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Abstract

Background: COVID-19 has emerged as a serious pandemic that emerged during since the end of 2019. The 
dissemination and survival of coronaviruses have been demonstrated to be affected by ambient temperature in 
epidemiological and laboratory research. The goal of this investigation was to see if temperature plays a role in 
the infection produced by this novel coronavirus.
Methods: Between March 29, 2020, and September 29, 2020, daily confirmed cases and meteoro-logical 
parameters in many Gulf countries were collected. Using a generalized additive model, we investigated the 
nonlinear relationship between mean temperature and COVID-19 confirmed cases.. To further investigate the 
association, we employed a piecewise linear regression.
Results: According to the exposure-response curves, the association between mean temperature and COVID-19 
cases was nearly linear in the window of 21 − 30◦C while it is almost flat beyond that window. When the number 
was below 21◦C (lag 0-14), each 1◦C increase was associated with a 4.861 percent (95 percent CI: 3.209 − 
6.513) increase in mean temperature (lag 0-14). Our sensitiv-ity analysis confirmed these conclusions.
Conclusions: Our findings show a positive linear association between mean temperature and the number of 
COVID-19 cases with a threshold of 21◦C. There is little evidence that COVID-19 case numbers would rise as 
the weather becomes colder, which has important consequences for making health strategy and decision.
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1. Introduction

During the end of 2019, a new type of Coronaviruses has been discovered called Covid-19. The virus 
was discovered first in Wuhan city in China, then expanded worldwide. The World Health Organi-
zation (WHO) has proclaimed SARS-CoV-2 (Severe Acute Respiratory Syndrome) to be a pandemic 
(WHO 2021). SARS affects mainly the respiratory system of the patients and the main syndromes which 
are common between patients are fever, dry cough, dyspnea, headache, and hypoxemia (Koichi 2020). 
Several studies have been proposed to model this infection without involving other variables and using 
well known compartment models (Oshinubi et al 2021), (Demongeot et al 2021) and (Sallahi et al 2021). 
Other models use time series and non-parametric approach such as functional data analysis (Oshinubi et 
al 2022) and (Demongeot et al 2022) to name a few. It has been well known that temperature, humidity, 
and ventilation play a role in the persistence, infectivity, dispersal, and elimination of viruses, as well as 
altering human defensive mechanisms against respiratory diseases (Moriyama 2020). Cold temperature
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and low relative humidity are also believed to increase the transmission of other respiratory viruses, in-
cluding respiratory syncytial virus (RSV), human rhinovirus, and avian influenza virus (Wolkoff 2018)
In the process of studying SARS epidemic, researchers have been tested the virus stability on the smooth
surfaces at temperature of 22 to 25 Celsius and humidity of 40 to 50 percentage. It was found that the
risk of SARS epidemic is increased in the low temperature atmosphere and low humidity. Thus, the
incidence of SARS in the lower weather days increased. Our aim is to check whether the relationship
between COVID-19 confirmed cases and the volatility in the weather is ascertain.

2. Materials and Methods

2.1 Study area
Our study included several countries from Middle and North of Africa Fig. 1 shows the Middle East map
of the number of infections during March-June 2021. We focused on these country since the meteoro-
logical data we have obtained was limited.

