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ABSTRACT

In this paper the Block Maxima (BM) and the Peak Over Threshold (POT) methods are
used to model the air pollution in two cities in Egypt. A simulation technique is
suggested to choose a suitable threshold value. The validity of full bootstrapping
technique for improving the estimation parameters in extreme value models has been
checked by Kolmogorov-Smirnov (K-S) test. A new efficiency approach for modeling
extreme values is suggested. This approach can convert any ordered data to enlarged
block data by using sub-sample bootstrap. By using power normaliziation, for the first
time in litrarure, the BM and sub-sample bootstrap methods are applied to model the air
pollution. Although, this study is applied on three pollutants in two cities in Egypt, the
suggested approaches may be applied on other pollutants in other regions in any
country.
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INTRODUCTION

The traditional method of analyzing extreme values is based on the extreme
value limiting distributions, which were derived by Gnedenko (1943) (Reiss &
Thomas (2003). These limits are known as Extreme Value Distributions (EVD)
and they arise as limiting for distribution of maximum sample of independent
and identically distributed (iid) random variables (rv’s). EVD are often used to
model natural phenomena such as sea levels, river heights, rainfall and air
pollution. Two main methods for modeling, the BM and the POT methods have
been developed (Coles, 2001).

In the BM method, it is supposed to have observed maxima values of some
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quantities over a number of blocks. A typical example of the block is a year or a
day and the observed quantities may be some environmental quantities such as
the wind speed or air pollutant at a specific location. In this method, the block
maxima is modeled by EVD. The choice of EVD is motivated by the facts: (i)
The EVD are the only ones which can appear as the limit of linearly normalized
maxima. (ii)) They are the only ones which are max-stable, i.e., any change of the
number of blocks only leads to a change of location and scale parameters in the
distribution.

In the POT method it is supposed to have all observed values, which are
larger than some suitable threshold. These values are then assumed to follow the
Generalized Pareto Family of Distributions (GPD). The choice of GPD is
motivated by two characterizations: (i) The distribution of scale normalized
exceedance over threshold asymptotically converges to a limit belonging to
GPD, if and only if the distribution of BM converges (as the blocks number
tends to infinity) to one of EVD. (ii) The distributions belonging to the GPD are
the only stable ones, i.e., the conditional distribution of an exceedance is scale
transformation of the original distribution.

A number of studies have shown a positive association between air pollution
and human health effects (Goldberg et al., 2001; Kim et al., 2004). We choose in
this study three pollutants: Sulphur Dioxide SO,, Ozone O3 and Particulate
Matter PM10 in 10" of Ramadan and Zagazig cities. The study of the Ozone
pollutant was restricted to 10” of Ramadan city. The first city is one of the
largest industrial cites in Egypt and the second is one of the most populous.
Devices have been installed to monitor these pollutants in different places in
these two cities. The places of these devices have been selected by experts in
environmental measurements. The measurement units of the pollutants is
pgm/m?. The data for these pollutants were recorded every hour during the
twenty-four hours through out the year 2009 for the two cities, except Ozone
was recorded every half hours. The detailed description of these pollutants and
the collected data can be found in (Barakat ez al., 2010b). This study considered
the BM and POT methods, which were used to evaluate the measurement of
O3, SO; and PM10 in two cities in Egypt. Bootstrapping technique for
improving the estimation parameters in extreme value model is used and its
validity is checked by the K-S test. A simulated technique is suggested to choose
a suitable value of threshold in the POT method. Moreover, a new efficiency
method for modeling extreme values is suggested. This method, based on the
work of Athreya & Fukuchi (1997), can convert any ordered data to enlarged
block data by using sub-sample bootstraps. This method enables the engineers
to analyse the rare events to construct dams for rivers, breakwater for sea
defence and to design nuclear power plants against earthquakes, where the
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number of available maxima about the relevant phenomena of these activities
are often limited.

