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ABSTRACT

A one-parameter homothetic motion of a rigid body in three-dimensional Euclidean
space is defined by means of the Hamilton operators. We investigate some properties of
this motion and show that it has only one pole point at every instant 7. Furthermore, the
Darboux vector of the motion can be written as multiplication of two quaternions.
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INTRODUCTION

Bottema & Roth (1979) have analytically investigated the one-parameter
homothetic motion of a rigid body in n-dimensional Euclidean space. After a
review of some properties of homothetic motion, it is shown by Hacisaliholu
(1971) that the motion is regular and has one pole point at every instant z. Yay1
(1992) has considered the homothetic motions with the aid of the Hamilton
operators in four-dimensional Euclidean space E*. Subsequently, the Hamilton
motion by means of Hamilton operator in semi-Euclidean space Ej is expressed
by Kula & Yayli, (2005) and is shown that this motion is a homothetic motion.
Recently, the homothetic motions in different spaces are investigated e.g. Tosun
et al. (2006) and Jafari & Yayl (2010).

In this paper, with the aid of the Hamilton operators, we define a Hamilton
motion in three-dimensional Euclidean space E* and it is shown that this is a
one-parameter homothetic motion. Furthermore, it is found that the Hamilton
motion defined by regular curve of order r has only one pole point at every
instant ¢. Furthermore, the Darboux vector of the motion is obtained and it is
demonstrated that this vector can be written as multiplication of two
quaternions. Finally, we give some examples for more clarification.

QUATERNIONS AND HAMILTON OPERATORS

In this section, we give a brief summary of the real quaternions and Hamilton
operators. For detailed information about these concepts, we refer the reader to
Agrawal (1987) and Ward (1996).
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A real quaternion ¢is an expression of form
qzao+a1f+a2f+a3l€

where a,, a;, a> and a3 are real numbers and i, j, k are quaternionic units which
satisfy the equalities

and

A quatermon q. is a sum of a scalar part S, =a,, and a vector part
V = ai+ ary + ask. If Sy =0, then ¢ is called pure quaternion. The set of all
the pure quaternions is denoted by K. The quaternion product of two
quaternions ¢ and p is defined as

o

qRp =5, — <Vq,l7,,>+SqI7,,+SPI7q+ Vy A

where ”(,)"” and ” A" are the inner and vector products in R?, respectively. The
conjugate of the quaternion g =S, + 17,, is denoted by ¢*, and defined as
g =S8,— I7q. The norm of a quaternion ¢ = (a.,a;,as,a3)is defined by
qq" =q"q=al+a}+d}+ a3 and is denoted by N, and say that ¢, = g /N, is
unit quaternion where N, # 0. Unit quaternions provide a convenient
mathematical notation for representing orientations and rotations of objects in
three dimensions. The set of all quaternions, H, is an associative and non
commutative algebra that form a 4-dimensional real space which contains the
real axis R and a 3-dimensional real linear space R?, so that, H=R & R*.

+ —
Theorem 1. Let gbe a real quaternion, then s,:H — H and 4: H— H are
defined as follows:

+
hx)=q®x, h(x)=x®q xcH
q q

. + = .
The Hamilton’s operators H and H, could be represented as the matrices;
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a, —da —dy —daz
* a  a —ay @
Hig) = | " (1)
2 as do aj
as  —dy da Ao
and
a, —da —dy —daz
T N S as —a
H(g) = |0 2)
2 as  do ap
as  dap —day  d,

Theorem 2. If g and p are two real quaternions, A is a real number and ;I and H
are operators as defined in the equations (1) and (2), respectively, then the
following identities hold:

i + + - -

i g=peHlg)=Hp) < Hg) = Hp).

.+ + + - - -

ii. H(g+p)=Hq)+Hp), H(q+p)=H(q) +Hp).

Lok + - -

ii. H(Aq)=XH(q), H(Aq)=XH(q).

iv. H(ap) = H(g) H(p), H(ap) = H(p) H(g).

v.ﬁmwzﬁwr,ﬁmwzﬁwy,wﬁ¢o

i g = [ing] . =[]

vii, det F](q)] = (N, det[H(g)| = (N,)"

Proof: The proof can be found in Agrawal (1987) and GroB et al. (2001).

The Euclidean motions in E’are represented by 3 x 3orthogonal
matrices A = [a;] , where A'A = AA' = I;. The Lie algebra SO(3) of the group
GL(3)of 3 x 3 positive orthogonal matrices A is the algebra of skew-symmetric
matrices

' 0 9 -9
Q=Add'=|-0. 0 Q
0, -9, 0

where A indicates the differentiation of 4 with respect to the real parameter 7.
is called the instantaneous rotation vector (Darboux vector) of the motion.
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HOMOTHETIC MOTIONS AT E?

The 1-parameter homothetic motions of a body in three-dimensional space E>
are generated by transformation

Y| |hd C||X

1| (0 1|1}
where A is a 3 x 3 orthogonal matrix and /is homothetic scalar. The matrix
B = hA is called a homothetic matrix and Y, X and C are 3 x 1 real matrices.

The homothetic scalar zand the elements of 4 and C are continuously
differentiable functions of a real parameter .

Y and X correspond to the position vectors of the same point with respect to
the rectangular coordinate systems of the moving space R, and the fixed space
R, respectively. At the initial time ¢ = ¢,, we consider the coordinate systems of
R, and R are coincident.