Fig. 1. Middle East map for infection during March-June 2021

2.2 Data collection
Daily confirmed cases were gathered from the Worldometers official websites (Worldometer 2021)
https://www.worldometers.info/coronavirus/ corresponding to countries between March 23, 2020 (i.e.,
the lockdown of most GCC and MENA countries) to September 29, 2020. We obtained the data after the
closure of those countries to minimize the potential inclusion of imported cases in this study.
Meteorological data during the same study period for each country were collected from the World Me-
teorological Organization (https://worldweather.wmo.int/en/home.html) (Worldweather 2021). We also
included meteorological factors such as daily mean temperature, humidity, air pressure, and wind speed.
To adjust for changes in the age distribution of the southern population, we calculated directly age-
standardized infection rate for each day of the study (Clancy et al. 2002). Daily infection was tabulated
and 95% percentile of the distribution calculated. Days on which l-day running average of infection was
above the 95th percentile were diagnosed as “epidemic“ days.
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2.3 Generalized additive model.
Our main goal was to determine the shape of the infection-temperature relationship while accounting for
potential confounders. One can use the logarithm of infection transformation as dependent variable and
then fit a linear function of the temperature and other predictors on the transformation. Unfortunately
we cannot use this assumption from what we explained earlier. Therefore, in this paper, we assume
that log infection is a nonlinear smooth function. Rather than summarizing the temperature-infection
relationship with a single risk for all temperatures, we generated a relative risk estimate that was a
smoothly evolving function of temperature. In this case, we propose a generalized additive model (GAM)
which uses temperature as a response variable and other environmental variables (Air Pressure, Wind and
Humidity) as explanatory variables since a plausible relation is established (see Table 1). Environmental
variables may play a role in determining the actual relationship between the number of infections and air
temperatures ((Moatar and Gailhard 2006), (Webb et al. 2003) and (Belanger et al. 2005)).
The generalized additive model (GAM) was proposed by Hastie and Tibshirani ((Hastie and Tibshirani
1986)) and is an extension of the generalized linear model. GAM is useful to investigate the nonlinear
relationship between weather features and health-related consequences (Liu et al. 2020, Wu et al. 2018,
Lin et al. 2018, Peng et al. 2006 and Talmoudi et al. 2017). General linear model assume a strong as-
sumption of parameters linearity while generative additive model does not requires this assumption. Its
concept is to characterize the response using an additive nonlinear functions association, which allows
for more comprehensive modeling of the impact of the explanatory variables. This specificity makes
it a popular instrument in modelling the impact of environmental variables because these effects are
often nonlinear and are difficult to specify parametrically (Bruneau and Gregoire 2002) and (Peng and
Dominici 2002). The literature review of (Jbilou and El Adlouni 2002) provide a review of generative
additive model and its impact in identifying nonlinear relationship in environmental and health investiga-
tions. The generalized additive model (GAM) is a semi-parametric refinement of the generalized linear
model (GLM), and it could be used to inspect the nonlinear association between weather and health
outcomes. This model is written as follows:

E(y) = β0 + f1(x1) + f2(x2) + . . .+ fp(xp) + ε (1)

This model’s implementation necessitates the estimation of smooth irregular functions fi(xi) i = 1, . . . , p
for each independent variable xi.
To circumvent the problem of overfitting, the penalized GAM was used where smoothing functions fi are
cubic or penalized smoothing splines These splines are estimated to be the solution to the optimization
problem (2). The solution requires a twice continuously differentiable function which minimizes the sum
of the penalized squares (penalized residual sum of squares):

argmin
fi

(
‖y − fi(xi)‖2 +

∑
i

λi

∫
f ′′i (x)

2dx

)
(2)

Equation (2)’s first component measures data fit, whereas the second term penalizes deflection in the
function. Smoothing parameters λ1, . . . , λp represent the penalties on the irregularity of the fitted func-
tion associated with each explanatory variable x. They control the smoothing level of each function fi
and the compromise between the bias and the variance. The main idea is to place far more nodes than
are required and then penalize those nodes that would provide insufficient information.
The optimization problem (2) has a parametric description based on a cubic splines decay of fi functions
using the following form:

fi = Biβi where Bβ =
∑
j

bjβj (3)

The optimization problem (2) becomes:

arg min
β1,...,βp

(
‖y − β0 +

p∑
i

Biβi‖2 +
p∑
i

λi

∫
{(Biβi)

′′}2dx

)
(4)
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where fi is the ith regression function in the additive model, f ′′ denotes the second derivative of f , ‖‖ is
the Euclidean norm and λ1, . . . , λp are penalty terms.
Equation (4) is solved using the iterative reweighted least squares algorithm (IRLS). The problem per-
formed in each iteration is similar to a weighted least squares problem in which the second derivative
fi is designed to define the smoothing function. Roughness of fi depends on the magnitude of f ′′i . A
straight line is characterized by a second derivative equal to zero. An estimate of λi is chosen to opti-
mize a fit with an adjusted bias and variance. The choice of these parameters is therefore done by using
generalized cross-validation (GCV) and performance metrics. In fact smoothing parameters estimation
is done by evaluating AIC or BIC information criterias (Akaike 1973) and BIC (Schwarz 1978) or GCV
(generalized Cross Validation). Here we used Generalized Cross Validation which is obtained by the
following:

