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ABSTRACT
In this paper, the Korteweg-de Vries-Burgers’ (KdVB) equation is solved numerically by a 
new differential quadrature method based on quintic B-spline functions. The weighting 
coefficients are obtained by semi-explicit algorithm including an algebraic system with five-
band coefficient matrix. The 2L  and ∞L  error norms and lowest three invariants 21, II  and 

3I  have computed to compare with some earlier studies. Stability analysis of the method is 
also given. The obtained numerical results show that the present method performs better than 
the most of the methods available in the literature.

Keywords: KdVB equation; differential quadrature method; quintic B-splines; partial 
differential equation; stability. 

 INTRODUCTION 
Many physical phenomena in the nature can accurately be described by the 

Korteweg-de Vries-Burgers’(KdVB) equation which has the general form 

       = 0,t x xx xxxU UU U Uε υ µ+ − +               (1)

where ε , υ  and µ  are positive constant coefficients and the subscripts t  and x  
denote differentiation.

The KdVB equation was first introduced by Su & Gardner (1969). The equation 
presents an appropriate model equation for a wide range of nonlinear systems in 
the weak nonlinearity and long wavelength approximations, since it contains both 
damping and dispersion. The equation possesses steady-state solution, which has 
been demonstrated to model weak plasma shocks propagating perpendicular to a 
magnetic field (Grad & Hu, 1967). When diffusion dominates dispersion, the steady-
state solutions of the KdVB equation are monotonic shocks and when dispersion 
dominates diffusion, then the shocks are oscillatory. The equation has been used in 
the study of wave propagation through liquid filled elastic tubes and for a description 
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of shallow water waves on a viscous fluid (Johnson, 1970; 1972). Some numerical 
works have been carried out to solve the equation. Canosa & Gazdag (1977), who 
discussed the evolution of non-analytic initial data into a monotonic shock, have given 
brief details of a numerical solution of the KdVB equation using the accurate space 
derivative method. Ali et al. (1992; 1993) have produced a B-spline finite element 
scheme using Galerkin’s method with quadratic B-spline interpolation function over 
the finite elements. KdVB equation has also been solved by using various numerical 
techniques such as finite element scheme (Zaki & Zaki, 2000a; 2000b, Saka & Dağ, 
2007; 2009), tanh method (Sahu & Roychoudhury, 2003), hyperbolic tangent method, 
an exponential rational function approach (Demiray, 2004), finite difference scheme 
(Helal & Mehanna, 2006) and decomposition method (Kaya, 1999; 2004).

If 0=υ , the equation (1) turns into KdV equation of the form

        = 0.t x xxxU UU Uε µ+ +          (2)

If 0=µ , the equation (1) turns into Burgers’ equation of the form

            = 0.t x xxU UU Uε υ+ −                (3)

Bellman et al. (1972) first introduced differential quadrature method (DQM) 
in 1972 for solving partial differential equations. The method has widely become 
popular in recent years, thanks to its simplicity for application. The fundamental idea 
behind the method is to find out the weighting coefficients of the functional values 
at nodal points by using base functions, of which derivatives are already known at 
the same nodal points over the entire region. Numerous researchers have developed 
different types of DQMs by utilizing various test functions. Bellman et al. (1972 
1976) have used Legendre polynomials and spline functions in order to get weighting 
coefficients. Quan & Chang (1989a; 1989b) have introduced an explicit formulation 
for determining the weighting coefficients using Lagrange interpolation polynomials. 
Shu & Richards (1992) have presented an explicit formulae including both Lagrange 
interpolation polynomials. Moreover, Shu & Xue (1997) have used the Lagrange 
interpolated trigonometric polynomials to determine weighting coefficients in an 
explicit manner. Zhong (2004), Guo & Zhong (2004) and Zhong & Lan (2006) have 
introduced another efficient DQM as spline based DQM and applied to numerous 
problems. Cheng et al. (2005) have used Hermite polynomials for finding out the 
weighting coefficients required for DQM. Shu & Wu (2007) have introduced some 
of the implicit formulations of weighting coefficients with the help of radial basis 
functions. The weighting coefficients have also been found out by Striz et al. (1995) 
using harmonic functions implicitly. Sinc functions have been used as basis functions 
in order to find the weighting coefficients by Bonzani (1997). Thanks to its production 
of accurate numerical solutions and easy application for the solution process of 
numerous physical fields such as engineering, chemistry and physics problems, 
several DQMs have been used by Civalek (2004; 2006), Zhu et al. (2004), Lee et 
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al. (2004), Korkmaz (2010a), Korkmaz & Dağ (2009; 2010b; 2011a; 2011b; 2012; 
2013a; 2013b), Saka et al. (2008), Tomasiello (2010), Mittal & Jiwari (2009; 2011; 
2012), Arora (2013).