MATHEMATICAL MODELS

Let Xi,X5,---,X, be iid rv’s with common distribution function (df)
F(x) = P(X < x). Suppose that M, = max{X}, X2,...,X,}. The cornerstone of
extreme value theory is the Extremal Type Theorem (Reiss & Thomas, 2003),
which states that: If there exist sequences of constants a, > 0 and b,, such that
P(M, < a,x+ b,) = F'(a,x + b,) weakly converges to a nondegenerate df G(x),
then G should be of the same type of the Generalized Extreme Value
Distribution (GEVD)

1

Gy (x; 1, 0) = exp[=[1 +y(x — po)] 7], (1)

which is a unified model for the EVD. Apart from a change of origin (the
location parameter ;) and a change in the unit on the x—axis (the scale
parameter o > 0) the GEVD yields the three EVD, according as v >0, ~v<0
and v = 0(y — 0), which are known as Frechet, Weibull and Gumbel families of
df’s, respectively. In this case, any suitable standard statistical methodology
from parametric estimation theory can be utilized in order to derive estimate of
the parameters u, o and . In this paper, we use the maximum likelihood method
(ML) and improve the obtained estimates by the bootstrap technique. The
bootstrap is a data-driven method that has a very wide range of applications in
statistics. This technique is initiated by Efron (1979). The classical bootstrap
approach uses Monte Carlo simulation to generate an empirical estimate for the
sampling distribution of a given statistic by randomly drawing a large number
of samples of the same size from the data. Therefore, the bootstrap is a way of
finding the sampling distribution from just one sample. Here is the procedure:

Step 1: Re-sampling. A sampling distribution is based on many random samples
from the population. In place of many samples from the population, create
many re-samples by repeated sampling with replacement from this one random
sample. Each re-sample is of the same size as the original random sample.

Step 2: Bootstrap distribution. The sampling distribution of a statistic collects the
values of the statistics from many samples. The bootstrap distribution of a
statistic collects its values from re-samples.

The BM approach is adopted whenever the data set consists of maxima of
independent samples. In practice, some blocks may contain several among the
largest observations, while other blocks may contain none. Therefore, the
important information may be lost. Moreover, in the case that we have a few
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number of data, block maxima can not be actually implemented. For all these
reasons, the BM method may be seen restrictive and not very realistic. In our
study, we use this method to get the preliminary result, to help simulate data
with the same nature as the real data.

The POT method initiated by Pickand (1975) is an alternative approach to
determine the type of asymptotic distribution for extremes. This approach is
based on the concept of GPD and it is used to model data arising as
independent threshold exceedances. Actually, the POT method is based on the
fact that the conditional df F(x+4u) = P(X < x+u|/X > u) may be
approximated for large u (i.e., the threshold u is close to the rightlendpoint

w(F) =sup{x: F(x) <1}) by the family W,(x;5)=1-(1+~x5) 7, where
o = 0 —yp and it is assumed that the df of BM weakly converges to G, (x; p1, )
(Reiss & Thomas, 2003). In this case, we have W, (x;0) =1+ log G,(x;0,0),
log G,(x;0,0) > —1, and the left truncated GPD yields again a GPD, i.e.,

Wi(x;0%) = W,(x;5), where o =5+ . @)

The GPD family nests the Pareto, uniform and exponential distributions.
Evidently, in the statistical modeling of threshold exceedance data, the whole
data are used, in opposite of the case of the BM method. Possibly, the most
important issue in statistical modeling of threshold exceedances data is the
choice of threshold u. Actually, the threshold should be high enough to justify
the assumptions of the model but low enough to capture a reasonable number
of observations. A threshold choice based on the observed sample is required to
balance these two opposing demands. In this paper we use the simulation
technique to choose a suitable threshold value. Namely, let vy, 09 and o be the
preliminary estimates of the parameters ~,0 and pu, respectively (which are
obtained by the BM method). Now, simulated data with the same size n as the
realistic collected data from the GPD W{ch (x;05), with ¢ = min{xy, x2, ..., X, },
where xi,x,...,x, 18 the realistic data (this choice of ¢ guarantees that the
simulated and realistic data have nearly the same range) and
oy = 00+ Y0(c — o). In view of the POT stability property of GPD, the
simulated data will have the same nature of the realistic collected data.
Moreover, any POT u from the simulated data follows the GPD with the same
shape parameter. Therefore, we choose the value of u,which makes the estimate
of the known shape parameter as best as we can. Finally we take this value of u
as a suitable threshold for our real data.
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Remark 1 (the validity of approximation by iid variables). Although, the
assumption that our variables are iid rv’s is rarely correct in practice, we have
many dependent models such as m—dependence and mixing models where the
asymptotic results remain the same as for iid variables (Galambos, 1987). To be
more specific, let X; be the concentration of a given pollutant in the j th time
interval (in our study, hour or half hour). It is reasonable to assume that the X;
are identically distributed but successive X; values are dependent. However, the
dependence weakens as the time passes. As a first approximation,
m—dependence model is reasonable. More cautious researchers would incline
toward mixing model (Galambos, 1987). In any case, the approximation by iid
variables is reasonable, if asymptotic EVD are of interest.

