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1. Introduction
Linear regression has a central role in statistics, economics 
and other applied fields for the purpose of modeling 
because it allows for modeling the of cross-sectional data, 
(see for instance Al-Humoud and Al-Ghusain (2003). 
Under heteroskedasticity, the problem of inconsistency 
and inefficiency of the covariance matrix leads to biased 
inference which becomes more serious with an increase 
in the level of heteroskedasticity, see, e.g.,(Hausman & 
Palmer (2012). 

To resolve the problem of biased inference, Eicker 
(1963) and White (1980) suggested the heteroskedastic 
consistent (HC) covariance matrix estimator. Although, the 
HC0 (White, 1980) under certain scenario provides valid 
inference for infinitely large sample size, it but does not 
perform well for finite samples. MacKinnon and White 
(1985) suggested three modified versions of HC estimator, 
namely HC1, HC2 and  HC3, mainly for large samples and 
recommended their use for n ≥ 250. Several authors studied 
e.g., Cribari-Neto and Zarkos (1999, 2001); Cribari-Neto 
(2004), Cribari-Neto and Galv˜ao (2003), studied the finite 
sample performance of these HC estimators in terms of 
asymptotic distribution of quasi-t test statistic and concluded 
that HC3 estimator is comparatively a better estimator see. 
(Cribari-Neto & Zarkos; 1999, 2001; Cribari-Neto, 2004; 
Cribari-Neto & Galvão, 2003) Furthermore, the Sstudies on 
these estimators include Davidson and MacKinnon (1993), 
Hodoshima and Ando (2006) and Cribari-Neto and Da Silva 
(2011). They evaluated the asymptotic approximation and 

relative bias in HC based tests. They considered the fixed 
and stochastic heteroskedastic linear regression models with 
the presence of leverage observations.

Cribari-Neto and Zarkos (2004) showed that the effect of 
high leverage observation is more critical for small samples 
and leads to imprecise inference. They suggested an HC4 

estimator to deal with this scenario. Later studies, see e.g., by 
Cribari-Neto et al. (2005), Cribari-Neto et al. (2007), Cribari-
Neto and Da Silva (2011), for example, showed that the test 
using HC4 has very poor approximation of its asymptotic 
distribution. Thus for this reason, they suggested a modified 
version, HC4m, and showed its better approximation as 
compared to HC4m. However, application of this the modified 
estimator requires the user defined values. In this article we 
suggest a new HC estimator which, unlike HC4m, does not 
require any user specified values. Moreover, it leads to a 
better asymptotic approximation under homoskedasticity as 
well as under heteroskedasticity even for small samples. 

The rest of the paper is organized as follows: Section 
2 describes the model and covariance matrix estimators. 
Section 3 proposes a new estimator, . Numerical results of 
simulation study are given in Section 4. Real-life data are 
studied in Section 5. Finally, the Section 6 gives concluding 
remarks. 

2. Materials and Methods
The linear regression model considered is
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where  is the matrix of independent variables, n is the 
sample size, and k is the number of parameters.  is a 
vector of a dependent variable,  is an  
vector of error term, and  is the vector 
of unknown parameters. Generally, we assume  
for  and . The first condition ensures 
uncorrelated errors while the second condition implies the 
homoskedastic errors. When the variance of  does not 
remain constant, the situation 
, known as heteroskedasticity, occurs. Thus, 
where,

                                         (2)

The OLS estimator of  is

                                                  (3)

,such that,  and  where,

                                                          (4)

and  is as defined in (2).

When the assumption of homoskedasticity is satisfied, the 
variance of  is simplified as  

and it is estimated as , where 
 and  is the vector of OLS residuals 

given as 

                                              (5)

where,  is the identity matrix of order . 

The  suggested by White (1980) to resolve the 
problem of estimation and inference in the presence of 
heteroskedasticity is given as

                                                                  (6)

and

                                                          (7)

where  is the ith diagonal element of the matrix 
. Although  is consistent in both homoskedasticity 
and heteros-kedasticity, it is typically biased. Moreover, it 
tends to under-estimate the true variance of  in the case 
of small samples with leverage observations (see Long &  
Ervin 2000; Cribari-Neto & Zarkos 2001); Cribari-Neto and 
Zarkos; 2004). Some alternatives of  are proposed in 
literature, among which  and  to some extent may 
incorporate the effect of leverage observations. 

