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ABSTRACT

Our aim in this paper is to explore white noise functional solutions for the variable
coefficients Wick-type stochastic time-fractional KdV equations. Using the modified
fractional sub-equation method, we can find out new exact solutions for the time-
fractional KdV equations. Subsequently, the Hermite transform and the inverse Hermite
transform are employed to find white noise functional solutions for the variable
coefficients Wick-type stochastic time-fractional KdV equations.
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INTRODUCTION

In this paper, with the help of Hermite transform, white noise theory and
modified fractional sub-equation method, we will deduce white noise functional
solutions for the variable coefficients Wick-type stochastic time-fractional KdV
equations as the following form:

DU+ P()oUo Ui+ Q) 0 Upyy =0, (x,)) ERxR,, 0<a<l, (11)

where Df is the modified Riemann-Liouville derivative defined by Jumarie,
(2006), P(t) and Q(t) are non-zero white noise functions, and ” ¢ ” is the Wick
product on the Kondratiev distribution space (S)_; which was defined by
Holden et al. (2010). Moreover, when Wick product is replaced by ordinary
product in Eq. (1.1), we obtain the variable coefficients time-fractional KdV
equations:

D%u+ p(t)uuy + q(t)uyx = 0, (x,1) eERxR+,0< a <1, (1.2)

where P(t) and Q(t) are non-zero, bounded measurable or integrable functions
on . The KdV equation has arisen in a number of physical contexts as collision-
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free hydromagnetic waves, stratified internal waves, ion-acoustic waves, plasma
physics, lattice dynamics, etc (Fung, 1997). Certain theoretical physics
phenomena in the quantum mechanics domain are explained by means of a
KdV model. It is used in fluid dynamics, aerodynamics, and continuum
mechanics as a model for shock wave formation, solitons, turbulence, boundary
layer behavior, and mass transport. All of the physical phenomena may be
considered as non-conservative, so they can be described using fractional
differential equations. Therefore, in this work, our motive mainly devoted to
formulate a time-fractional KdV equation version. In EI-Wakil et al. (2011), the
authors assert that Eq. (1.2) is the mathematical model for small but finite
amplitude electron-acoustic solitary waves in plasma of cold electron fluid with
two different temperature isothermal ions. Therefore, if this model is perturbed
by Gaussian white noise, we can regard Eq. (1.1) as the mathematical model for
the resultant phenomenon. Since Wadati first introduced and studied stochastic
KdV equation (Wadati, 1983), many authors, e.g., (Xie, 2003; Xie, 2004; Chen
& Xie, 2006; Chen & Xie, 2007; Ghany, 2011) and so on, have investigated more
intensively the stochastic partial differential equations (SPDE).

On the basis of the homotopy analysis method, Dehghan er al. developed a
scheme to obtain the approximate solution of the deterministic time-fractional
KdV equation with constant coefficients and Caputo’s derivative (Dehghan et
al., 2010). The present letter is motivated by the desire to propose the modified
fractional sub-equation method to construct exact analytical solutions for the
variable coefficients Wick-type stochastic time-fractional KdV equations with
the modified Riemann-Liouville derivative defined by:

i =) o, a <o,
DY = g [, =0 WO — o, 0<a<t (Y
—ae),
o= (x))™ m<a<nil

Where n=1,2,3,... which has merits over the original one, for example, the
a—order derivative of a constant is zero. Some useful formulas and results of
Jumarie’s modified Riemann-Liouville derivative can be found in (Jumaire,
2006; Jumaire, 2009). Our first interest in this work is implementing new
strategies that give white noise functional solutions of the variable coefficients
Wick-type stochastic time-fractional KdV equations. The strategies that will be
pursued in this work rest mainly on Hermite transform, white noise theory and
modified fractional sub-equation method, all of which are employed to find
white noise functional solutions of Eq. (1.1). The proposed schemes, as we
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believe, are entirely new and introduce new solutions in addition to the well-
known traditional solutions. The ease of using these methods, to determine
shock or solitary type of solutions, shows its power.

White Noise Functional Solutions of Eq. (1.1)

In this section, we will give new strategies that give white noise functional
solutions of Eq. (1.1). Taking the Hermite transform of Eq. (1.1), we get the
deterministic equation:

D} U(x, t,z) + P(t,z) U(x, 1,2) Ux(x, t,z) + Q(l, z) Uxxx(x, t,z)=0, (2.1

where z = (z1, 2, ...) € (CV). is a vector parameter. For the sake of simplicity we
denot P(1,z) = P(t,z), Q(t,z) = Q(t,z)and u(x, t,z) = U(x,1,z). To convert the
fractional partial differential equation in two independent variables (1.2) into an
fractional ordinary differential equation, we take the traveling wave

transformation:
u=u(f), & =kx+ ct, (2.2)

where k, ¢ are arbitrary constants which satisfy kc # 0, then Eq.(2.1) is reduced
into a nonlinear fractional ordinary differential equation:

du

d
*Diu+ JkPu + k3Qd—£3 =

7 0. (2.3)