GENERALIZED EXTREME VALUE DISTRIBUTION UNDER POWER
NORMALIZATION (GEVP)

During the last two decades, E. Pancheva and her collaborators used a wider
class of normalizing mappings than the linear ones, to get a wider class of limit
laws, which can be used in solving approximation problems. Another reason for
using nonlinear normalization concerns the problem of refining the accuracy of
approximation in the limit theorems using relatively non difficult monotone
mappings in certain cases that can achieve a better rate of convergence (Barakat
et al., 2010a). Pancheva (1985) considered the power normalization
Cu(x) = dy|x|"S(x), dy,cy > 0,where S(x)=-1,0,1, if x<0,x=0,x>0,
respectively. Pancheva (1985) determined all the possible limit types of H, for
which

H,(x) = PIM, < Cy(x)] = F'(d,|x|"S(x)) — H(x), asn—oo. (3)

These limit types are usually called the power max stable df’s (P-max stable
df’s). Mohan & Ravi (1992) showed that the P-max stable df’s (six P-types of
df’s) attract more than linear stable df’s. Therefore, using the power
normalization, we get a wider class of limit df’s, which can be used in solving
approximation problems. As in the case of linear normalization, Nasri-Roudsari
(1999) has summarized these types by the following von Mises type
representations

1

Hy(x) = exp[—(1 +7(logax”)) 7],x > 0,1 4+ y(log ax’) > 0, (4)

and

1

Hy, (x) = exp[—(1 = y(log(a(—x)"))) 7],x < 0,1 = y(log(a(=x)") > 0. (5)
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Each of the families (4) and (5) is called generalized extreme value
distribution under power normalization (GEVP). Moreover, both GEVP (4) and
(5) satisfy the P-max stable property, i.e., for every n there exist power normalizing
constants ¢,,d, > 0, for which we have H;fA/(Cn (x)) = Hi,(x), i =1,2. Clearly, the
two parametric models (4) and (5) enable us to apply the BM method under
power normalization. For these models, the parametric approach to modeling
extremes is based on the assumption that the data in hand form an iid sample
from an exact GEVP(v, , 5) df in (4) and (5). Christoph & Falk (1996) showed
that the upper tail behaviour of F, might determine whether F belongs to the
domain of attraction of H.,(x;c, ) or of Hy,(x;a,3). In the first case, the
right end point of F should be positive, while in the second it should be negative.
Therefore, the modeling under power normalization by using the BM method
can only be applied if all data of maximums have the same sign. More
specifically, if all the maximum obsrvations are positive, such as the case of our
study, we have to select the model (4) and if all these observations are negative
we select the model (5). In this paper we apply the mathematical modeling of
extreme under power normalization by using (4). To the best of the authors
knowledge, till now, there is not any published work related to this topic.

All the described models so far can be fitted by the method ML, (Cox &
Hinkley, 1974). Actually, the log likelihood function of the GEVD is given by

I(x; py0,7) = —nlogo—l—Z (14 y(x; )}}r—(l—l—%)log[l-l—v(xi;u)]), (6)

provided 1+ ~(x; — u)/o > 0, for each i, otherwise (6) is undefined. For the
maximization of /(x; i, o,7), for a general model indexed by parameters y, 0,7,
this may be performed using a packaged nonlinear optimization subroutine, of
which several excellent versions are available. Moreover, the log likelihood
functions for GPD and the model (4) are respictively given by

I'(x,6,7) = —nlog & — Z log ( 'yx, (7)
where k is the number of POT, and

I*(x;0,8,9) = —nlog =Y xi— ( Zlog +v(log a + Blog x;))
i

n 1

— Z [1+~v(loga+ ﬂlogx,')]irf. (8)

i=1
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Finally, we should say something about the theoretical status of the
approximations involved. The asymptotic theory of ML for the GEV model is
valid provided v > —0.5 (Smith, 1985). Cases with v < —0.5 correspond to an
extremely short upper tail and hardly ever occurs in environmental applications.
A more serious problem is that even when, v > —0.5, the asymptotic theory may
give rather poor results with small sample sizes.

