Kuwait J. Sci. 41 (1) pp. 21-34, 2014

On the developable ruled surfaces Kinematically generated in
Minkowski 3-Space

HACI BAYRAM KARADAG" , EROL KILIC" AND MUGEKAR ADAG"

*Department of Mathematics, Faculty of Science and Arts, Inonii University, 44280
Malatya, Turkey, bayram.karadag@inonu.edu.tr

ABSTRACT

In this paper, we present a method to be developable of a ruled surface, generated in
Minkowski 3-space R3, corresponding to the dual Lorentzian curves according to E.
Study’s transference principle and some theorems and examples.
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INTRODUCTION

Rather unexpectedly, dual numbers have been applied to study the motion of a
line in space; in Euclidean space R?, they even seem to be the most appropriate
apparatus for this purpose.

It was first done by Study (1891), and since his time, dual numbers had an
established place in kinematics as a tool to solve problems dealing with lines in
space. The application of dual numbers to the lines of the Euclidean 3-space is
carried out by the principle of transference which has been formulated by E.
Study. It allows a complete generalization of the mathematical expression for
the spherical point geometry to the spatial line geometry, by means of dual
number extension, i.e., replacing all ordinary quantities by the corresponding
dual number quantities (Veldkamp, 1976).

Expressing the differential geometry of ruled surfaces in terms of dual vector
calculus has rederived the curvature theory of a line trajectory and exposed the
fundamental curvature functions that characterize the shape of ruled surface.
The curvature theory of line trajectories has also been studied by
(Hacsalihoglu, 1972; Miiller, 1980; Chen & Pottmann, 1999; Kose, 1999;
Karadag & Keles, 2005). Using the geometry of curves and developable ruled
surfaces, some spatial design problems were investigated by (Schaaf & Ravani,
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1998). On the other hand, the ruled surfaces in a three-dimensional Minkowski
space were studied by (Turgut & Hacisalihoglu, 1998; Kim & Yoon, 2004).

In this paper, we study the ruled surfaces generated by the dual Lorentzian
vectors in the Lorentzian dual unit sphere S? and the hyperbolic dual unit
sphere H3. This paper is organized as follows: In section 2, we give some basic
concepts related to the dual Lorentzian space D?. In section 3 (and respectively
in section 4), we obtain a method to be developable of a ruled surface generated
by the dual Lorentzian vectors in S? (and respectively in H3) and we give some
examples.

PRELIMINARIES

The set D= {A=a+ca*:a,a* € R ,£?= 0} of dual numbers is a commutative ring
with respect to the operations

AEBB (a+b)+e(a"+b"),

ii) A® B=ab+e(ab*+a*b).

(D3, < , >)iscalled a dual Lorentzian space (or D—modul) and denoted by
D3, where

D3={X:X=x+ex*; x,x* € R%},
<X, V> =< x,y>+e( < x5, y>+ < x,)">),
<X, Y> = —X1)1+Xo)2+X3)3, (1)
for any X, ¥ € D} and x,y € R}.
Also, the Lorentzian vector product of dual vectors X, Y € D7 is defined by
XA Y=x Ay+e(x Ay +x* Ay),
where
X A y= (—=Xoy3+X3y2, X3¥1—X1)3, X1 Y2 —X2)1)- (2)

On the other hand, Taylor series expression of an analytic dual variable
function is given by

SX) =flxtex”) =flx)+exf (x) (3)
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where /' is derivative of the analitic dual variable function f.

It is clear that any dual vector X in D? consists of any two real vectors x and
x* in R}, which are expressed in the natural orthonormal frame in the 3-
dimensional Lorentzian Euclidean space R?. A dual vector X € D? is said to be
spacelike, timelike or lightlike (null) if the vector x € R} is spacelike, timelike

or lightlike (null), respectively. If x # 0, then the norm of the dual vector X € D}

is defined by || X || =+/| < X, X>|.

On the other hand,
$2={X=x+ex" | X| =(1,0); x,x*€R? x—spacelike}
is called the Lorentzian dual unit sphere in D} and
H} = {X =x+ex": | X| =(1,0); x,x*" € R x—timelike}

is called the hyperbolic dual unit sphere in D?, (O’Neill, 1983). Oriented
spacelike and timelike lines in R? may be represented by spacelike and timelike
unit vectors with three-components in the dual Lorentzian space D3,
respectively. While a differentiable curve on the Lorentzian dual unit sphere S?
corresponds to any ruled surface in R}, a differentiable curve on the hyperbolic
dual unit sphere H3 corresponds to a timelike ruled surface R?.