We next suppose Eq. (2.3) has a series expansion solution in the form:
w=y hi(t,2)¢'(€) + Y mi(t,2)67'(€), (2.4)
i=0 =

where /; (i=0,1,...,n), m;(i =1,...,n) are functions to be determined later, is a
positive integer and satisfies the fractional Riccati equation:

Digp=0+¢, 0<a<l, (2.5)

where o is an arbitrary constant. Very recently, (Zhang et al., 2010) first
generalized the Exp-function method (Zhang, 2010) to fractional differential
equations and obtained the following five solutions of Eq. (2.5).
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#1(€) = —y/—o tanh,(y/=0f), o <0,
$2(§) = —v/—ocothy(v/=0€), <0,
¢3(§) = Vo tang (v/o¢) o >0, (2.6)
4(&) = /o coty(y/TE) o >0,
__T+a) = v = cons
d)S(g)__ é'a-f—y 0_07 - L,

where tanh, (x), coth,(x), tan,(x)and cot,(x) are the generalized hyperbolic
and trigonometric functions which were defined in (Podlubny, 1999) by:

tanh, (x) =

i(Eo(ix™) + Eq(—ix®))

coty(X) = Eo(ix®) — Eqo(—ix)
Ea) = 2 11 1 ja)

u 314 .
is the Mittag-Leffler function. Balancing uZ—é and % in Eq. (2.3), we have . By
substituting Eq. (2.4) along with Eq. (2.5) into Eq. (2.3) and collect the
coefficients of ¢(i = —5,—4,...,5) and set them to be zero, we will obtain the

following set of algebraic equations in the unknowns /;(i=0,1,2) and

m,(z = 1,2)

where
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ap =lho—my, ay=2ho, a=1,
a3 =2bL, ay = -2my, as=—mo,
ag = —2nmyo,
bo = aply + asly + ash + aymy + axmy,
by = aily + aoly + ash + axmy + azm,
by = ayly + arly + aply + asmy,
by = a3ly + arly + a1y,
by = a3l + axly, bs = azls,
b = asly + asly + agly + apmy + ayma,
by = asly + asly + asmy 4 agm,
by = asly + asmy 4 asm,
by = agmy + asny, by = agny,
co = 2(a202 + as), c1 =20Baz0 + ay),¢; =8y,
¢3 =29a30 + ay), ca = 6ay, cs = 12a3, ¢ = 2(as0 + 3ag), c7 = 8as, cg = 2(aso + 9ag),

With the aid of MATHEMATICA, we can find the following sets of
solutions of the system (2.7)

8k3 + ¢ 0
= h=m =0, h=m=—128"% 2.
lo P s 11 nm O, 12 ny k P, ( 8)
=822 5 =m =0, b= [k 40+ ]
P’ 7 koP ’

2
my = —o[4’o(Tko + 16k — 32) Q% + 32¢°K° (0 — 1)Q + 2], (2.9)
c()z

_ 8k3aQ +c®

b = kP

,mp=hL=0, I} =—2c"kP, m2:—12k2%. (2.10)

Using Eqgs.(2.2), (2.4), (2.8), (2.9), (2.10) and (2.5), we obtain fifteen solutions
of Eq. (2.1) as follows:

8k + ¢ 5 0(t,2)
-2k
kP(t,z) P(t,2)¢?(kx + ct)

ui(x,t,z) = — (¢ (kx+ct) +1],i=1,..,5, (2.11)
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(t,z) 2K (oc—4)0Q(t,z) + ¢
o) KP(1,2)

LIH_S(X, l,Z) = —Skzg gbf(kx%—ct)

. 204130 (TIP3 0 + 16k — 32) Q% (1, 2) + 32¢°k3 (0 — 1)Q(t,2) + 2]

pryps—— =15, (212)

8kK0Q(r,2) £t 2
kP(t,z) P(t,z)

dilkx + ct) - b 120(12) i=1

Pl tey > B

ui+10(xu f, Z) =

Lemma 1. (Xie 2003) Suppose u(x,?,z) is a solution (in the usual strong
pointwise sense) of Eq. (2.1) for (x,7) in some bounded open set G C R x R,
and for all z € K,,(n) for some m < oo, n > 0. Moreover, suppose that u(x,t,z)
and all its derivatives, which are involved in Eq. (2.1) are (uniformly) bounded
for (x,1,z) € G x K,,(n), continuous with respect to (x, ) € G for all z € K,,,(n)
and analytic with respect to z € K,,(n) for all (x,7) € G. Then there exists
U(x, 1) € (S)_; such that u(x,1,z) = U(x, )(z) for all (x,t,z) € G x K,,(n) and
U(x, t) solves (in the strong sense) Eq. (1.1)in (S)_,.

