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ABSTRACT
In this paper, a numerical solution of the modified regularized long wave (MRLW) equation 
has been obtained by a numerical technique based on a lumped Galerkin method using cubic 
B-spline finite elements. Solitary wave motion, interaction of two and three solitary waves 
have been studied to validate the proposed method. The three invariants ( 321 ,, III ) of the 
motion have been calculated to determine the conservation properties of the scheme. Error 
norms 2L  and ∞L  have been used to measure the differences between the exact and numerical 
solutions. Also, a linear stability analysis of the scheme is proposed.

Keywords: Cubic B-splines; finite element method; Galerkin; MRLW equation; solitary 
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 INTRODUCTION 

The modified regularized long wave (MRLW) equation which will be discussed in this 
article is related to the modified equal width wave (MEW) (Karakoc, 2011) equation 
and the modified Korteweg-de Vries (mKdV) (Gardner et al., 1994) equation and is 
based upon the regularized long wave (RLW) equation. All the modified equations 
are nonlinear wave equations with cubic nonlinearities and all have solitary pulse 
like wave solutions. Due to dynamical balance between the nonlinear and dispersive 
effects, these waves retain a stable waveform. The RLW equation in the following 
form:

       = 0,t x x xxtU U UU Uδ µ+ + −           (1)
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where δ  and µ  are positive parameters belonging to a class of nonlinear evolution 
equations, which can be used to model a large number of  problems arising in various 
areas of applied sciences. The equation, at first was proposed by Peregrine (1966) 
to describe the development of  an undular bore. This equation plays an important 
role in several branches of science, especially in physics, and it is widely used in 
many physical phenomena such as nonlinear transverse waves in shallow water, 
phonon packets used in nonlinear crystals, magneto hydrodynamic waves in plasma 
and unidirectional propagation of the water waves having small amplitude but long 
wavelength. Benjamin et al. (1972) also introduced a mathematical theory of the 
equation. Bona & Pryant (1973) have discussed the existence and uniqueness of the 
equation. Due to nonlinear nature of the RLW equation, few exact solutions exist in 
the literature. So the numerical solution of the equation has been subject of many 
papers. Various numerical studies including finite difference (Eilbeck & McGuire, 
1977; Jain et al., 1993), finite element (Gardner & Gardner, 1990; Esen & Kutluay, 
2005) and pseudo-spectral (Gou & Cao, 1988) method have been used for the solution 
of the equation. One of the special property of the equation is that the solutions may 
exhibit solitons whose magnitudes, shapes and velocities are not changed after the 
collision. MRLW equation is a special case of the generalized regularized long wave 
(GRLW) equation having the form

       =xxtx
p

xt UUUUU µδ −++ 0,          (2)

where p  is a positive integer. Zhang (2005) used a finite difference method to solve 
the GRLW equation for a Cauchy problem. Kaya & Elsayed (2003) also studied the 
GRLW equation with Adomian decomposition method. A quasilinearization method 
based on finite differences was used by Ramos (2007) for solving the GRLW equation. 
Roshan (2012) solved the GRLW equation numerically by the Petrov-Galerkin method 
using a linear hat function as the trial function and a quintic B-spline function as the 
test function. Gardner et al. (1997) developed a collocation solution to the MRLW 
equation using quintic B-splines finite elemets. Khalifa et al. (2007;2008) obtained the 
numerical solutions of the MRLW equation using finite difference method and cubic 
B-spline collocation finite element method. Solutions based on collocation method 
with quadratic B-spline finite elements and the central finite difference method for 
time are investigated by Raslan (2009). Raslan & Hassan (2009) solved the MRLW 
equation by a collocation finite element method using quadratic, cubic, quartic and 
quintic B-splines to obtain the numerical solutions of the single solitary wave. Haq et 
al. (2010) have designed a numerical scheme based on quartic B-spline collocation 
method for the numerical solution of MRLW equation. Ali (2009) has formulated a 
classical radial basis functions (RBFs) collocation method for solving the MRLW 
equation. Karakoc et al. (2013) obtained numerical solutions of the MRLW equation 
by the method based on collocation of quintic B-splines and Petrov- Galerkin finite 
element method in which the element shape functions are cubic and weight functions 
are quadratic B-splines (Karakoc & Geyikli, 2013).