The K-S test is a nonparametric test for the equality of continuous one-
dimensional df that can be used to compare a sample with a reference df (one-
sample K-S test). The K-S statistic quantifies a distance between the empirical df
of the sample and the reference df. In this study, all computations are achieved
by the Matlab package, where we have four functions [H; P; KSSTAT; CV]:
namely, H is equal to 0 or 1, P is the p—value, KSSTAT is the maximum
difference between the data and fitting curve and CV is a critical value.
Therefore, we accept the null hypothesis Hy; if H = 0; KSSTAT < CV and P >
level of significant. Otherwise, we reject Hy. Although the K-S test is not the
most adequate to test quality of the fit in the tail, but this fact does not bother us
whenever we use it for comparison purposes, since this test provides us a digital
indication (i.e., KSSTAT).

SUB-SAMPLE BOOTSTRAP TECHNIQUE

Although the bootstrap has been widely used in many areas, the method has its
limitation in extremes. It was shown in some cases that a full-sample bootstrap does not
work for extremes, namely, assume X;,j=1,2,...m, m= m(n) — 00, as n — 0o, are
conditionally iid rv’s with P(X} = Xj|X,) = %7_1': 1,2,...,n, where X, = (X1, X2, ..., X3)
is a random sample of size n from the unknown df F. Hence X7, ..., X;, is a re-sample of
size m from the empirical df F,(x) = %ZL | (Xi), where I(x) is the indicator function.
Furthermore, letH,,=PM,<anx+byX,) =F'anwx+b, and
H,, = P(My < Cy(x)|X,) = F;(Cu(x)), where H,,, and H, , are called the bootstrap
distributions of (M,, — by)/ay and (M,,/ dm)l/ m respectively. A full-sample bootstrap is
the case when m = n. In contrast, a sub-sample bootstrap is the case when m < n. If
the df of BM converges to the limit G,; Athreya & Fukuchi (1997) showed that the
bootstrap df H,,, is weakly consistent estimate for G, if m = o(n) and it is strongly

consistent, if m = 0(1—). Otherwise, if m =n, H,,, has a random limit and thus
ogn '

the naive bootstrap fails to approximate H,. In other words the naive bootstrap of
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the maximum order statistics, when m = n, fails to be consistent estimator for the
limit df G,,. For the maximum order statistics under power normalization, this result
is extended by Nigm (2006). More recently, Barakat et al. (2011) extended the same
result to the generalized order statistics. This result suggests an efficiency estimate
for the GEVD by using the BM method, even if the data do not consist of blocks (in
this case the bootstrap replicates of size m, from F,, are treated as blocks). For
applying the suggested technique, we have to choose a suitable value of m (i.e., the
size of bootstrap replicates or the blocks size). Actually, the suitable choice of the
value m is the cornerstone of this technique. This value should be small enough to

. . . n . .
satisfy the stipulation m = 0(1—) and in the same time should be large enough to
ogn
satisfy the stipulation m — oo, as n — oo. To determine a suitable value of m, we

first simulate data with the same size as the realistic data, from the known GEVD

G, (5 o, 00). Then put % in the form a(10)” + ¢, where a,b and ¢ are integers
0g

such that 1 <a<10,0<¢< (10)b71. Thus in view of the above two stipulations,
we can take m ~ i = a(lO)bil. Consequently, to choose such suitable value of 7,
we select a value from an appropriate discrete neighborhood of 7t (see Example 1)
that gives the best estimate 4, for the shape parameter ). The estimate -, is
obtained by withdrawing from the simulated data, a large number of bootstrap
replicates (each of size m) and determine the maximum of each of them. Then, we
used these maxima, as a sample drawn from the df G, to estimate the shape
parameter 7, by using the ML method.