To avoid the case of affine transformation we assume that
h(t) #cons.

and to avoid the case of a pure translation or a pure rotation, we also assume
that

d

(hd) £0, 5(C) £0.

d
dt
Theorem 3. The homothetic motions of Euclidean space E*are regular motions.

For detailed information about the homothetic motions, we refer the reader to
Hacisalihoglu (1971).

HAMILTON MOTIONS IN EUCLIDEAN 3-SAPCE
Let us consider the curve a:/ € R — E* defined by

O‘(Z) = (aO(l>7 a1<t)v a2([)a a3<t) )a (3>

for every 1 € I. We suppose that «(z) is a differentiable curve of order r which
does not pass through the origin.

Also, the map F, acting on a pure quaternion w:

F,:K—K, F,w=awaaod 4)
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where a* is conjugate of the a. We put F,(w) =«'. Using the definition of
+ —
Hand H the equation (4)is written as

W= ﬁ(a) H(o")w.

From (1) and (2), we obtain

@ +a+ a3+ a 0 0 0
= 0 a —I—a1 —az—a3 2a1ay — a.a3) 2a0ay + aya3)
(o) Ha") = e

0 2(a1ay + a.a3) a; —aj + a, - a3 2may — a.ay)
0 Amas — aow) a0 +aay) P -d-d3+d

where /' = @ + @@ + a3 + a3 and

a + a% = a% — a% 2(a1ay — asaz) 2(acay + aras)
B = [bj], ;= | 2(a1a2 + a.a3) @2 —-a+d—a 2mas — a.a)
2(araz — a.az) 2(a0ar + aras) E-a-d+ad

For the matrix B, we have BBT = I/’I; and det B = i'3.

The 1—parameter Hamilton motions of a body in Euclidean 3—space are
generated by transformation
X B C||X,
=10 T ®

where B is the above matrix. X, X, and C are 3 x 1 real matrices. B and C are
continuously differentiable functions of a real parameter #; X and X,
correspond to the position vectors of the same point P.

Theorem 4. The Hamilton motion determined by the equation (5)is a
homothetic motion in E°.

Proof: The matrix B can be represented as
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[bi bia bis]

K hh
Bon |b2r P22 by
h h h
bsi b3a b33
L h h  h A

where h: I C R — R,
t— h(t) = a(t) + ai(t) + a5 (¢) + a3(0).

So, we find 4 € SO (3) and/ € R. Thus B is a homothetic matrix and the
equation (5) determines a homothetic motion.

POLE POINTS AND POLE CURVES OF THE MOTION

To find the pole points, we have to solve the equation

BX+C=0. (6)

Any solution of the equation (6)is a pole point of the motion at that instant
in R,. Since B is regular, the equation (6)has only one solution,
ie, X, = (—B)_IC = ( at every instant 7. This pole point in the fixed system is

X=B(-B)'C+cC
Theorem 5. During the homothetic motion of Euclidean space of 3-dimensions,
there is a unique instantaneous pole point at every time ¢.

Theorem 6. During the homothetic motion the pole curves slide and roll upon
each others and the number of the sliding-rolling of the motion is /.

Example 1. Let a:/ C R — E*be a curve given by
t— a(t)=(cos t, t,sint, —1),

for every ¢ € Laf(t) is a differentiable regular of order r. Since, a(¢) does not pass
though the origin, the matrix Bcan be represented as

cos’t —sin®t+ 1> —1 2(tsint+cost) 2(costsint — 1)
B = |2(tsint — cost) —r —2(tcost+sint)

—2(costsint + ¢) 2(tcost+sint) cos’t—sin’t— 1 + 1

= 2+ 74,
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where h(t) = (2+ %), A € SO (3). Thus, B is a homothetic matrix and it
determines a homothetic motion in E°.

DARBOUX VECTOR OF THE MOTION

Suppose that «(z) is a unit speed curve as defined in (3).In the homothetic
motion defined by homothetic matrix B, Darboux matrix is 2 = 4 A~!. So, we
obtained

0 Aoty — Qo3 + d1ay — a1y a1a3 — ayds — dotty + Gol
Q= | —(doa3 — asls + d1ay — a1 ) 0 @ay — aadz + doa; + a.d;
—(d1a3 — a3 — dotty + aolty)  — (a3 — ar3 + dotty + dody) 0

The Darboux vector corresponds to skew-symmetric matrix €2 is defined by
Q= (Q,,9Q,9.)
Therefore, the Darboux vector of the motion
Q= 2(—taz + aray — doay + aody, d1az — a1dz — Aoty + Asty, 4103 — 143 — Aoty + o),
is obtained. This vector can be written as multiplication of two quaternions as
Q=2(6®a).
Example 2. Let o : / € R — E* be a unit speed curve given by

t—a(f) = 12(V2cost, 1, V2sint,—1), for every 1 € I.

Since, «() does not pass though the origin, the matrix B can be represented as

[1 1
E(cosztfsin2 1) —z(sinl+cosl) Coslsintfz
B 1 (sint t) 0 1 (cost+sint)
= | —=(sinz — cos ———=(cost + sin
V2 V2
1 1
_—costsinz—z E(cost—sint) E(coszt—sinzt) |

B is a homothetic matrix and is defined a homothetic motion. The Darboux
vector of this motion is
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Q = (1V2(sin 1 + cos 1), 1, —1V/2(sin 1 + cos 1)).
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