Numerical solutions of the MRLW equation by cubic B-spline Galerkin finite element method143

 In this paper, we applied a lumped Galerkin method based on cubic B-spline finite 
elements to solve the MRLW equation. The numerical solution is constructed to the 
continuous model of the problem. Therefore we assume that the problem has a unique 
and convergent solution, see (Benjamin et al., 1971; Alzubaidi, 2006). The proposed 
method is shown to represent accurately the migration of single solitary wave. Then, 
the interaction of two and three solitary waves are studied. A linear stability analysis 
based on the Fourier method is also investigated.

 THE GOVERNING EQUATION AND CUBIC B-SPLINES 

In this study, we will consider the MRLW equation, a special form of (2) with the 
choice 2=p  and =δ  6,

       =6 2
xxtxxt UUUUU µ−++ 0,              (3)

with the physical boundary conditions 0→U  as ,x → ±∞  where µ  is a positive 
parameter and the subscripts x  and t  denote the differentiation. To implement the 
numerical method, solution domain is restricted over an interval .bxa ≤≤  Boundary 
conditions will be selected from the following homogeneous boundary conditions:

    
( , ) = 0, ( , ) = 0,
( , ) = 0, ( , ) = 0, > 0,x x

U a t U b t
U a t U b t t       (4)

and the initial condition 
.    )(=,0)( bxaxfxU ≤≤

The cubic B-splines )(xmφ  , (m= 11(1) +− N ), at the knots mx  are defined over 

the interval ],[ ba  by 
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The set of functions { }1 0 1( ), ( ), , ( )Nx x xϕ ϕ ϕ− +…  forms a basis for the space of 
B-splines functions defined over ],[ ba . The approximate solution ),( txU N  to the 
exact solution ),( txU  is given by 

        )()(=),(
1

1=
txtxU jj

N

j
N δφ∑

+

−

).         (6)

where )(tjδ  are time dependent parameters to be determined from the boundary, 
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initial and weighted residual conditions. Each cubic B-spline covers 4 elements so 
that each element ],[ 1+mm xx  is covered by 4 splines. In each element, using the 
following local coordinate transformation 

       0    ,= ≤≤− ξξ mxxh 1,             (7)

cubic B-spline shape functions in terms of ξ  over the domain [0,1]  can be defined as 
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All splines apart from 1 1( ), ( ), ( )m m mx x xϕ ϕ ϕ− +  and )(2 xm+φ  are zero over the 
element ],[ 1+mm xx . Variation of the function ),( txU  over element ],[ 1+mm xx  is 
approximated by 

         ,=),(
2

1=
jj

m

mj
N tU φδξ ∑

+

−
          (9)

where 211 ,,, ++− mmmm δδδδ  act as element parameters and B-splines 

211 ,,, ++− mmmm φφφφ  as element shape functions. Using trial function (6) and cubic 
splines (5), the values of ''' UUU ,,  at the knots are determined in terms of the 
element parameters mδ  by 

      
1 1

1 1
2

1 1

= ( , ) = 4 ,
= ( , ) = 3( ),
= ( , ) = 6( 2 )

m m m m m
' '
m m m m

'' ''
m m m m m

U U x t
hU U x t
h U U x t

δ δ δ
δ δ
δ δ δ

− +

− +

− +

+ +
− +

− +
        (10)

where the symbols '  and ''  denotes first and second differentiation with respect to x , 
respectively. The splines )(xmφ  and its two principle derivatives vanish outside the 
interval ],[ 22 +− mm xx .

THE FINITE ELEMENT SOLUTION 

By applying the Galerkin method to the (3) with weight function )(xW , we obtain 
the weak form of  (3) 

      2( 6 ) = 0.
b

t x x xxta
W U U U U U dxµ+ + −∫            (11)

Since we are using Galerkin method and in the method the weight function )(xW  
is taken as exactly the same as approximate functions, and also the approximate 
functions are taken as B-splines, the smoothness of the weight function is guaranteed. 
For a single element ,[ 1+mm xx ]. using transformation (7) into the equation (1) we 
obtain 
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    =61
2

21

0
ξµ

ξξξ dU
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U
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Integrating (12) by parts and using (3) lead to 

   
1 1

00
[ ( ) ) ] = | ,t t tW U U W U d WUξ ξ ξ ξλ β ξ β+ +∫          (13)

where 
h
U 261= +λ  and 

2=
h
µβ . Taking the weight function as cubic B-spline 

shape functions given by equation (8) and substituting approximation (9) in integral 
equation (13) with some manipulation, we obtain the element contributions in the 
form 
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In matrix notation, this equation becomes 

