix ¥, is given by in the following theorem.

Theorem 8. Let f;l = (hy ), then

X .
ﬁ ifi =j =1,
X, -X,;
X. X, .
e if1<i <n-landj =i +1,
Xi+l _Xi+2
h, = X2+1 o .
ij — lfl = =n
X7 X !
Xi2+1 (Xi2+2 _Xi2) .
5 5 5 5 if2<i <n-landj =i
(Xi+1_Xi )(X[+2_Xi+l)
0 otherwise.

Proof. Considering #,' = U, 'L, the proof is obtained by the previous lemma and
matrix multiplication.
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