A differentiable Lorentzian curve X on a dual unit sphere, depending on real
parameter 7, represents a differentiable family of straight line in R} which we call
a ruled surface. This ruled surface ®(z,u) =a(z)+ux(zr) is written as the
Lorentzian dual vector function X(7) given by

X(1) =x(t)+ea(t) A x(t) =x(1)+ex™ (). (4)

Since the spherical indicatrix of X(7) is a dual unit Lorentzian vector X(7), it
has unit magnitude, i.e., <X, X> =< x, x> +2e<x,a A x> +e’<a Ax,a A x>
=< X, x>=¢, e=F1.

Thus, the ruled surface can be represented by the Lorentzian dual curve on the
surface of a Lorentzian dual unit sphere S? (or a hyperbolic dual unit sphere H3).

The dual arc-length of the Lorentzian dual curve X(r) is defined as

ot dX
= [ 15 (5)

From the integrant of equation (5), the dual speed of X(7) is

~

6=6(14€A), (6)
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s
dt’ dt
| dxdt||®
known distribution parameter (or drall) of the ruled surface. The relationship

d. . .
where 6= || 7); || and A= . The curvature function A is the well-
between the Gaussian curvature K and the distribution parameter (or drall) A of
the ruled surface is given by the following formula:

A2

Kzgm, e=+F 1. (7)

If the ruled surface is a timelike surface, then the Gauss curvature is positive
(Kose, 1999). If K is zero everywhere, that is, A is zero everywhere, then the
ruled surface is said to be developable.

ON THE DEVELOPABLE RULED SURFACE, IN R}, WHICH IS
CORRESPONDING TO A SPACELIKE DUAL UNIT VECTOR ON Sf

In this section, we give a method of determining to be developable of the ruled
surface generated by a spacelike curve in S7 .

The dual coordinates )?izxi+6xf, (i=1,2,3), of an arbitrary point X of a
Lorentzian dual unit sphere S? may be expressed as

(X1, X, X3) = (sinhC:)sin(f), coshOsind®, cos(/I\D) (8)
where (:):@(t) =0(1)+e0" (1), @z@(l) =p(t)+ep*(t) are dual angles with
—n<p<m and 0 # 6 € R. Since e?=e3= ... = 0, according to the Taylor series
expansion from equation (8), we obtain

x1= sinhfsiny, X]=¢"sinhfcosp+6" coshfsing,
Xxo= coshfsing, X5=p"coshfcosp+60"sinhfsiny,
X3= COSQ, X3= —"sing.

Thus, the Lorentzian dual vector X(7) can be written as

A~

X(t) =x(t)+ex*(t) = (sinhfsing, coshfsing, cosp) 9)
+e(p"sinhfcosp+0* coshbsing, ¢*coshfcosp+0*sinhfsing, —p*sing).

Now, let us consider the dual curve Xi (1) given by equation (9) on the dual
unit sphere corresponding to the ruled surface
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U(t,u) =a(t)+ux(t), (10)

where «(7),x(1) € R} and u €R. On the other hand, It is well known that
(Hacsalihoglu, 1972),

X" (1) =a(t) A x(1). (11)
From equations (2) and (11), we have
x*= (azcoshfsingp—aycosp, agsinhfsing—a; cosp, ag coshfsing—agsinhfsing).  (12)
Thus, from equations (9) and (12), we get
azcoshfsing —ascosp=(*sinhfcosp+0* coshfsing,

agsinhfsingp—ay cosp=p*coshfcosp+0*sinhfsingp, (13)

a1coshfsinp—aysinhfsinp= —p*sing.

The matrix of coefficients of unknowns o, a9 and ag is

0 —COosp coshfsiny
A= —Cosp 0 sinhfsing
coshfsing —sinhfsing 0
. 2k+1 .
and since detA= 0, rankA<3. For ¢ # %Jk € 7, det A1 # 0 and its rank
is 2, where ’
| 0 —CoSyp
71 —cosp 0 |
Let
0 —Ccosp p*sinhfcosp+6" coshfsing
As=| —cosp 0 p*coshfcosp+0*sinhfsing
coshfsing —sinhfsing —p*sing

The rank of the augmented matrix A is 2. Hence, this system of linear
equations has infinite solutions given by

a1 (1) = (a3(t)—0"(2))sinhd(r)tang (1) —e* (t)cosho(1),
as(t) = (az(t)—6"(1))coshd(t)tanp(1)—* (¢)sinh6 (1), (14)

Oég(l) 2013(1).
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Since a3() can be chosen arbitrarily, then we may take a3(z) =6"(¢). In this
case, equation (14) reduces to