      ( )] ,e e e e e eA B C Dβ δ λ δ+ − +�          (15)

where T
mmmm

e ),,,(= 211 ++− δδδδδ  are the element parameters and the dot denotes 
differentiation with respect to t . The element matrices eee CBA ,,  and eD  are given 
by the following integrals: 
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where the suffices ji,  take only the values 1, , 1, 2m m m m− + +  for the typical 
element ],[ 1+mm xx . A lumped value for λ  is found from 2

1( ) / 4m mU U ++  as 

.)55(
4
3= 2

211 ++− +++ mmmmh
δδδδλ

By assembling all contributions from all elements, (15) leads to the following 
matrix equation; 

       ( )] = 0,e e e e e eA B C Dβ δ λ δ+ − +�          (16)

where T
NN ),...,(= 101 +− δδδδδ  are global element parameters. The matrices BA,  

and Dλ  are septadiagonal and row of each has the following form:
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Replacing the time derivative of the parameter δ�  by usual forward finite difference 
approximation and parameter δ  by the Crank-Nicolson formulation 
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where t∆  is time step. Applying the boundary conditions (4) to the system (17), we 
obtain a ( 1) ( 1)N N+ × +  septadiagonal matrix system. This system is efficiently 
solved with a variant of the Thomas algorithm, but an inner iteration is also needed 
at each time step to cope with the non-linear term. A typical member of the matrix 
system (17) may be written in terms of the nodal parameters nδ  and 1+nδ  as 
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which all depend on nδ . The initial vector of parameters ),,(= 0
1

0
1

0
+− Nδδδ …  must 

be determined to iterate the system (17). To do this, the approximation is rewritten 
over the interval ],[ ba  at time 0=t  as follows: 
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The above conditions lead to a tridiagonal matrix system of the form 
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which can be solved using a variant of the Thomas algorithm.

 A LINEAR STABILITY ANALYSIS 

To investiagte the stability analysis of the presented scheme, it is suitable to use Von 
Neumann theory. The growth factor g  of the error in a typical mode of amplitude nδ̂  

          ijkhnn
j eδδ ˆ=            (19)

where k  is the mode number and h  the element size, is determined from a linearization 
of the numerical scheme. In order to apply the stability analysis, the MRLW equation 
can be linearized by assuming that the quantity U  in the non-linear term xUU 2  is 
locally constant. Substituting the Fourier mode (19) into (18) gives the growth factor 
g  of the form 

            = ,a ibg
a ib

−
+

               (20)

where 
= 2416 3360 (2382 1260 )cos (240 2016 )cos 2 (2 84 )cos3 ,
= 5145 sin 1176 sin 2 21 sin 3 .

a h h h
b t h t h t h

β β θ β θ β θ
λ θ λ θ λ θ
+ + − + − + −
∆ + ∆ + ∆

(21)

According to the Fourier stability analysis, for the given scheme to be stable, the 
condition | g | < 1 must be satisfied. Using a symbolic programming software or using 
simple calculations, since 2222 )(= baba −++  it becomes evident that the modulus 
of || g  is 1. Therefore the linearized scheme is unconditionally stable.

  NUMERICAL EXAMPLES AND RESULTS 

 Numerical results of the MRLW equation are obtained for three problems: the motion 
of single solitary wave, interaction of two and three solitary waves. We use the error 
norm 2L  

( ) ,=
2

1=
22 jN

exact
j

N

J
N

exact UUhUUL −− ∑;

and the error norm ∞L  
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∞∞ NjUUUUL jN
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j

j
N

exact ; 1,

to calculate the difference between analytical and numerical solutions at some 
specified times. Olver (1979) proved that the MRLW equation (3) possesses only 
three conservation constants given by 
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which correspond to conservation of mass, momentum and energy, respectively. In 
the simulation of solitary wave motion, the invariants 1I , 2I  and 3I  are monitored to 
check the conservation of the numerical algorithm.