In the present study, Quintic B-spline Differential Quadrature Method (QBDQM) 
is applied to obtain approximate solutions of the KdVB equation. Cubic B-spline DQM 
used for solving third order differential equation like KdV equation need transforming 
for solution (Korkmaz & Dağ, 2010b). But, QBDQM do not need transforming for 
solving the third order differential equations like KdV, KdVB and in order to make 
the stability analysis of the method there should not be a reduction such as splitting 
in the solution process. Therefore, in order to be able to make stability analysis of the 
third order non-linear KdVB equation we have preferred the quintic B-spline basis 
functions.The differential quadrature method has many advantages over the classical 
techniques, mainly, it prevents linearization and perturbation in order to find better 
solutions of given nonlinear equations.

 QUINTIC B-SPLINE DIFFERENTIAL QUADRATURE METHOD 

DQM can be defined as an approximation to a derivative of a given function by using 
the linear summation of its values at specific discrete nodal points over the solution 
domain of a problem. Let’s take the grid distribution bxxxa N =<<<= 21 "  of 
a finite interval [ ]ba,  into consideration. Provided that any given function ( )xU  is 
enough smooth over the solution domain, its derivatives with respect to x  at a nodal 
point ix  can be approximated by a linear summation of all the functional values in 
the solution domain, namely, 

( ) ( )
( )

( )
( ) ( )

=1
= | = , = 1,2,..., , = 1,2,..., 1

r N
r r

x i x ij jr i
j

d UU x w U x i N r N
dx

−∑        (4)

where r denotes the order of the derivative, ( )r
ijw  represent the weighting coefficients 

of the r - th order derivative approximation, and N denotes the number of nodal 
points in the solution domain. Here, the index j represents the fact that ( )r

ijw  is the 
corresponding weighting coefficient of the functional value ( )jxU . In this study, we 
need first, second and third order derivative of the function )(xU . So, we will find 
value of the equation(4) for the 1,2,3=r .

If we consider Eq.(4), then it is seen that the fundamental process for approximating 
the derivatives of any given function through DQM is to find out the corresponding 
weighting coefficients ( )r

ijw . The main idea behind DQM approximation is to find out 
the corresponding weighting coefficients ( )r

ijw  by means of a set of base functions 
spanning the problem domain. While determining the corresponding weighting 
coefficients different basis may be used. In the present study, we will compute 
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weighting coefficients with quintic B-spline basis.

Let )(xQm , be the quintic B-splines with knots at the points ix  where the 
uniformly distributed N  nodal points are taken as bxxxa N =<<<= 21 "  on 
the ordinary real axis. The B-splines },,,{ 201 +− NQQQ …  form a basis for functions 
defined over ],[ ba . The quintic B-splines )(xQm  are defined by the relationships:
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where 1= −− mm xxh  for all m. 

 Table  1.  The value of quintic B-splines and derivatives functions at the grid points 

 x   
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Using the quintic B-splines as test functions in the fundamental DQM equation (4) 
leads to the equation 
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( ) ( )
( )

( ) ( )
2

,
= 2

= , = 1,0, , 2, = 1,2,..., .
r m

rm i
i j m jr

j m

Q x
w Q x m N i N

x

+

−

∂
− +

∂
∑ …  (5)

An arbitrary choice of i leads to an algebraic equation system

1, 3 1, 2 1, 1 1,0 1,1

0, 2 0, 1 0,0 0,1 0,2

1 1

1, 1 1, 1, 1 1, 2 1, 3

2, 2, 1 2, 2 2, 3 2, 4

=
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W
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⎡ ⎤
⎢ ⎥
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⎢ ⎥ Φ
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⎢ ⎥⎣ ⎦