The  estimator, suggested by Cribari-Neto et al. (2007), 
is given as

                                                            (8)

where  is the ith diagonal 
element of the projection matrix . For, 

 , where 

 and  is some fixed value in [0 
1] interval (see Cribari-Neto et al. 2007).

In a following paper, Cribari-Neto and Da Silva (2011) 
suggested a modified version denoted by , which was 
proven to have good asymptotic approximation. 

The modified estimator 
 
is given as

                                                            (9)

where,

and

. The values of  and  are chosen by a user 
in a fashion to reduce the effect of high leverage on the 
estimation of the covariance matrix. Cribari-Neto and Da 
Silva (2011) suggested  and . The same values 
are used for this investigation.

Both  and  estimators depend heavily on the 
choices of user specified values. In the next section, we 
propose a new  estimator which does not require any 
user specified information and which can outperform other 
estimators, especially in the striking case of small samples 
with high leverage observations.

3. A New HC estimator
The problems with the suggested  estimators discussed in 
the previous section are the poor asymptotic approximation 
of  and the search of appropriate values of  and  
in  and  in . To address these theoretical and 
practical issues, we propose a new  estimator, denoted 
by , given as

                                                             (10)

where,

and,

 . Note,  is the 

number of parameters,  is the leverage measure, and 
 is the maximum leverage 

value among . In equation (10),  and  are defined by (4) 
and (7) respectively. We define  as a function of two values 

among which one is, . The 

second value is the square root of the ratio of maximal 
leverage  and , where  is known as the 
bound above which an observation is considered as a 
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leverage observation (see Montgomery et al. 2001, p. 207). 
The quantity  is generally used in the  estimators. 
Although this quantity provides a valid discount rate for low 
leverage observations, it puts a very heavy discount for the 
high leverage observations. The second quantity in  puts a 
cap on the discount rate to prevent an unreasonable heavy 
discount.

To study the behavior of the discount rate, we have plotted 
 of three considered HC covariance estimators which are 

  and  against 

It can be seen from Figure 1, that the  of  results in a 
low discount rate for low-leverage observation, but there is an 
unreasonably high discount for high leverage observation. In 
contrast,  of  puts an unreasonable heavy discount on 
low-leverage observations. Our suggested  possesses the 
good properties of both competing estimators, as shown in 
Figure 1. Moreover, in the new  the maximum discounting 
is not as intense as in other estimators. Unlike  and 

, our suggested estimator does not require any user 
specified information.

In the next section, we will evaluate the asymptotic 
approximation of our suggested estimator. We will also 
compare its performance with other estimators considered 
in this study. 

4. Results and Discussion

In this section, we use extensive simulations to compare the 
relative probability discrepancy (RPD) in the quasi t-test. 
We also compare the bias and MSE of the HC estimators 
using bootstrap procedures. R code for implementing the 
simulations is available from the authors upon request.

Example 1: Evaluation of relative probability discrepancy 
for homoskedastic and heteroskedastic cases.

In this example, we compute the relative probability 
discrepancy (RPD) of quasi t-test based on our new 
suggested estimator  and compare it with  and

. We use the same study design as considered by 
Cribari-Neto and Da Silva (2011). The heteroskedastic 
linear regression model given in (1) can be written as

                         (11)

where  The error variance  is defined as, 

 
for  and , 

where   is the number of parameters in the model and  being 
the real scalar used to control the level of heteroskedasticity 
in the data. The covariates are generated from the standard 
lognormal distribution. The level of heteroskedasticity 

Fig 1.  plotted against the ratio between individual  leverages and the mean leverage 
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Fig 2. (Homoskedasticity)RPD vs asymptotic probabilities(γ); With k = 3 and α = 0