 THE MOTION OF SINGLE SOLITARY WAVE 

 As a first problem, (3) is considered with the boundary conditions 0→U  as 
x → ±∞  and the initial condition 

( )[ ].sec=,0)( 0xxphcxU −

The analytical solution of the MRLW can be written as 

( )[ ],1)(sec=),( 0xtcxphctxU −+−

where =
( 1)

cp
cµ +

, 0x  and c  are arbitrary constants. The constants of motion, 

for a solitary wave of amplitude c  and width depending on p  may be evaluated 
analytically as in (Gardner et al., 1997) 

   .
3

2
3
4=,

3
22=,=

2

321
pc

p
cIpc

p
cI

p
cI µµπ

−+     (22)

For the first experiment, parameters c = 1, =µ 1, 0.2,=h  40,=0x  0.025=k  
over the interval [ ]0,100  are chosen to coincide with those of earlier studies (Roshan, 
2012; Khalifa et al., 2008; Raslan, 2009; Haq et al., 2010; Ali, 2009; Karakoc et al., 
2013). For these parameters, the solitary wave has amplitude 1.0 . Invariants and 
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error norms 2L  and ∞L  are shown at selected times up to time 10.=t  The obtained 
results are tabulated in Table 1. It can be seen from the Table 1 that the error norms 

2L  and ∞L  are found to be small enough and the computed values of invariants are 
in good agreement with their analytical values 4.4428829,=1I  3.2998316,=2I  

1.4142135.=3I  The percentage of the relative error of the conserved quantities 1I , 
2I  and 3I  are calculated with respect to the conserved quantities at =t 0. Percentage 

of relative changes of 1I , 2I  and 3I  are found to be 37 10−× %,  314 10−× %, 333 10−×  
%, respectively. Thus, the quantities in the invariants remain almost constant during the 
computer run. Table 2 represents a comparison of the values of the invariants and error 
norms obtained by the present method with those obtained by other methods (Roshan, 
2012; Gardner et al., 1997; Khalifa et al., 2008; Ali, 2009; Karakoc et al., 2013; Karakoc 
& Geyikli, 2013). It is clearly observed from the Table 2 that the error norms obtained 
by the present method are smaller than other methods (Roshan, 2012; Gardner et al., 
1997; Khalifa et al., 2008; Ali, 2009; Karakoc et al., 2013). Figure (1) illustrates the 
motion of solitary wave with ,=c 1, 0.2,=h  0.025=k  at different time levels. 

 Table  1. Invariants and error norms for single solitary wave 
with c =1 , h = 0.2, k= 0.025, 0 ≤ x ≤ 100.

 t   1I   2I   3I  
3

2 10L ×
   

310L∞ ×  

0  4.4428661  3.2998133  1.4142140  0.00000000  0.00000000 
1  4.4429040  3.2998800  1.4142752  1.28062601  0.97327496 
2  4.4429408  3.2999387  1.4143308  1.95082039  1.19160336 
3  4.4429739  3.2999876  1.4143790  2.23507757  1.22256684 
4  4.4430058  3.3000340  1.4144250  2.36484347  1.22370847 
5  4.4430372  3.3000794  1.4144703  2.42609024  1.21382766 
6  4.4430683  3.3001243  1.4145151  2.45181423  1.20000405 
7  4.4430993  3.3001689  1.4145597  2.45719699  1.17913235 
8  4.4431302  3.3002134  1.4146042  2.45030808  1.15204959 
9  4.4431611  3.3002578  1.4146486  2.43599823  1.11925204 
10  4.4431919  3.3003022  1.4146930  2.41750291  1.08099621 

  

  

 Fig.  1. Single solitary wave with c = 1 , h = 0.2,  ∆t = 0.025 , 0≤ x 100≤ t= 0, 2, 4, 6, 8 and 10
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In addition, we have chosen the parameters ,=µ 1, 0.3,=c  0.1,=h  0.01=k  
and =0x 40  with range [ ]0,100  to enable comparison with the results of (Roshan, 
2012; Khalifa et al., 2008; Raslan, 2009; Haq et al., 2010; Ali, 2009; Karakoc et al., 
2013). Error norms 2L  and ∞L  and conserved quantities are given in Table 3 up to 
time =t 20, together with the results obtained with those in (Roshan, 2012; Khalifa 
et al. 2008; Raslan, 2009; Haq et al., 2010; Ali, 2009, Karakoc et al., 2013). It is 
seen from the table that the error norm 2L  obtained by the present method is smaller 
than those given in Refs. (Khalifa et al. 2008; Raslan, 2009) and almost the same 
in Ref. (Roshan, 2012; Ali, 2009; Karakoc et al., 2013), whereas error norm ∞L  
is smaller than that given in Ref.(Khalifa et al. 2008; Raslan, 2009), but almost the 
same as those obtained with the other methods. Invariants are also reasonably in good 
agreement with their analytical values given by (22). Percentage of relative changes 
of 1I , 2I  and 3I  are found to be 30.001 10−×  %, 30.023 10−× %, 30.052 10−× %, 
respectively. Moreover, the invariants 1I  and 2I  change from their initial values by 
less than 73 10−×  and  71 10−× respectively, during the time of running; whereas, the 
change of invariant 3I  approach to zero throughout the run. Figure (2) illustrates the 
motion of the solitary wave at different time leves. Error distributions at time =t 10 
and 2=t 20 are depicted graphically for solitary waves amplitudes 1 and 0.3  in Figure 
(3). It is seen that the maximum errors are about the tip of the solitary waves and 
between 36 10−− ×  and 36 10−× , 42 10−− ×  and 42 10−× , respectively. 