Example 1. Suppose we have n = 20000, then ¢ =2,b =3 and ¢ = 19.490588.
Consequently, 71 = 200. In this case we can select a suitable value of m from the
discrete neighborhood {100, 150,200,250,300} that gives the best estimate 5
comparing the other values in the neighborhood, provided that this value does
not equal 100 or 300. Otherwise, we should enlarge this neighborhood.

DATA TREATMENTS AND SIMULATION STUDY

This section aims to answer the three questions. The first question is: Did the
bootstrap improve the estimation of the parameters of the extreme models? The
second question is: How can we choose a suitable POT number for every
pollutant? The third question is: How can we to choose the sub-sample :?

To answer the first question, we use the observed maximum values over 365
blocks (daily maximum through one year) for each pollutant and estimate the
shape, scale and location parameters of G, in (1) (Table 1). Applying the full-
bootstrap 50000 times for the data (maximum values) and again estimate the
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same parameters for each pollutant. The after bootstrap estimate of each
parameter is the arithmatic mean of the obtained 50000 estimates of this
parameter (Table 2). For fitting the real data, concerning SO,, PM10 and Os,
we use the K-S test and calculate its functions H, P, KSSTAT and CV, with and
without bootstrap (Table 3). In the case of without bootstrap, Table 3 shows
that we have no goodness of fit for SO, and PM10 in Zagazig and 10" of
Ramadan cities, respectively. On the other hand, in the case of with bootstrap,
we have goodness fit for the both pollutants in the two cities. Moreover, the
maximum distances between fitting curve and the data (KSSTAT) in the case of
with bootstrap are less than those distances in the case of without bootstrap
(Figures 1-5). Figures 1-5 compare between the empirical GEVD and
G+, (- po, 09) curves (y-axis), for all pollutants after bootstrap (x-axis). Noting
that, since in engineering desisgn, only the right tail is relevent, in Figures 1-5 we
include only the right tails which are nearly larger than 0.9. Therefore, the
bootstrap works to improve the parameters estimation. To answer the second
question, we generate 2000 random samples, each of them has the same size
n(say) as the realistic data of the pollutant under consideration, from the GPD
Wﬂfg(, op) (as we have shown in Section 2, Table 4a and 4b). It is noted that the
size of the generated samples actually is less than 365 x 24 = 8760, for SO, and
MP10, or 365 x 48 = 17520, for Os, which is due to the inactivation and
maintenance of the monitoring devices in some hours at some days. In view of
the imposed stipulations on the threshold « (and consequently on the number of

POT k) in Section 2, we vary the number of POT k over the values

[Zn—o], [%], . [Z], where [0] is the integer part of #,(Table 4). Actually, we only
n
50!

wrote 7 values of k in Table 4a and 4b, including [ 20 and the best value. Then,

we look for the value of k (or u), which gives the best estimate 9 of the shape
parameter (its true value =, is known), where the estimate 4, here is the mean
value of 2000 estimates, which are calculated as we have shown in Section 2.
When two values of k give the same best mean estimate, we favor between them
by the coefficient of variations (C.V). For example, in the case of SO, in 10” of
Ramadan in Table 4a and 4b, we see that the values k = 2047 and k = 2132 give
the same best estimate §y = 0.0987 (the true value is 7o = 0.1). Since, the second
value corresponds the C.V=1.389, which is less than the C.V=1.4044
concerning the first value, we then choose the second value, i.e., the suitable
number of POT is k* = 2132. In this case, the corresponding threshold u is the