% % % % %  (6)

where jiQ ,  denotes ( )ji xQ , 

    ( ) ( ) ( ) ( )
1 , 3 , 2 , 3 , 4=

Tr r r r
i i i N i NW w w w w− − + +

⎡ ⎤
⎣ ⎦"          (7)
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The weighting coefficients ( )r
jiw ,  related to the i - th grid point are determined by 

solving equation system (6) The system (6) consists of 8+N  unknowns and 4+N  
equations. To have a unique solution of the system, it is required to add four additional 
equations to the system. By the addition of the equations
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to the system (6) becomes 

          ,= 211 ΦWM              (13)

where
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After the using the values of quintic B-splines at the grid points and eliminating 
( ) ,3,
r

iw −  ( ) ,2,
r

iw −  ( )r
Niw 3, +  and ( )r

Niw 4, +  from system, we obtain an algebraic equation 
system having 5-banded coefficient matrix of the form

          ,= 322 ΦWM                 (14)
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The non-zero entries of the load vector 3Φ  are given as,
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For example, if we apply the test functions 2,1,0,=, +− NmQm …  at the 
first grid point 1x  for first order derivative approximation by the selection of 1=i  
and r = 1 at Equation (15).
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is obtained and written at matrix form as:
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By the same idea, for the determine weighting coefficients ( ) 2,1,0,=,1
, +− Njw jk …  

at grid points kx , 12 −≤≤ Nk  we got the algebraic equation system:
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We can obtain the second and third order derivative approximations with a same 
calculation. So the system (14) is solved by 5-banded Thomas algorithm.

NUMERICAL DISCRETIZATIONS 

Here, we consider the KdV, Burgers’ and KdVB equations.

DISCRETIZATION OF KdV EQUATION 

As it is said before, If =υ  0, the equation (1) turns into KdV equation of the form 

= 0,t x xxxU UU Uε µ+ +

with the following boundary conditions taken from 

    ( ) ( ) (0,,=),(,=),( 21 TttgtbUtgtaU ∈ ].       (16)

and the following initial condition 
       1( ,0) = ( ), ,U x f x a x b≤ ≤            (17)

is rewritten as, 
        = .t x xxxU UU Uε µ− −              (18)

Then, the differential quadrature derivative approximations given in the Equation 
(4), have been used in Equation (18) for the value of r = 1 and r = 3. The application 
of the boundary conditions results in 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 3
, ,

=2 =2
= , , , , = 2,3,..., 1

N N
i

i i j j i j j
j j

dU x
U x t w U x t w U x t B U i N

dt
ε µ

− −

− − + −∑ ∑      (19)

where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 3 3
,1 1 , 2 ,1 1 , 2= , .i i i N i i NB U U x t w g t w g t w g t w g tε µ⎡ ⎤ ⎡ ⎤− + − +⎣ ⎦ ⎣ ⎦

 DISCRETIZATION OF BURGERS’ TYPE EQUATION 

As it is mentioned before, If 0=µ , the Equation (1) turns into Burgers’ equation of 
the form 

= 0,t x xxU UU Uε υ+ −  

with boundary conditions chosen from 

     ( ) ( ) (0,,=),(,=),( 43 TttgtbUtgtaU ∈ ].        (20)

and initial condition 

       2( ,0) = ( ), ,U x f x a x b≤ ≤                    (21)

is rewritten as, 

         = .t x xxU UU Uε υ− +             (22)
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Then, the differential quadrature derivative approximations given in the Equation 
(4), have been used in Equation (22) for the value of 1=r and 2=r . The application 
of the boundary conditions yield

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 2
, ,

=2 =2
= , , , , = 2,3,..., 1

N N
i

i i j j i j j
j j

dU x
U x t w U x t w U x t C U i N

dt
ε υ

− −

− + + −∑ ∑      (23)

where 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2

,1 3 , 4 ,1 3 , 4= , .i i i N i i NC U U x t w g t w g t w g t w g tε υ⎡ ⎤ ⎡ ⎤− + + +⎣ ⎦ ⎣ ⎦

DISCRETIZATION OF KdVB EQUATION AND STABILITY ANALYSIS 

If 0, ≠µυ , Equation (1) of the form
= 0,t x xx xxxU UU U Uε υ µ+ − +

with the following boundary conditions taken from

     ( ) ( ) (0,,=),(,=),( 65 TttgtbUtgtaU ∈ ].        (24)

and the following initial condition

       3( ,0) = ( ), ,U x f x a x b≤ ≤           (25)
is rewritten as,

       = .t x xx xxxU UU U Uε υ µ− + −            (26)