 Table  2. Erros and invariants for single solitary wave with c = 1 , h = 0.2, k = 0.025 ,
 0 ≤ x ≤100 at t = 10

 Method  1I   2I   3I  
3

2 10L ×
   

310L∞ ×  

Analytical  4.4428829  3.2998316  1.4142135  0  0 
Present  4.4431919  3.3003022  1.4146930  2.41750  1.08099 
(Roshan, 2012)  4.44288  3.29981  1.41416  3.00533  1.68749 
Cubic B-splines coll-
CN(Gardner et al., 1997) 

 4.442  3.299  1.413  16.39  9.24 

Cubic B-splines coll+P 
A-CN(Gardner et al., 1997) 

 4.440  3.296  1.411  20.3  11.2 

Cubic B-splines coll (Khalifa 
et al., 2008) 

 4.44288  3.29983  1.41420  9.30196  5.43718 

MQ(Ali, 2009)  4.4428829  3.29978  1.414163  3.914  2.019 
TPS(Ali, 2009)  4.4428821  3.29972  1.414104  4.428  2.306 
(Karakoc et al., 2013)  4.4428661  3.2997108  1.4143165  2.58891  1.35164 
(Karakoc & Geyikli, 2013)  4.4431758  3.3003023  1.4146927  2.41552  1.07974 
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 Fig.  2. Signle solitary wave with c = 0.3 , h = 0.1,  ∆t = 0.01 , 0 ≤ x  ≤ 100, t = 0, 5, 10, 15 and 20

Fig.  3. Error with a) c = 0.3 , h = 0.2,  ∆t = 0.0.25 t = 10.0, 0 ≤ x  ≤ 100, b) c = 0.3 , h = 0.1,  
∆t = 0.01, t = 20.0, 0 ≤ x  ≤ 100, 

 Table  3. Invariants and error norms for single solitary wave 
with c =0.3 , h = 0.1, k= 0.01, 0 ≤ x ≤ 100.  

 t   1I   2I   3I    
4

2 10L ×   
410L∞ ×

 3.5820205  1.3450941  0.1537283  0.0000000  0.0000000 
 3.5820206  1.3450941  0.1537284  0.5686216  0.3494378 
 3.5820206  1.3450942  0.1537284  0.8766467  0.4283522 
 3.5820206  1.3450942  0.1537284  1.0188630  0.4488258 
 3.5820207  1.3450943  0.1537284  1.0933152  0.4225906 
 3.5820207  1.3450943  0.1537284  1.1378242  0.4163976 
 3.5820207  1.3450943  0.1537284  1.1671170  0.4254285 
 3.5820207  1.3450943  0.1537284  1.1879104  0.4326199 
 3.5820207  1.3450944  0.1537284  1.2036892  0.4388150 
 3.5820207  1.3450944  0.1537284  1.2164373  0.4435480 
 3.5820206  1.3450944  0.1537284  1.2273638  0.4472294 

(Roshan, 2012)  3.58197  1.34508  0.153723  0.645295  0.301923 
(Khalifa et al., 2008)  3.58197  1.34508  0.153723  6.06885  2.96650 
(Raslan, 2009)  3.582265  1.345182  0.1538901  3.379583  7.672911 
(Haq et al., 2010)  3.581967  1.345076  0.153723  0.5089274  0.2222848 
(Ali, 2009)MQ  3.5819665  1.3450764  0.153723  0.51498  0.22551 
(Ali, 2009)TPS  3.5819663  1.3450759  0.153723  0.51498  0.26605 
(Karakoc et al., 2013)  3.5820204  1.3450974  0.1537250  0.8112594  0.3569076 
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 INTERACTION OF TWO SOLITARY WAVES 

