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ABSTRACT

Omega polynomial of a graph G is defined, on the ground of "opposite edge strips" ops:
Q(G;x) =5 . m(G,c)x¢, where m(G,c)is the number of ops strips of length ¢. The
Sadhana pcilynomial Sd(G; x)can also be calculated by ops counting. In this paper we
compute these polynomials for polyomino chains of 4k-cycles. Also by using Omega
polynomial we can compute the (edge) PI, polynomial for this graph.

Keywords: Omega polynomial; sadhana polynomial; PI, polynomial; strips;
polyomino chain.

INTRODUCTION

Let G = (E, V))be a connected graph, with the vertex set V'(G) and edge set E(G).
Two edges e = uv and f= xy of G are called codistant e co f, if they obey the
following relation (John et al., 2007):

dv,x) =dv.y)+1=d(u,x)+1=d(u,y)

Relation co is reflexive, that is, ¢ co e holds for any edge eof G; it is also
symmetric, if e co f then f co e. In general, relation co is not transitive; an
example showing this fact is the complete bipartite graph K, ,. If “co” is also
transitive, thus an equivalence relation, then G is called a co-graph and the set of
edges C(e) = {f € E(G)|fco e} is called an orthogonal cut co of G, E(G) being
the union of disjoint orthogonal cuts:
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E(G)=CUGCU--UCk, GNCi=¢, i #].

Let e= uv and f= xy be two edges of G,which are opposite or topologically
parallel and denote this relation by e op f. A set of opposite edges, within the
same face/ring, eventually forming a strip of adjacent faces/rings, is called an
opposite edge strip ops, which is a quasi-ortogonal cut goc (i.e., the transitivity
relation is not necessarily obeyed). Note that co relation is defined in the whole
graph, while op is defined only in a face/ring. The length of ops is maximal,
irrespective of the starting edge. Let m(G,s) be the number of ops strips of length
s. The Omega polynomial is defined as (Diudea, 2006)

G;x) =Y _m(G,c)- x“.

The first derivative (in x= 1) equals the number of edges in the graph

(G 1) => m(G,c) c=|EQG)|.

4

The Sadhana index Sd(G) was defined by Khadikar ez a/. (2002 ) as

Sd(G) =Y m(G,c)(|E(G)| - o),

where m(G,c) is the number of strips of length c.

The Sadhana polynomial Sd(G; x) was defined by Ashrafi et al. (2008b) as:

Sd(G; x) = Zm(G, ¢) - x/BG)=¢,

¢

Clearly, the Sadhana polynomial can be derived from the definition of Omega
polynomial by replacing the exponent ¢by |E(G) — ¢|. Then the Sadhana index
will be the first derivative of Sd(G; x) evaluated at x=1.

THE MAIN RESULTS

In this section we compute the Omega polynomial of k-polyomino chain, which
is the main results in this paper. A k-polyomino system is a finite 2-connected
plane graph, such that each interior face (also called cell) is surrounded by a
regular 4k-cycle of length one. In other words, it is an edge-connected union of
cells. For the origin of polyominoes see, for example, Klarner (1997) and
Golomb (1954; 1965).
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For calculating the omega polynomial of a k-polyomino chain, we introduce
some concepts for a k-polyomino chain. A kink of a k-polyomino chain is any
branched or angularly connected 4k-cycle. A segment of a k-polyomino chain is
a maximal linear chain in the polyomino chain, including the kinks and/or
terminal 4k-cycles at its end. The number of 4k-cycles in a segment S is called its
length and is denoted by ¢(S). For any segment Sof a polyomino chain with n >
2 4k-cycles one has 2 < ¢(S) < n.

In particular, a k-polyomino chain is a linear chain, if and only if, it contains
exactly one segment, see Figure 1. A k-polyomino chain is a zig-zag chain, if and
only if, the length of each segment is 2, see Figure 2.

OCO-CC

Fig. 1. The linear chain of 8-cycles

Fig. 2. The zig-zag chain of 8-cycles
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A k-polyomino chain consists of a sequence of segments Sy, S5,...,S;, s > 1,
with Lengths £(S;)) = ¢;, i=1,2,...,s, where

S

Z&-:n—f—s—l

i=1

(n denotes the number of 4k-cycles of the polyomino chain), since two
neighboring segments have always one 4k-cycle in common. In the following we
will abbreviate the vector of lengths by £, i.e., £ = (¢y,...,4).

Ghorbani & Ghazi (2010) computed these polynomials only for the zig-zag
chain of 8-cycles. In this paper, we compute the mention polynomails of
polyomino chains of 4k-cycles with arbitrary k. Here our notations are standard
and mainly taken from Ashrafi ef al., (2008a) and (Klarner, (1997).