The differential quadrature derivative approximations given in the Equation (4), 
have been used in Equation (26) for the value of 1,2=r  and 3. The application of the 
boundary conditions results in 

     ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 2
, ,

=2 =2
= , , ,

N N
i

i i j j i j j
j j

dU x
U x t w U x t w U x t

dt
ε υ

− −

− +∑ ∑  

 

    ( ) ( ) ( ) 12,3,...,= ,,3
,

1

2=
−+− ∑

−

NiUDtxUw jji

N

j
µ               (27)

where 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2
,1 5 , 6 ,1 5 , 6

3 3
,1 5 , 6

= ,

.

i i i N i i N

i i N

D U U x t w g t w g t w g t w g t

w g t w g t

ε υ

µ

⎡ ⎤ ⎡ ⎤− + + +⎣ ⎦ ⎣ ⎦
⎡ ⎤− +⎣ ⎦

Then, the ordinary differential equation given by (27) is integrated in time by means 
of any appropriate method. Here, we have preferred fourth-order Runge-Kutta method 
since its advantages such as accuracy, stability and memory allocation properties.

The stability of a time-dependent problem:

         ( )Ul
t

U =
∂
∂                                  (28)
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with proper initial and boundary conditions, where l is a spatial differential operator. 
After discretization with DQM, equation (28) is reduced into a set of ordinary 
differential equations in time:

         [ ]{ } = { } { }d u A u b
dt

+        (29)

where {u} is an unknown vector of the functional values at the grid points except left 
and right boundary points, {b} is a vector containing the non-homogenous part and 
the boundary conditions. and A is the coefficient matrix. The stability of a numerical 
scheme for numerical integration of equation (29) depends on the stability of the 
ordinary differential equation (29). If the ordinary differential equation (29) is not 
stable, numerical methods may not generate converged solutions. The stability of 
equation (29) is related to the eigenvalues of the matrix A , since its exact solution 
is directly determined by the eigenvalues of the matrix A . When all Re( ) 0≤iλ  for 
all i is enough to show the stability of the exact solution of }{u  as ∞→t  where Re 
denotes the real part of the eigenvalues iλ  of the matrix A. The matrix A  at Equation 

(29) is determined as ( ) ( ) ( )3
,

2
,

1
,= jijijiiij wwwA µυα −+−  where ).,(= txU iiα

The stable solution of }{u  as ∞→t  requires:
1 If all eigenvalues are real, <2.78−  <. it λ∆  0,

2 If all eigenvalues have only complex components, ,22<.<22 it λ∆−
3 If eigenvalues have only complex, it λ.∆  should be in the region, Figure 1.

When the eigenvalues are complex, there exist some tolerance that the real parts of 
the eigenvalues may be small positive numbers (Jain, 1983).

  

 

 Fig.  1. Stability region of complex eigenvalues
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   The accuracy of the numerical method is checked using the error norms 2L  and 
∞L  respectively: 

 ( ) ( ) .max=,=
2

1=
2 jN

exact
j

j
jN

exact
j

N

J
UULUUhL −− ∞∑  (30)

The following lowest three invariants corresponding to conservation of mass, 
momentum and energy will be computed.

( )2
2 3

1 2 3
3= , = , = .

b b b '

a a a
I Udx I U dx I U U dxµ

ε
⎡ ⎤−⎢ ⎥⎣ ⎦∫ ∫ ∫       (31)

NUMERICAL EXAMPLES 

In this section, the numerical solutions of the KdV, Burgers’ and KdVB equations are 
obtained by the proposed method.

 KdV EQUATION 
The initial condition:

      ( )2( ,0) = 3 sec ,U x C h AX D+            (32)

here A , C  and D  are constants given by the boundary conditions 
0=)(2,=)(0, tUtU  for all times. 