In this problem, we consider the interaction of two solitary waves by using the initial 
condition given by the linear sum of two well seperated solitary waves having various 
amplitudes 
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For the simulation, the parameters =µ 1, 0.2,=h  0.025,=k  4=1c  4, =2c  1, 
25,=1x  =2x 55 are chosen over the range 2500 ≤≤ x  to coincide with those 

used by Ref. (Roshan, 2012; Khalifa et al. 2008; Haq et al., 2010; Ali, 2009; Karakoc 
et al., 2013). The experiment are run from 0=t  to =t 20 and values of the invariant 
quantities 21, II  and 3I  are tabulated in Table 4. Table 4 compares the calculated 
values of the invariants obtained by the present method with those obtained in Ref. 
(Roshan, 2012; Khalifa et al., 2008; Haq et al., 2010; Ali, 2009; Karakoc et al., 2013). 
It is seen that the obtained values of the invariants remain almost constant during the 
computer run. Figure (4) shows the development of the interaction of two solitary 
waves. It is clear from the figure that, at 0=t  the wave with larger amplitude is 
to the left of the second wave with smaller amplitude. Since the taller wave moves 
faster than the shorter one, it catches up and collides with the shorter one at 8=t  and 
then moves away from the shorter one as time increases. At =t 20, the amplitude 
of larger waves is 1.9922913  at the point 127.6=x  whereas the amplitude of the 
smaller one is 0.9954384  at the point =x 20. It is found that the absolute difference 
in amplitude is 34.5 10−×  for the smaller wave and 37.7 10−×  for the larger wave for 
this algorithm. 
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 Table  4. Comparison of invariants for the interaction of two solitary waves with results from 
(Haq et al., 2010) with h = 0.02, k = 0.025 in the region 0 ≤ x ≤ 250

  
 Present method  (Haq et al., 2010) 

t   1I   2I   3I   1I   2I   3I  
 11.4676542  14.6290766  22.8804898  11.467698  14.629277  22.880432 

 11.4675751  14.6291789  22.8802823  11.467698  14.624259  22.860365 

 11.4674004  14.6287111  22.8783932  11.467698  14.619226  22.840279 

 11.4672351  14.6282736  22.8766213  11.467699  14.614169  22.820069 

 11.4685470  14.6360654  22.9020513  11.467700  14.606821  22.787857 

 11.4681751  14.6349679  22.9024807  11.467700  14.603687  22.771773 

 11.4663725  14.6257527  22.8717460  11.467699  14.603056  22.775766 

 11.4664929  14.6260926  22.8702439  11.467699  14.598059  22.756029 

 11.4664794  14.6260304  22.8686659  11.467700  14.593048  22.736127 

 11.4663697  14.6257202  22.8668953  11.467700  14.588061  22.716289 

 11.4662207  14.6253125  22.8650456  11.467701  14.583089  22.696510 

(Roshan, 2012)  11.4677  14.6299  22.8806    

(Khalifa et al., 2008)  11.4677  14.6292  22.8809    

(Ali, 2009)MQ  11.467698  14.583052  22.696539    

(Ali, 2009)TPS  11.467742  14.582424  22.694269    

(Karakoc et al., 2013)  11.4691886  14.6331334  22.8764330    

 INTERACTION OF THREE SOLITARY WAVES 

 As a last problem, we study the behavior of the interaction of three solitary waves 
having different amplitudes and travelling in the same direction. So, we consider (3) 
with initial condition given by the linear sum of three well-seperated solitary waves 
of different amplitudes 
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The analytical values of the conservation laws are found from (22) as 
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Fig. 4. Interaction of two solitary waves with t = 0 , 4  , 8 , 10 , 14 , 20.