upper quantile of order [A]=][0.7500586n] = 6397 (note that

— 2132
Axn—k'n= %) Now, by using the determined suitable threshold

values, from Tables 4a and 4b, we can apply the POT method on the realistic
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data for each pollutant to determine its extreme value model, (Table 6). Finally,
apply the full bootstrap technique (50000 times) to improve the obtained
estimates, (Table 7). To answer the third question, we generate 2000 random
samples, each of them has the same size n as the realistic data of the pollutant
under consideration, from the GEVD G, (.; i, 09), (Table 5). Determine, for
each pollutant the value m = a(lO)bi1 (see Section 2). We can see that 1 = 90,
for the SO, and PM10, i.c., for the first four rows of Table 5, while 2 = 170, for
the O3, i.e., for the last row of Table 5. Thus, for the first four rows, by checking
the discrete neighborhood {60, 70,80,90,100, 110,120}, we find that the best
value of m (according to the suggested method in Section 2) is the lower value
60. Thus, we consider a new discrete neighborhood, {20, 30, 50, 60}, which yields
the value m = 30. In similar way, for the last row of Table 5, we checked the the
discrete neighborhoods {110, 130,150, 170,190,210}, {60, 70, 80,90, 100,110} and
{20,30,50,60}. The last neighborhood gives the value m = 30. Therefore, for all
pollutants the value 30 is more suitable value of m. Take this value and apply the
sub-sample bootstrap technique on the realistic data to get a more suitable extreme
value models for these pollutants, (Table 8).

Table 1. Zagazig and 10" of Ramadan for GEVD

ML parameters estimation
SO, PM10 03
City 7o Ho 90 70 Ho 90 o Ho %0
Zagazig 0.16  21.9 11.72 0.099 196.78 66.01

10" of 0.106 81.24 3949 022 249.75 67 -0.087 549 9.6
Ramadan

Table 2. Zagazig and 10" of Ramadan for GEVD, after bootstrap

ML parameters estimation

SO, PM10 (0
City 0 Ho a0 0 Ho a0 Y0 Ho a9
Zagazig 0.15 21.6 11.6  0.094 197 67.5

10 of 0.1 81.3 39.4 0.21 249.8 659 -0.1 54.98 9.5
Ramadan
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Table 3. K-S test for the data with and without bootstrap

Data of SO, in Zagazig

H P KSSTAT CV Decision
without bootstrap 1 0.0446  0.0656  0.0644 reject the null hypothesis
with bootstrap 0 0.0709 0.0605 0.0644  accept the null hypothesis
Data of SO, in 10" of Ramadan
H P KSSTAT CV Decision
without bootstrap 0 0.2962  0.0507 0.0706  accept the null hypothesis
with bootstrap 0 0.3065  0.0502  0.0706 accept the null hypothesis
Data of PM10 in Zagazig
H P KSSTAT cv Decision
without bootstrap 0 0.4389 0.0450 0.0706 accept the null hypothesis
with bootstrap 0 0.4614 0.0442 0.0706  accept the null hypothesis
Data of PM10 in 10 of Ramadan
H P KSSTAT CV Decision
without bootstrap 1 0.0305 0.0752 0.0706  reject the null hypothesis
with bootstrap 0 0.0548 0.0697 0.0706  accept the null hypothesis
Data of O3 in 10" of Ramadan
H P KSSTAT cv Decision
without bootstrap 0 0.1845 0.0565 0.0707  accept the null hypothesis
with bootstrap 0 0.2537 0.0528 0.0707 accept the null hypothesis

Table 4a. Simulation study for choosing a suitable number of POT (k).
Note that k* is the best value

SO, in Zagazig: GPD with v = 0.15, o) =848, ¢=0226, n=8633

k 431 1033 1549 1721 1979 2056> 2151
Yo 0.144 0.1504 0.1506 0.1505 0.1504 0.1502 0.1505
(OAY 0.624 0.538 0.738 0.565 0.544 0.4144 0.336
o7 13.45 11.67 10.99 10.8 10.59 10.5 10.45
SO, in 10" of Ramadan: GPD with vy = 0.1, oy=315 ¢=25n=28530

k 432 1027 1549 1707 1962 2047 2132%
Yo 0.0934 0.098 0.0982 0.0985 0.0986 0.0987 0.0987
CV 4.69 2.322 2.708 1.585 1.4156 1.4044 1.389

o 42.7 38.68 37.67 37.02 36.5 36.35 36.21
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Table 4b. Simulation study for choosing a suitable number of POT (k).
Note that k*is the best value

PM10 in Zagazig: GPD with vy = 0.094, o, =492, ¢=2, n=28540

k 460 970 1480 1735 1990 2075 2160
Yo 0.0857 0.0891 0.0901 0.0911 0.0913 0.0914 0.0914
C.V 4.94 3.84 4.12 3.77 3.3 2.95 2.93
o7 65.22 60.66 58.63 57.36 56.6 56.39 56.187