 Table  2. Comparison of  2L   and  ∞L  error norms at various times

      Time 

L2 X 106 error norms at various times  ε  ×µ  104 N  t∆   1.0  2.0  3.0 

QBDQM (Present)  1  4.84  101  0.001  227.1  354.5  485.2 
LPDQ (Korkmaz, 2010a)  1  4.84  100  0.001  1185.0  1290.0  1381.0 

Galerkin Quad-spline (Gardner et al. 1991)  1  4.84  200  0.005  600.0  860.0  107.0 
RBF Coll IMQ (Dağ et al. 2008)  1  4.84  200  0.005    2751.0 
RBF Coll IQ (Dağ et al. 2008)  1  4.84  200  0.005    1013.0 

RBF Coll TPS (Dağ et al. 2008)  1  4.84  200  0.005    2606.0 
Septic spline Coll.(Soliman, 2004)  1  4.84  200  0.005  22100.0   

     Time 

×∞L 105 error norms at various times  ε  ×µ  104 N  t∆   1.0  2.0  3.0 

QBDQM (Present)  1  4.84  101  0.001  73.8  108.6  142.8 
LPDQ (Korkmaz, 2010a)  1  4.84  100  0.001  274.5  224.0  242.2 

RBF Coll IMQ (Dağ et al.ğ et al. 2008)  1  4.84  200  0.005    501.8 
RBF Coll IQ (Dağ et al. 2008)  1  4.84  200  0.005    200.0 

RBF Coll TPS (Dağ et al. 2008)  1  4.84  200  0.005    634.5 
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For this condition, the KdV equation has an analytic solution given in the form of 

       ( )2( , ) = 3 sec ,U x t C h AX Bt D− +           (33)

provided that

      ( ) ( ) ,/
2
1=and/

2
1= 1/21/2 µεεµε CCBCA          (34)

so that Equation (33) yields a probable initial condition when ( )1/2/
2
1= µεA  and 

really simulates a single soliton that moves toward the right having the velocity Cε .

Table  3. Invariants for single soliton: 0.001=t∆ and  101.=N
  

  QBDQM (Present)  LPDQ (Korkmaz, 2010a) 

t  I1 x 101 I2 x 102 I3 x 102 I1 x 101 I2 x 102 I3 x 102

0.0  1.44598100  8.67592700  4.68502700  1.44597627  8.67592530  4.68499446 
1.0  1.44591200  8.67592400  4.68502400  1.44229897  8.67613393  4.68501205 
2.0  1.44600600  8.67592600  4.68502600  1.44245451  8.67615517  4.68501312 
3.0  1.44609700  8.67592900  4.68502800  1.44461700  8.67617981  4.68501755 

To be able to make a comparison with earlier studies, 0=υ , 1=ε , 4= 4.84 10µ −× , 
0.3=C , = −D 6, 0.001=t∆  and 0.02=x∆  will be used. For the present case, 

the obtained solution is going to move toward the right having a speed of Cε . If we 
plot the graphs of the numerical solution and the exact solution, their curves will be 
indistinguishable. The agreement is very good. To make a comparison quantitatively, 
we have also computed the error norms 2L  and ∞L  as well as the first three invariants 

1I , 2I  and 3I , in Table 2 and Table 3 until 3.0,=t  respectively.

In Table 2, 2L  norm is less than 42.3 10−×  while the ∞L  norm is less than 
47.4 10−×  at time 1.0=t  and so are enough small to accept. As it is obviously seen 

from Table 3, all of the computed three invariants are satisfactory constant. The results 
of the present study compares with earlier works.

 BURGERS’ TYPE EQUATION 

For solving the KdVB equation (1) as a Burgers’ type equation =(µ 0), considering 
the initial condition the function as follows

       ( ) ( ),/4exp/1
/=),( 2

0 txtt
txtxU

υ+                (35)
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will be very appropriate. Here )
8
1(=0 υ

expt , evaluated at 1=t . The solution of the 

system of equations for different values of υ  with the following boundary conditions

      ( , ) = ( , ) = 0, 1,U a t U b t t∀ ≥            (36)

  will be sought. The initial condition (35) will be preferred because of the fact that the 
resulting analytic solution can be expressed in a closed form allowing the easy computation 
of the 2L  and ∞L  error norms for any given value of υ . We will consider the value 

0.05=υ  for comparison with earlier works. Figure 2, illustrate the development of the 
initial condition (35) with time for the values of 0.005=ν , 1=ε , 0=µ , 0.01=t∆  
and 0.02=x∆  for 10 ≤≤ x . The program has been run until the time 3.1=t . The 
top curve has been recorded at 1.0=t  whereas the bottom curve has been recorded at 

3.1=t . In order to evaluate the convergence, the error norms are tabulated in Table 4 
with the comparison of earlier works. For comparison the results of Quintic B-spline 
DQ and Cubic B-spline DQ we selected 0.005=ν , 1=ε , 0=µ  and =t∆  0.001 
for 1.20 ≤≤ x . Then, the error norms for each approximation are tabulated in Table 
5. As it is seen from the Table that our results are better than the those previous papers. 
Error norms for 0.005=ν , 1=ε , 0=µ , 0.01=t∆  and =N 51 for 10 ≤≤ x  
at 3.1=t  and also 0.005=ν , 1=ε , 0=µ  and 201=N  for 1.20 ≤≤ x  at 

3.6=t  plotted at Figure 3 and Figure 4, respectively.