Theorem 1. Let B, 4, be a k-polyomino chain with n 4k-cycles consisting of s > 1
segments S1, S, ..., Sy with lengths ¢y, 4>, ..., 4. Then

QB x) = [(2k — )n — s + 1]x* + S x(t+and

i=1

N
Sd(Bn7k|[; x)=[2k—1)n—s+ l]x(‘”‘_l)”_1 +> x@h=1n—t;

i=1
Proof. Every segment S; has two kinds of strips: one of lengths 2 and one of
lengths 4+ 1. So B, has s+ Istrips Co,Ci,Cy,...,C of length

2,00+ 1,0, +1,...,6,+ 1, respectively, see Figure 3. There is one strip
equivalent with |G|, i=1,...,s, i.e., m(B,y, ¢ +1) =1, 1 <i<s. Thus the

1 N
number of strips equivalent with |Cy| = 2 is 3 [[E(By )| — Z (¢; +1)]. We have
N i=1
|E(Byxje)| = (4k —1)n+1and ) 6 =n+s—1.
i=1
Hence m(B,, ks, 2) = (2k — 1)n — s + 1. Now, by the definitions of Omega and
Sadhana polynomials, the proof is completed.
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Fig. 3. The graph Bs )3

The following corollaries are resulted from Theorems 1.

Corollary 2. (Linear chain) In the case s = 1 and /; = n the graph B, is the
linear chain L, ; of n 4k-cycles. . Then

Q(Log; x) = 2k — Dnx? + "' and

Sd(Lyy; x) = (2k — 1)nx=Dn=1 oy (3k=2n,

Corollary 3. (Zig-zag chain) In the case s =n — 1 and ¢; = 2 for all i the graph
B, k¢ 1s the zig-zag chain Z, . of n 4k-cycles. Then

QU Zpi;x) = ((2k —2)n +2)x* + (n — 1)x* and

Sd(Z, 15 x) = 2((k — D)+ 1)nxW=Dn=1 4 (p — 1) x 3= Dn=2,

Let G be a connected graph, u and vbe vertices of G and e= uv. The number
of edges of G lying closer to u than to v is denoted by n,,(e|G) and the number of
edges of G lying closer to v than to u is denoted by n,,(e|G). The PI, polynomial
of G is defined as (Ashrafi et al., 2006)

PI(G’ X) - Z{u vicy XN(MW)’
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where N(u,v) = n,(e|G) + ne,(e|G), if e = uv; and = 0, otherwise.

Now, If G be a bipartite graph, PI, can be computed by (Diudea et al., 2008):
PL(G;x) =" m(G,c)-c-xHOI= .

Then the PI index will be the first derivative of PI(G;x) evaluated at x=1.In
other words, by using Omega polynomial in bipartite graph we can compute the
PI, polynomial and then PI index.

Hence, the following Theorems are resulted from Theorem 1 and Corollaries
2 and 3, respectively.

Theorem 4. PI, polynomial of a k-polyomino B, is
PL(By i x) = 2[(2k — D)n — s 4 1003 (g 1) 0t
i~
Theorem 5. Let L, x and Z,  be the linear chain and zig-zag chain respectively. Then
PIL(Lyx;x) = 2((2k — DaxW == (4 1)x#=2_ pp,
(Znj;x) =4((k—1)n+ D)x@=Dn=1 4 3( — 1) x3k=Dn=2,

The mentioned polynomials for linear chain and zig-zag chain of k-
polyomino in case k = 2 are shown in Table 1.

Table 1. Formulas for the polynomials in linear and zig-zag chains
of k-polyomino chains, case k=2.

Q(Ly2; x) = 3nx? + x"*! UZu2;x) = 2n+2)x* + (n — 1)x°

Sd(Ly2;x) = 3nx"1 4 xo Sd(Zy2;x) = (2n+2)x" 1 4 (n — 1)x"2

PI,(Ly2;x) = 6nx"""! 4 (n 4 1)x% PL(Z,2;x) = 4(n+ )X + 3(n — 1)x""2
CONCLUSION

In this paper, we have calculated the Omega, Sadhana and PI, polynomials of a
polyomino chain of 4k-cycles with arbitrary k. The following generalizations of
the situation considered here seem to deserve further study. At first, one should
allow regular 2k-cycles instead of 4k-cycles (thus including, e.g., configurations
of hexagons). Then one should allow ‘“heterogeneous’ segments where 2k-cycles
with different k are allowed. Finally, one should allow more general
configurations, where the segments do not necessarily meet at the endpoints
(and with an angle of 90 degree).
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