For   the   computational work, parameters 1 2= 1, = 0.2, = 0.025, = 4, = 1,h k c cµ  
0.25,=3c  =45,=15,= 321 xxx 60 are taken over the interval 250.0 ≤≤ x  

Simulations are done up to time 45.=t  Table 5 displays a comparison of the values 
of the invariants obtained by the present method with those obtained in Ref. (Khalifa 
et al., 2008; Haq et al., 2010; Ali, 2009; Karakoc et al., 2013). It is seen from the table 
that the obtained values of the invariants remain almost during the computer run which 
are all in good agreement with their analytical values given by (26). The absolute 
difference between the values of the conservative constants obtained by the present 
method at times 0=t  and =t 45 are 2

1 = 4.8 10 ,I −∆ ×   3 2
2 3= 9.5 10 , = 4.1 10 .I I− −∆ × ∆ ×

Figure (5) shows the interaction of these solitary waves at different times. As it is seen 
from Figure (5) interaction started about time 10,=t  overlapping processes occured 
between time =t 15 and =t 40 and waves started to resume their original shapes 
after the time 40.=t  
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 Table  5. Comparison of invariants for the interaction of two solitary waves with results from 
(Haq et al., 2010) with h = 0.02, k = 0.025 in the region 0 ≤ x ≤ 250

 Present method  (Haq et al., 2010) 

t   1I   2I   3I   1I   2I   3I  
 14.9800750  15.8373533  23.0083122  14.980099  15.837528  23.008136 

 14.9799710  15.8373541  23.0058377  14.980105  15.824928  22.957891 

 14.9850842  15.8652441  23.0903527  14.980109  15.807025  22.877972 

 14.9809869  15.8409759  23.0051096  14.980106  15.807032  22.885947 

 14.9790729  15.8352645  22.9959403  14.980106  15.795022  22.837454 

 14.9781209  15.8326417  22.9898148  14.980107  15.782840  22.788852 

 14.9776464  15.8313166  22.9849266  14.980107  15.770634  22.740419 

 14.9772377  15.8301663  22.9802178  14.980108  15.758480  22.692279 

 14.9768320  15.8290288  22.9755365  14.980108  15.746389  22.644448 

 14.9316345  15.8277899  22.9664579  14.968030  15.734374  22.596591 

(Khalifa et al., 2008)  13.7043  15.6563  22.9303    

(Ali, 2009)MQ  14.96814  15.73434  22.596625    

(Ali, 2009)TPS  14.96824  15.73376  22.594494    

(Karakoc et al., 2013)  14.7145273  15.4927592  23.3529062    

 Fig.  5.  Interaction of three solitary waves with t = 0 , 5, 8 , 15, 20, 40

  CONCLUSION 

In this paper, a lumped Galerkin method based on cubic B-splines has been 
successfully applied to the MRLW equation to examine the motion of a single solitary 
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wave, whose analytical solution is known and extended the scheme to the study of two 
and three solitary waves, whose analytical solution is unknown during the interaction. 
To show how good and accurate the numerical solutions of the test problems, we have 
calculated the error norms 2L  and ∞  and the invariant quantities 21, II  and  
It has been observed that the error norms are satisfactorily small and the invariants 
are well conserved. The method successfully models the motion and interaction of 
the solitary waves. The obtained results indicate that the present method is more 
accurate than some earlier results found in the literature. Moreover, since the method 
uses piece-wise approximation due to its nature, non-homogenous problems and the 
problems defined over irregular shapes can also be solved by the present method. 
These are the most important merits of the method.Therefore, this method can be a 
reliable method for obtaining the numerical solutions of the physically important non-
linear partial differential equations.
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حلول عددية لمعادلة MRLW بواسطة طريقة غارلنكن للشريحة التكعيبية المنتهية العنصر
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الملخص
 (MRLW) نقوم في هذا البحث بإيجاد حل عمودي لمعادلة الموجة الطويلة المعدلة المنظومة
التكعيبية  الشريحة  تستخدم  التي  غارلنكن  طريقة  إلى  مستندة  عددية  تقنية  بواسطة  وذلك 
للعناصر المنتهية. ثم نقوم بدراسة الحركة الموجية المنفردة، والتفاعل بين الموجات المنفردة 
الثنائية والثلاثية وذلك للتحقق من صوابية طريقتنا المقترحة. كما نقوم بحساب اللامتغيرات 
الثلاثية (I1، I2، I3) للحركة وذلك للحصول على خصائص الحفظ للمخطط. ونستخدم معياري 
الخطأ ∞L2، L لقياس الفروقات بين الحلول العددية والحلول الدقيقة. وأخيراً، نقترح تحليلاً 

خطياً لاستقرار المخطط.