  Fig.  2.   0.005,=υ  =ε  1, 0.01=t∆   and 0.02.=x∆
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Table  4. 2L  and  ∞L  error norms at the 10 ≤≤ x  for   0.005,=υ
and  1=ε    0.01=t∆  .

  Present  Ali et al. (1992)  Saka and Dağ 
(2007) 

 Saka and Dağ 
(2007) 

 0.02=x∆   0.02=x∆   0.005=x∆   0.005=x∆  

t  2 ×L  103 ×∞L  103
2 ×L  103 ×∞L  103

2 ×L  103 ×∞L  103
2 ×L  103 ×∞L  103

1.7  0.069  0.433  0.857  2.576  0.017  0.061  0.358  1.211 
2.4  0.056  0.312  0.423  1.242  0.012  0.058  0.251  0.807 
3.1  0.430  2.635  0.230  0.688  0.601  4.434  0.630  4.790 

  

Fig.  3. Error norms for 0.005,=υ  =ε 1, 0.01=t∆    =N  51 at  3.1=t

 Table  5.  Error norms for 0.005=υ , 1=ε , 0=µ  and  0.001=t∆  for 1.20 ≤≤ x

  Present  Korkmaz and Dağ (2013a)  
 QBDQM  Method1  Method2  Method3 

N  2 ×L  103 ×∞L  103
2 ×L  103 ×∞L  103

2 ×L  103 ×∞L  103
2 ×L  103 ×∞L  103

21  0.71  2.00  1.64  3.10  1.41  3.29  7.05  11.6 
31  0.42  1.31  1.00  2.13  0.79  2.22  0.94  1.73 
41  0.30  0.97  0.70  1.61  0.57  1.68  0.92  1.48 
61  0.19  0.62  0.44  1.07  0.37  1.12  0.26  0.95 
81  0.13  0.44  0.31  0.77  0.27  0.83  0.20  0.76 
101  0.09  0.33  0.23  0.59  0.21  0.64  0.16  0.63 
121  0.07  0.25  0.18  0.46  0.16  0.52  0.14  0.54 
151  0.04  0.15  0.12  0.32  0.12  0.39  0.11  0.45 
161  0.03  0.13  0.11  0.28  0.11  0.35  0.10  0.43 
201  0.01  0.08  0.06  0.16  0.07  0.24  0.09  0.36 
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KdVB EQUATION 

Now, we have examined the behavior of the KdVB equation (1) and have studied the 
effect of using different values of µ  and υ  onto the solution vector. To carry out such 
a work, first of all we need to use as an initial condition (Ali et al. 1993)

      ,tanh10.5=,0)( 0
⎥
⎦

⎤
⎢
⎣

⎡ −
−

d
xx

xU           (37)

and boundary conditions

       =)(150,=)50,( tUtU −  0,           (38)

where -50 150≤≤ x , 5=d  and =0x 25 will be considered in all simulations. 

  

 Fig.  4.   Error norms for 0.005,=υ  =ε 1, 0.001=t∆   and 201=N  at 3.6=t

 

 Fig.  5.   KdVB type solution taken at time 800=t  with  0=υ , 0.2=ε  , 0.1=µ  , 
0.4=t∆   and 373=N .
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Table  6. Three invariants for 0=ν , 0.2=ε , 0.1=µ , 0.4=t∆  and 373=N .

  QBDQM 0.4=t∆  and 373=N  
 Zaki (2000a) 0.4=t∆  and 

0.01=h  

t   1I   2I   3I   1I   2I   3I  
0  50.00013  45.00046  42.30068  50.00021   45.00055   42.30074 

100  50.00031  45.00048  42.29989  50.00034  45.00003  42.30028 
200  50.00072  45.00054  42.29736  50.00058  44.99962  42.30098 
300  50.00568  45.00058  42.29604  50.00612  44.99999  42.30227 
400  50.00259  45.00057  42.29560  50.00237  44.99921  42.30135 
500  49.99523  45.00054  42.29548  49.99435  44.99850  42.30030 
600  49.97926  45.00049  42.29546  49.97857  44.99820  42.29995 
700  49.96699  45.00054  42.29548  49.96607  44.99815  42.29979 
800  49.96415  45.00052  42.29552  49.96331  44.99803  42.29974 

 Table  7.  Three invariants for 0=ν  , 0.2=ε  , 0.1=µ  , 0.05=t∆  and  0.4=h  .