Fig 3. (Heteroskedasticity) RPD vs asymptotic probabilities(γ); With k = 3 and α = 0.206

can be measured using .  
corresponds to homoskedasticity while  implies the 
presence of heteroskedasticity in the data. The greater the 
value of , the more severe the level of heteroskedasticity 
becomes. We studied the model (11) for k=3 and k=5, with 

normal and non-normal errors under both homoskedasticity 
and heteroskedasticity. We set  to obtain , i.e., 
homoskedasticity, and  to obtain λ approximately 
equal to 100. Several choices of the sample size have been 
studied (n = 50, 100, 150, 200).
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In the present study, the interest lies in testing the hypothesis, 

 
, against the two-sided 

alternative hypothesis, . The square of quasi 

t-test used is

                                                      (12)

where  denotes the OLS estimate of  and  is 
based on ,  and  estimators. Without the 
loss of generality, we can consider testing . 
Simulation results are based on 10,000 Monte Carlo runs. 
All the simulations are performed using the R language (R 

Development Core Team 2011). To assess the approximation 
of asymptotic distribution of the t-test, we used the measure 
relative probability discrepancy (RPD) defined as

                                      (13)

where  is the cumulative probability of asymptotic 
distribution, N is the number of Monte Carlo runs and 
#(condition) is the number of cases satisfying the given 
condition. The results of RPD are shown in Figures 2 and 3.

Case-I Homoskedasticity: In the case of homoskedastic 
errors (Figure 2) with  the asymptotic distribution 
approximation of quasi t-test based on  is very poor for 
all the considered choices of sample size. But in fairness, the 
approximation is better for the tests associated with  and 

 as compared to . For the small sample, , 
the approximation is better for -based test. However, the 
situation reverses for larger sample size choices, i.e n>100. 
Interestingly, the approximation of asymptotic distribution 
in the right tail for both -based and -based tests 
is very close. This is the region that plays a critical role in 
hypothesis testing. For the homoskedastic case, the results 
for  are similar to  (Figure 4).

Fig 4. (Homoskedasticity) RPD vs asymptotic probabilities(γ); With k = 5 and α = 0
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Case-II Heteroskedasticity: Recall that the main objective of 
HC estimators is to provide valid estimates for the variance of 
regression parameters in the presence of heteroskedasticity. 
Figure 3 shows the results of RPD for . Our suggested 
estimator  outperforms the other considered estimators. 
Although, for large choices of sample size, - based test 
shows positive RPD while for - based test the RPD 
is generally negative but the approximation of asymptotic 
distribution for - based test is generally better than 

 especially in the right tail. When  and  
the approximation of  based test is superior to other 
tests. While for , the  and  based test 
shows same approximation, especially in the right tail of 
the asymptotic distribution. Thus, empirical size for the 
tests that employ  and  estimators have a close 
approximation for .

The results of the RPD show that the test based on our 
suggested  estimator can provide a valid inference about 
the regression parameter in the case of heteroskedasticity. 
Now we evaluate the amount of bias and the MSE in the  
estimators under study. The wild bootstrap procedure used is 
given as below:

1. Generate the data  under model (1).

2. Fit model (1) and obtain the OLS residuals , 
where  is the least square estimate of .

3. Resample the residuals  and obtain the wild bootstrap  
using Liu (1988) transformation.

4. Bootstrap , say  using the wild bootstrap residuals  
and model (1) i.e.,  and obtain 
where  is the OLS estimator for the bootstrap sample 

.

5. Compute the matrix defined in equation (7) using  and 
thus estimate , i.e. the  estimator for the bootstrap 
sample.

6. Repeat steps 3 through 5, B times. Thus we obtain 

 and compute the variance, denoted as 
, which provides a true value of 

. In addition, compute  and thus 
its expected value i.e.,  and the   Using 
the results obtained in Step 6, we can compute the bias and 
MSE given as follows:

                                             (15)

where  is the jth element of  and  is 
the jth diagonal elements of . 

For bias and MSE, the linear regression model given in 
Equation (1) is used for  and . We have considered 
small samples only, since with large samples, the estimators 

Fig 5. (Heteroskedasticity) RPD vs asymptotic probabilities(γ); With k = 5 and α = 0.206



A simulation-based evidence on the improved performance of a new modified leverage adjusted heteroskedastic 35

show approximately similar results (see MacKinnon and 
White 1985 and Long and Ervin 2000). The predictors are 
simulated from standard lognormal distribution, while the 
level of heteroskedasticity is set at .