PM10 in 10? of Ramadan: GPD withy, = 0.21, oy =148,¢=36, n=28720

k 440 962 1484 1745 2006 2093 2180
Yo 0.2047 0.2092 0.2092 0.2097 0.2098 0.2096 0.2097
CV 1.33 0.5372 0.4247 0.3832 0.3727 0.3736 0.3239
o7 27.92 23.52 21.48 20.74 20.33 20.14 19.8

O3 : GPD with v = —0.1, 05 =14.25, ¢=7.46, n=17000

k 850 2040 3060 3400 3910 4080 4250
Yo -0.1053  -0.1026 -0.102 -0.1018  -0.1018  -0.1018  -0.1017
C.vV 0.68 0.52 0.36 0.23 0.2003 0.2333 0.2427
G5 10.6 11.56 12.03 12.266 12.32 12.38 12.43

Table 5. Simulation study for choosing m sub-sample bootstrap.
Note that m* is the best value

S$0;, in Zagazig: GEVD with vy = 0.15, 09 = 11.69, 1o = 21.6,n = 8633

m Yo CVv
20 0.147 0.352
30* 0.152 0.374
50 0.1402 0.421
60 0.1355 0.507
SO, in 10" of Ramadan: GEVD with yg = 0.1, 09 = 39.4, g = 81.3, n = 8530
M Yo C.v
20 0.0844 0.742
30* 0.0994 0.517
50 0.0925 0.622
60 0.087 0.76
PM10 in Zagazig: GEVD with v = 0.094, 09 = 67.5, 1o =197, n = 8640
M Yo C.vV
20 0.0854 0.5911
30* 0.0987 0.7977
50 0.0782 1.741

60 0.074 0.941
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Cont. Table 5. Simulation study for choosing m sub-sample bootstrap.
Note that m* is the best value

13

PM10 in 10? of Ramadan: GEVD with v = 0.21, 09 =659, o =249.8, n=8720
M Yo C.V
20 0.2017 0.2987
30" 0.2064 0.2890
50 0.1906 0.3552
60 0.1909 0.3652

O3 : GEVD with~ = —0.1, 090 =95, 1y =54.98, n=17000
M Yo CV
20 -0.1122 0.4165
30* -0.1077 0.4033
50 -0.1168 0.3807
60 -0.1178 0.4212

GEVD fiLting and empirical distribution
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100 4 g
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Fig. 5. O3 in 10" of Ramadan after bootstrap

Table 6. Zagazig and 10" of Ramadan for GPD

ML parameters estimation

SO, PM10 0;
City ~y o ~y o ~y o
Zagazig 0.164 7.16 0.047 57.64
10" of Ramadan  0.046 33.44 0.13 68.27 -0.08 38.8
Table 7. Zagazig and 10" of Ramadan for GPD after bootstrap
ML parameters estimation
SO, PM10 0;
City ~y o ~y o ~y o
Zagazig 0.157 7.13 0.052 57.3
10" of Ramadan  0.062 324 0.14 67.9 -0.087 8.89
Table 8. Zagazig and 10" of Ramadan for GEVD
ML parameters estimation by sub-sample
SO,
City ~y CcV 1 cv o cv
Zagazig 0.176 0.253 26.39 0.0134 7.34 0.0463
10" of Ramadan  0.119 0.258 108.9 0.187 32.02 0.0489
PM10
~y CV I C.Vv o CcC.Vv
Zagazig 0.117 0.3728 264.41 0.0121 55.05 0.043
10" of Ramadan  0.26 0.17 340.67 0.0124 70.587 0.088
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Cont. Table 8. Zagazig and 10" of Ramadan for GEVD

ML parameters estimation by sub-sample
. 03
City ~y cv 1 cv o cv
10" of Ramadan  -0.08 0.739 64.36 0.0056 6.8 0.044