  QBDQM 0.05,=t∆  
0.4=h  

  Ali et al. (1993) 
0.05,=t∆  0.4=h  

  Zaki (2000b) 0.05,=t∆  
0.2=h  

t   1I   2I   3I   1I   2I   3I   1I   2I   3I  
0 50.00012  45.00045 42.30068  42.30068   50.00  42.301    42.301    45.00041   42.30065 

100 50.00042  45.00046  42.30042  42.30042   50.00  42.257     42.257     45.00242  42.30354 
200 49.99980  45.00047 42.29957  42.29957   50.01  42.110     42.110     45.00441  42.30647 
300 50.00722  45.00049 42.29913  42.29913   50.01  42.041     42.041     45.00672  42.30942 
400 50.00568  45.00047  42.29897  42.29897   50.00  42.033     42.033     45.00995  42.31197 
500 50.00089  45.00046 42.29895  42.29895   49.99  42.038     42.038     45.01577  42.31489 
600 49.98500  45.00037 42.29891  42.29891   49.98  42.049     42.049     45.01577  42.31489 

700 49.96844  45.00045  42.29895  42.29895   49.99  42.057     42.057     45.02153  42.31489 

800  49.95939  45.00053  42.29900  42.29900   50.02  42.064     42.064     45.02899  42.32111 

  Solution vector after a very long run time 800=t  with 0.4=t∆ , 0=ν , 0.2=ε , 
0.1=µ  and 373=N  has been shown in Figure 5. In this case Equation (1) is a 

KdV type equation and a train of 10 solitons have been formed. The invariants 1I , 2I  
and 3I  are recorded and compared with Zaki (2000a) in Table 6 for the present case. It 
is obviously seen from Table 6 that by using less number of grid points the invariants 
change by less than 0.072% , 0.00027%  and 0.013% , respectively, with respect 
to their original values during this very long run and therefore they can be considered 
almost constant. 

We have utilized all the data as the same except that 0.4=h  to compare with Ali 
et al. (1993) and Zaki (2000b) in Table 7. The invariants change by less than 0.082% , 
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0.00018%  and 0.0042% , respectively. So the quantities in the invariants remain 
almost constant during the computer run. It is clearly seen from Figure 6 that when 
viscosity is too small 0.0001)=(υ  the solution of KdVB behaves similarly to a 
KdV solution =(υ 0). In fact, the graphs given at Figure 6 are indistinguishable 
similar to those obtained for the KdV equation using the same parameters. Again, a 
train of 10 solitons have been obtained. 

In Figure ( )b7 , the solution vector at time 800=t  with the same set of data of 
Figure ( )a7  except that υ  has been increased to the new value 0.0001=υ  very 
small viscosity has been graphed. In fact, this graph is indistinguishable from that of 
Figure ( )a7 . Also a train of 10 solitons is formed. 

 We have used all the data as the same except that υ  takes the increasing values 
0 , 0.0001 , 0.001 , 0.005 , 0.01 , 0.03 , 0.05 , 0.1  and 0.2  in order to study the 
effect of increasing the viscosity and hence the dispersion term on the solution vector. 
Figure (7 ( )ia −)  represent the solution profiles for these cases at time 800=t , 
respectively. It is clear from these graphs that the more we increase the υ  the solution 
vector for the KdVB Equation (1) tends to behave more like a solution of Burgers’ 
equation =(µ  0). This fact can be seen clearly in Figure ( )i7 , where the solution 
vectors end up behaving like traveling waves for which the amplitudes are damped. 

    
      

       

 Fig.  6.  KdVB type solutions taken at time from  0=t  to  800=t   with  0.0001=υ  , 
0.2=ε  , 0.1=µ  , 0.05=t∆  and  0.4=h  .
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 Table  8.  Maximum absolute value of eigenvalues at various number of grid points.