From Lemma 1, we know that there exists U(x,?) € (S)_, such that
u(x,t,z) = U(x,1)(z) for all (x,t,z) € G x K,,(n) where U(x,1?) is the inverse
Hermite transformation of u(x,?,z). Consequently, U(x,?) solves Eq. (1.1).

Hence, the white noise functional solutions of Eq. (1.1) are as follows:

8k* + ¢ e 0(1)

U0 == P06 (kx + ct)

Ofottkx+en+1] i=1,..5, 214

3 J— (03
Ussstont) = g2 20 | 20— 9000 ¢

0 P <>q§§>2 (kx + ct)

20 [430 (T30 + 16k° — 32) Q9%(1) + 32K (0 — 1 20
+U[ (7K + ) 09%(1) + 32¢°K (0 — 1)Q(1) + 2¢ },i:L...,S, (2.15)

¥ (kx + ct)
80+ 2, 12K2Q(1) -
UH,l()(X, l) = _T([) - P([) <>¢l (kx + Ct) - W, 1= 1, ey 5. (216)

where gb? is the Wick version of the solution ¢;.

Remark

Suppose that f{¢) is a deterministic integrable function on R, and

Q(1) = AP(1), P(1) = /(1) + pW (1), (2.17)
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where \, 1 are constants and /() is Gaussian white noise, that is W(r) = B(1), B(1)
is Brownian motion. Considering the Hermite transform of Eq. (2.17), we have
O(t,z) = \P(t,2), P(t,z) = f(t) + uW(t,z), where W(t,z) = pfRE- fot nj(s)ds and the
and the function 7;(s) can be found in Holden et al., (2010). In this case, the solutions
of Eq. (1.1) are given in non-Wick versions as follows:

8k + ¢ 12K°A[¢f (m(x, 1)) + 1]

Uit1s = — KPQ) (1) , i=1,..,5, (2.18)
Uisao(x, 1) = —=8k*X + <2k3/\(0 —4)+ k;?[)>¢%(7r(x, 1)
(2.19)

L2 (430N (Th30 + 16> — 32) P2(1) + 32¢°K3 (o — 1) P(t) + 2¢*°]

c@i(m(x, 1)) d=1,..,5,
; — _g)2 2 12620
Uz+25(x, [) = —8k‘o)\ — F([) N W¢I(W(X; Z)) - m,l = 1, ey 5. (220)

2
m(x, 1) = kx + cf(t) + cp (B(l) - %)

In Egs. (2.18) - (2.20), we have already used the following relation (Holden et
al., 2010)

EX(B(1)) = Ea (B(t) - %) . (2.21)

Special Cases. If we put a=1, this implies that tan,(x) = tan(x), cot,(x)
= cot(x), tanh, (x) = tanh(x), coth,(x) = coth(x) and E,(x) = exp(x). So, Eq.
(2.8) gives:

Usprs = % + K[ (m(x, 1)) + ¢ 2 (m(x,0))], i=1,..,5 (2.19)

This result, compatible with the results given by Wazwaz (2007).

Summary and Discussion

In general, the solution of SPDE will be a stochastic distribution, and we have
to interpret possible products that occur in the equation, as one cannot in
general take the product of two distributions. In our paper, products are
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considered to be Wick products, which overcome this difficulty through white
noise functional approach. Subsequently, we take the Hermite transform of the
resulting equation and obtain an equation that we try to solve, where the
random variables have been replaced by complex-valued functions of infinitely
many complex variables. Finally, we use the inverse Hermite transform to
obtain a solution of the regularized, original equation (Ghany, 2011). Since
U0 (x) = ¥(x) for any non-random function W(x), hence (2.14)-(2.16) are
solutions of the variable coefficients time-fractional KdV equations (1.2). our
method in this paper is a standard, direct and computerized which allows us to
do complicated and tedious algebraic calculations. This method is valid for any
type of time-fractional KdV equations, such as KdV-Burger equation, modified
KdV equations, Benjamin- Bona-Mahony, KdV-Burger -Kuramoto, ... etc. On
the other hand, for any other type (not belongs to KdV) we cannot use our
method directly, but we need some necessary modifications, see (Zhang, 2012;
Kim & Sakthivel, 2011; Holden et al., 2010). In Benth & Gjerde, (1998), we can
find a unitary mapping between the Gaussian white noise space and the Poisson
white noise space. Hence we can obtain the solutions of the Poisson SPDE
simply by applying this mapping to the solutions of the corresponding Gaussian
SPDE. We note that as o — 1, all the obtained exact solutions give a new set of
exact solutions of the well known Wick-type stochastic KdV equations (Xie,
2003). Moreover, we observe that we can get different white noise functional
solutions of Eq. (1.1) from (2.14)-(2.16) for different forms of the coefficients

P(t)and Q(1).
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