The results for the average MSE and bias for  and 
 are given in Table 1 and Table 2, respectively. The 

figures in boldface are the smallest among the three 
considered estimators. The results present a clear dominance 
of efficiency in terms of minimum bias and MSE of  
over  and  with few exceptions, as when  is 
efficient.

Now we will illustrate the use of our suggested estimator by 
applying it to real-life data. We will show that it is important 
to take the presence of heteroskedasticity into account and 
use the  estimator-based quasi t-test when testing the 
significance of regression parameters.

5. Real data example

In this section, we have applied  estimators to the 
education expenditure data taken from Chatterjee and Hadi 
(2015) as an illustration.

Fig 6. RPD vs asymptotic probabilities(γ);  for n = 25

The relationship between expenditures on education and 
per capita income for 50 different regions has been studied. 
Figure 7 shows the scatter plot of data and the plot of residuals 
against the observed values. The scatter plots how a linear 
relation between two variables. Yet, due to the presence of 

one extreme observation, it tends to have a quadratic model.

We first test the data for possible heteroskedasticity. The 
Breusch-Pagan test (LM = 9.1399, df =2, p.value = 0.010) 
is significant at a 5% level of significance, thus indicating 
the presence of heteroskedasticity. The same findings can be 
confirmed from the residuals plot shown in Figure 7.

Now, we fit the following regression model

                                 (16)

The values of the OLS estimates are , 
 and . The results given in 

Table 3 show that the OLS is influenced by the extreme 
value which suggests a quadratic model. On the other hand, 
the  estimator, along with the other  estimators, 
clearly suggests a linear model for the education expenditure 
regressed on per capita income.
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Table 1. Average Bias and MSE of HCs under heteroskedasticity using 500 Monte Carlo runs and 500 Bootstrap samples

Estimator

0.2778 0.0064 0.0091 0.0025 0.0048 0.0066

MSE 0.5782 0.0144 0.0067 0.0037 0.0018 0.003

0.1402 0.0047 0.0034 0.0028 0.0016 0.0027

0.1135 0.0121 0.0323 0.0042 0.0158 0.0178

Bias 0.2415 0.0344 0.0268 0.0129 0.007 0.0086

0.0437 0.0075 0.0145 0.0072 0.006 0.0073

Table 2. Average bias and MSE of HCs under heteroskedasticity using 500 Monte Carlo runs and 500 

Bootstrap samples (k = 5)

 Estimators     

0.067 0.174 0.192 0.097 0.022 0.179 0.030 0.179 0.009 0.015 0.006 0.010

Bias 0.195 0.492 0.516 0.356 0.055 0.148 0.064 0.148 0.010 0.013 0.006 0.010

0.066 0.154 0.095 0.124 0.026 0.062 0.038 0.060 0.007 0.008 0.003 0.007

0.011 0.058 0.089 0.034 0.018 0.162 0.024 0.175 0.001 0.002 0.000 0.001

MSE 0.074 0.414 0.569 0.233 0.029 0.116 0.047 0.118 0.001 0.002 0.000 0.001

0.010 0.046 0.025 0.045 0.020 0.031 0.028 0.025 0.000 0.001 0.000 0.001

Fig7. Plots of education expenditure data for 1970 (a) X vs Y. (b) Residuals vs X.

6. Conclusions

In this article, a new HC covariance estimator HC6 is 
suggested, which has a minimum bias and MSE. Furthrmore, 
our suggested estimator, unlike other competing estimators, 
i.e.  and , does not require any user specified 

information. The use of a quasi t-test based on the  
estimator is recommended for the inference of linear 
regression model parameters when heteroskedasticity is 
present but no collinearity among predictors exists.
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Our suggested estimator outperforms the competing 
estimators, especially when there are small samples with 
high leverage observations.

For future research, we will develop estimators which can 
provide valid inferences for heteroskedastic regression 
models with collinearity among the predictors.
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