Remark 2. We note that all data of the considered pollutants with the exception
of Ozone lead to positive values of the shape parameter -, which implies a
Frechet domain of attraction, that is, unlimited range. This discrimination is
due to the fact that the three pollutants differ radically in their chemical and
physical properties so we do not expect to obtain the same models for them.
Probably, obtaining negative values of the estimated shape parameter for the
Ozone is due to that the monitored data were fallen in narrow range comparing
with the other pollutants. On the other hand, we can find many works in which
the shape parameter v has negative value for the Ozone, e.g., Example 5.1.2, in
Reiss & Thomas (2003). Even more, the difference in any pollutant’s place can
lead to a sharp change in its estimated shape parameter, where the shape
parameter’s sign may be changed. For example the different values -0.06; +0.06;
0.00; 0.12 and 0.11 were obtained as the estimates for the parameter « for the
Ozone for the years 1983-1987 for different five monitoring stations in San
Francisco, c.f. Example 12.3.2, in Reiss & Thomas (2003).

APPLICATION OF BM AND SUB-SAMPLE BOOTSTRAP METHODS
FOR GEVP TO AIR POLLUTION

We use the same technique of the preceeding subsection for applying the BM
and sub-sample bootstrap methods for GEVP. Table 9 gives the ML parameters
estimation of model (4). Applying the full-bootstrap 50000 times for the data,
we again estimate the same parameters for each pollutant (Table 10). For fitting
the real data, concerning SO,, PM10 we use the K-S test and calculate its
functions H, P, KSSTAT and CV, with and without bootstrap (Table 11). In the
case of without bootstrap, Table 11 shows that, we have no goodness of fit for
PM10 in 10" of Ramadan citiy. On the other hand, in the case of with bootstrap
we have goodness fit for both the pollutants in the two cities. Moreover, the
maximum distances between fitting curve and the data (KSSTAT) in the case of
‘with bootstrap’ are less than those distances in the case of ‘without bootstrap’.
Note that the model (4) fail to fitting O3, in 10" of Ramadan citiy. Finally,
Table 12 presents the estimate parameter by using sub-sample bootstrap as in
Example 1.
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Table 9. Zagazig and 10" of Ramadan for GEDP

\YO)) PM10
Clty y a ﬁ a ﬂ
Zagazig -0.415 4.6%1073 1.759 -0.1448 2.29 % 1077 2.9
10”0f Ramadan  -0.277  2.8%107*  1.864 -0.0253  1.59%107°  3.67
Table 10. Zagazig and 10" of Ramadan for GEVP, after bootstrap
SO, PM10
Clty v a ﬁ a [3
Zagazig -0.418  4.5%1073 1.764 -0.152  2.23%1077  2.906
10 of Ramadan  -0.277 2.8 1074 1.873 -0.0248  1.69 % 107° 3.68

Table 11. Kolmogorov-Smirnov test for the data with and without bootstrap

Data of SO, in Zagazig

H P KSSTAT cv Decision
Without bootstrap 0 0.2861 0.0435 0.0644  accept the null hypothesis
With bootstrap 0 0.2687 0.0425 0.0644 accept the null hypothesis

Data of SO, in 10" of Ramadan

P KSSTAT CV Decision
Without bootstrap 0.1030 0.0553 0.0636  accept the null hypothesis
with bootstrap 0.1130 0.0544 0.0636 accept the null hypothesis

Data of PM10 in Zagazig

H P KSSTAT CV Decision
Without bootstrap 0 0.2211 0.0450  0.0636 accept the null hypothesis
with bootstrap 0.2727 0.0417 0.0636  accept the null hypothesis

Data of PM10 in 10" of Ramadan

H P KSSTAT CvV Decision
Without bootstrap 1 0.0063 0.0828 0.0636  reject the null hypothesis
with bootstrap 0 0.0509  0.0634  0.0636 accept the null hypothesis
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Table 12. Zagazig and 10”of Ramadan for GEVP

ML parameters estimation by sub-sample

S0,
City v cv o cv I&i CcV
Zagazig -0.284 0.0035 1.92%1072 1.2%1073 1.6 8.6 10°*
10" of Ramadan  -0.185 8.9%107* 59107 39x10™% 271 212%107*
PM10
vy C.vV o cC.Vv I} cVv
Zagazig -0.155 0.0021 —146%10° 2.02%107* 3.449 2.57%10°*

10" of Ramadan  -0.029 1.0 1073 14107 1.27%10"* 4339 23%107*
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