  QBDQM 

Grid Number 11 21 31 41 61 81

|Re ( ) |maxλ  9.0 x 10-3 2.5 x 10-2 3.9 x 10-2 5.5 x 10-2 9.3 x 10-2 1.3 x 10-1

| Im ( ) |maxλ  3.0 x 10-4 9.1 x 10-4 2.1 x 10-3 4.0 x 10-3 1.6 x 10-2 4.4 x 10-2

 Fig.  7.  KdVB type solutions taken at time 800=t  , 0.2=ε  , 0.1=µ  , 0.05=t∆  and  
0.4=h  with different value of υ  .

   

  

 Fig.  8.  Eigenvalues for 11.=N
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 Fig.  9.  Eigenvalues for 31.=N

   

  

 

 Fig.  10.   Eigenvalues for 41.=N

   

  

 

 Fig.  11.   Eigenvalues for 61.=N
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A matrix stability analysis is also done for the QBDQM. We used the matlab 
program to obtain the eigenvalues of the coefficient matrix. Eigenvalues of suggested 
method for various number of nodals are shown in Figure 8-11. As the eigenvalues 
for 11=N , 31,=N  =N 41 and =N 61 have imaginary parts. Furthermore, 
for 11=N , 31,=N  =N 41 and 61,=N  the maximum and the nonnegative 
real parts of eigenvalues determined as 5 3 3 24.8 10 ,2.3 10 ,5.5 10 ,1.9 10− − − −× × × ×
,respectively. Also, maximum absolute value of eigenvalues at various number of grid 
points tabulated in Table 8 . All the eigenvalues are convenience with stability criteria 
(Jain, 1983).

CONCLUSION 

In this study, we have constructed the quintic B-spline differential quadrature method 
to obtain numerical solution of the KdVB equation. The weighting coefficients of 
the derivative approximations are determined by solving linear algebraic systems, 
which included five-banded coefficients matrix. After the weighting coefficients are 
determined, KdVB equation is discretized in space by using the differential quadrature 
method approximations, so, the ordinary differential equation system is obtained. By 
using fourth-order Runge-Kutta method the ordinary differential equation system is 
integrated in time. To show the validity of the method and compare with earlier works 
we choose the appropriate test problem and observe the solutions under the different 
values of υ  and .µ  It is shown that our scheme is stable. When 0=υ  the KdV 
equation has proved that the method is conservative through the recorded values of 

1I , 2I  and 3I , as expected, all the results obtained using the KdVB equation with 
different values of υ  and µ  have indicated the physics of the problem. It has been 
concluded that the numerical solutions tend to behave like Burgers’ equation when 
diffusion dominates whereas KdV type behavior has been obtained when dispersion 
dominates. Our scheme for KdV equation and Burgers’ equation is more accurate than 
other earlier schemes in the literature. The numerical method has been shown for the 
long have assured us that the present method can be effectively used for long runs of 
the KdVB equation. The obtained numerical results show that the present method is 
a remarkably successful numerical technique for solving the KdVB equation and also 
useful for a wide range of applications, where continuity of derivatives is essential.
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تقريب لمعادلة KdVB بواسطة طريقة طريقة الشريحة الخماسية التفاضلية المكتملة

* علي باشان، ** سيدا بطال غازي كاراكوتش،  ***ترابي جيكلاني

* قسم الرياضيات بكلية العلوم والآداب - جامعة اينونو - ملاطية - 44280 - تركيا

* قسم الرياضيات بكلية العلوم والآداب - جامعة نفسهير - نفسهير - 50300 - تركيا

* قسم الرياضيات بكلية العلوم والآداب - جامعة اينونو -ملاطية - 44280 - تركيا

خلاصة
نقوم في هذا البحث بحل معادلة برغر عددياً بواسطة طريقة تفاضلية مكتملة جديدة تستند 
إلى دوال الشريحة الخماسية. المعاملات الوازنة يمكن الحصول عليها بواسطة خوارزمية شبه 
صريحة تشتمل على نظام جبري له له مصفوفة خرام خماسي. حسبنا معياري الخطأ L2 و 
∞L وكذلك أصغر ثلاثة لا متغيرات وذلك لمقارنتها بنتائج دراسات سابقة. كما نعطي كذلك 

تحليل الاستقرار لطريقتنا الجديدة. وتبين من المقارنة أن أداء طريقتنا هو أفضل من أداء معظم 
الطرق المعروفة.