(on(1),02(1),a3(7)) = (—¢"(t)coshd(t), —p" (1)sinh(t),a3(1)). (15)
From equation (15), we have

al(t)

cothf(r) = oall)

PO =F/ld()—a3()],  0°(1) =as(r).  (16)

Using equations (6) and (9), the distribution parameter (drall) of the ruled
surface given by equation (10) is obtained as follows

dgdo” . , o do s . dp do*
A= dt dt sty (dt) SRS e . (17)
(Dyginz (222
dt dt

If this ruled surface is developable , then A= 0 . Thus, equation (17) is
reduced to

dodor do dodp*

i di sinp+¢*( df)gsinapcosw— T d (18)

From equation (18), we get

(@ B
%(—cot@)—&—@ dg’f (—cotyp)— dcticpczt =0. (19)
dt dt
Setting
(@ o
§0) = ot P =gl o =drdr )
dt dt
we are lead to a linear differential equation of the first degree

Y Py =00 e1)

In the case that ¢(z) and 6(z) are both constant, equation (21) is identically
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zero. In other words, the ruled surface X(¢) is a Lorentzian cylinder. Now, we
try to answer an important question, that is, when we are given a Lorentzian
curve a=«(?), can we find a developable ruled surface such that its base curve is
the curve a=a(#)? The answer is positive; in fact, from equation (15) we have

0(1) =coth (211

Now only ¢(¢) remains to be determined. From equation (21), if Q(¢) =0,

do * . .
then i 0 or 7 0, that is, 6=constant or §*=constant. Thus, equation (21)
becomes
dy
—+P(t)y(t) =0.
P ()

The solution of this equation is
y:kexp[/ P(1)]dt.

Let Q(¢) # 0, then the generalized solution of equation (21), when k=v(r), is
given by

y—exp[—/P(t)dt][/exp[/P(t)dt]Q(t)dH—c], (22)

where ¢ is an arbitrary constant. Furthermore, it can be shown that, this one-
parameter family of solutions of the linear differential equation (21) includes all
solutions of equation (22).

Thus, from equation (20), the solutions of the linear differential equation (21)
give —cotep(#). This solution includes an integral; therefore we have infinitely
many developable ruled surfaces such that each having a base curve, «(7).

On the other hand, it is to be noted that ¢*(7), given by equation (16), has two
values; when we use the minus sign, we obtain the reciprocal of the ruled surface
X(7) obtained by using the plus sign for a given integral constant. Thus, we have
the following theorem:

Theorem 1 Let o be a differentiable curve in S3. Then, there exists the family of
developable ruled surface in R3 which is corresponding to o in St such that
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OéQ(l)
©* (1)

al(t)

©* (1)

U(t,u) = (o (1),00(t),a3(t))+u(— sinp(t), — sinp(1), cosp(1)). (23)

ON THE DEVELOPABLE RULED SURFACE, IN R}, WHICH IS
CORRESPONDING TO TIMELIKE DUAL UNIT VECTOR ON H(Z)

In this section, we give a method of determining to be developable of the ruled
surface generated by a timelike curve in H3 .

Let X(r) =x(¢)+ex*() be a unit dual timelike vector. Then, we may chose
X(1) = (coshO(¢), sinh® (¢)sin® (1), sinh© (¢)cos® (1)), (24)

where ©=0(1) =0(1)+¢6" (1), d=d(¢) =¢(1)+ep*(1). According to the Taylor
series expansion, from equations (3) and (24), we obtain

x(f) = (cosh#, sinhfsing, sinhfcosyp), (25)

X" (1) = (6"sinhd, ¢*sinhfcosp-+6* coshfsing, —¢*sinhfsing+60 coshfcosp).

Let a=a(t) = (a1(f),as(2),a3(¢)) be a regular Lorentzian curve. From
equations (2), (11) and(25), we have the following linear system of equations:

—agsinhfcosp+azcoshd = p*sinhfcosp+60*coshfsing,
—apsinhfcosp+azsinhfsingp=0*sinhé, (26)

—aysinhfsingp—ascoshf= —p*sinhfsing+0*coshfcosp.

The matrix of coefficients of unknowns «(7),as(f) and as() is

0 —sinhfcosy sinhfsing
B=| —sinhfcosy 0 coshé
sinhfsing —coshf 0
(2k+1)m

and since detB= 0, rankB<3. For § # 0 and ¢ #
and its rank is 2, where

5o k€ Z detB #0

B 0 —sinhfcosyp
' | —sinhfcosp 0 ’

Also the rank of the augmented matrix
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0 —sinhfcosp  6*sinhf
By=| —sinhfcosp 0 p*sinhfcosp+0* coshfsing
sinhfsing —coshf —p*sinhfsing+60*coshfcosy

is 2. Hence, this system of linear equation has infinite solutions given by

al(l) :Oél(l),

as (1) = (aq(2)+¢*(1))tanhd(7)sing(1)+60" (1) cosyp(1), (27)
az(t) = (a1 (2)+¢*(7))tanhf(r)cosp(1)+0"(1)sing(z).
Since «(f) can be chosen arbitrarily, we may take «a;(¢f) = —¢*(¢). In this

case, equation (27) reduces to
(a1 (1) 002(1),03(2)) = (=" (2),67 (1) cosep(1),07 (1)sing(1)). (28)
From equation (28), we have

cote() =220 670 =% RO, ¢ =D (@)

The distribution parameter (drall) of the ruled surface given by equation (24),
from equation (6), is

do do”
A= dt dt

dt dt
70 ) (30)

( de )*sinh?04(=-)?

d. de do*
+6*( ?f )%sinhfcoshf+ AP inh2g
t dt

d

If this ruled surface is a developable one, then equation (30) becomes

dodo . dp
aar TGy

dyp dp*
)QSinhQCOSh9+£%Sinh29: 0. (31)

Then, from equation (31), we have

= (cotht) - dg,{ (cothf)— d’dgff = 0. (32)
dt dt

Setting
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o do 5 dp do*

(2 & dr

y(1) = cothd(t), P(t) = —— o) = o (33)
dt

we are lead to a linear differential equation of first degree

Y Py =00 (34)

The solution of this linear differential equation gives cothf. This solution
includes an integral, therefore we have infinitely many developable ruled
surfaces such that its base curve is a(z).

On the other hand, it is to be noted that 6*(¢), given by equation (29), has two
values; when we use the minus sign, we obtain the reciprocal of the ruled surface

X(t) obtained by using the plus sign for a given integral constant.

Theorem 2 Let o be a differentiable curve in H3. Then there exists the family of
developable ruled surface in R3 which is corresponding to o in H3 such that

U(t,u) = (o, az, ag)tu(coshd, %sinh& %sinh@). (35)
Now, we can give the following examples for each type.

Example 3 We consider a differentiable Lorentzian curve o = a(t) = (t,t,1). We
note that this curve is a lightlike curve.Thus, weget

dyp 1 dp* do* t 1 1
dt 2417 dt Toodr ey () H(2+1)’ o(1) (V1)

Hence, the linear differential equation is written as
dy 1 1
(1) =
dr t(1?+1) t(V1241)

ct—1
The general solution of this linear differential equation is y= )
£ a YA
Since y= —cothé(), we obtain
2+1 —1
sinhf(7) = F —+, coshf(t) = F - a=
(c2—1)2—2ct (c2—1)2—2ct
1 t
sing(t) =

, cosp(t) =
241 o) V241



On the developable ruled surfaces Kinematically generated in Minkowski 3-Space 31

If we choose plus sign, then the family of developable ruled surface is given by

u
U(tu) = (1,1, 1)+ ——o(ct—1,1,¢
(t,u) = (1,1,1) (62_1)12_261( )

The graph of the developable ruled surface given by this equation for ¢= 2 in
domain D={2 <t <4and5 < u < 6} is given in Figure 1.

Fig.1. Developable ruled surface corresponding to a unit Lorentzian vector on S2, in R?.

P42 7
Example 4. Consider a regular Lorentzian curve o = a(t) = ( i =, 1). We
L . 2 2
note that a is a timelike curve. Then, we obtain
do t dp* t do* t 1
_:2—7 = ) —:1,P(l):2—, Q(Z):
dt  *+1 dt 211 dt ?+1 211
Hence, the linear differential equation is written as
dy t 1
- t —
&t T
The general solution of this linear differential equation is y= e
: e
Since y= —coty(z), we obtain
V2 &
Sll’l@([) =F te s COSQD(Z‘) =4 te 5
V22 42¢t+c?+c V22 42ct+c2+c
2 242

sinhf(z7) = F coshf(1) =

a1 :Fi
2V2+1 2vir+1
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If we choose plus sign, then the family of developable ruled surface is given by
, —(t4c))

32

N 2Vt (P+2)VE+c
V22 12ct+c e 2VE2+1 2V

u

242 7 ,
727

( )

U (¢
() = (5
The graph of the developable ruled surface given by this equation for ¢= 2 in

domain D={—-2 <t <2and —3 < u < 3} is given in Figure 2.
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Fig.2.Developable ruled surface corresponding to a unit Lorentzian vector on Hz, in R}.
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