GCV (λ) =
1

p

p∑
i=1

{
yi − xiβ̂

1− trace(Sλ)/p

}2

(5)

where Sλ is the smoother where Sij = ∂β̂i/∂β̃j and trace(S) =
∑

i Sii is a measure of effective degree
of freedom. We estimated this smooth function by using a GAM, which fits a cubic spline function
of temperature GAMs or cubic splines using statistical software packages R-package. GAMs in our
analysis were implemented with the mixed computation vehicle with automatic smoothness estimation
(mgcv package; version 1.8-28) of R software (version 3.5.2). This package uses the generalized cross
validation to find the optimal smoothing function related to each explanatory variable (Wood 2006). The
threshold of the smoothing functions of explanatory variables to be retained is 5%.

2.4 Statistical analysis.
Because the temperature effect could last for several days and the period between exposure to an infection
span from one day to twenty eight days,
A moving-average procedure is a feasible solution to account for the cumulative lag effect of temperature
((Duan et al. 2019), (Li et al. 2020), (Lu et al. 2015)). As a consequence, a GAM with a Gaussian
distribution family was used in this work ((Hastie and Tibshirani 1986)) to examine the moving average
lag effect (lag 0-7, lag 0-14, lag 0-21, lag 0-28) of mean temperature on infected cases. We should
mention that the temperature effect could last for several days and the period between exposure to an
infection span from one day to twenty eight days.

Mean (SD) Min Max
Confirmed cases 1035 (227.082) 146 1632
Mean Temp (◦C) 33.71(10.286) 28 45

Humidity (%) 43.00(17.386) 6 80
Air pressure (hPa) 997(75.816) 996 1020
Wind speed (m/s) 7.00(1.199) 11.4 13.5

Table 1. Summary statistics of newly confirmed cases and meteorological variables across Gulf Coop-
eration Council countries and days.

The model is defined as:

logyit = β0 + f1(Tmpil) + f2(Humil) + f3(AirPil)

+f4(Winil) + f5(yi,t−1) +Ctyi + dayt + εit (6)

In the model, logyit is the log-transformed counts in country i on day t (to which we add one since
logarithmic function is only defined for y > 0), β0 is the intercept and fj designates a fine layer spline
function with the maximum 2 degrees of freedom to circumvent overfitting, Tmpit is the l+ 1 -day
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rolling mean term lag0 − l of daily mean temperature in country i. We also controlled the relative
humidity Humil, air pressure AirPil and wind speed Winil during the same period for the possible
lurking variable. The dependent variable log(y)i,t−1 determines the logarithm transformation of the
number of infections lagged one day in country i to account for possible correlation in the data (Liu et
al. 2020). The variable Ctyi is the country fixed effect variable and dayt apprehends day fixed effect.
We then fitted the piecewise log-linear model on the top of fitting GAM with polynomial spline as the
following:

logEyit = β0 + β1Tmpil + β2(Tmpil − ξ)+ + fHum(Humil)

+fAirP(AirPil) + fWin(Winil) (7)

Here (Tmpil − ξ)+ = max(Tmpil − ξ, 0).
This model is the same as

logEyit = β0 + β1Tmpil + fHum(Humil)

+fAirP(AirPil) + fWin(Winil) (8)

if the temperature is less than the threshold value ξ. It is also same as

logEyit = β0 − β2ξ + (β1 + β2)Tmpil + fHum(Humil)

+fAirP(AirPil) + fWin(Winil) (9)

if the temperature is greater than the threshold value ξ.
Equations (8) and (9) are constrained to meet at the threshold value ξ. The aforementioned model is also
known as a B-mode splined linear regression model. The covariates in our study include Country (Cty),
day of week (day), daily average temperature (Tmp) as representative variables of daily temperature.
We identified the threshold values rendering the model with the lowest AIC (Akaike 1973) and BIC
(Schwarz 1978).

3. Result

3.1 Descriptive statistics
The degree of smoothness of the estimated infection-temperature relative risk curve is controlled by its
number of degrees of freedom. When fitting a linear regression, one uses one degree of freedom for
accounting for the slope and a two degree of freedom when fitting a quadratic curve (one for its slope
and one for its curvature). To allow for extremely nonlinear shapes, we used six degrees of freedom to
describe the association of infection with each weather variable.
We began with a substantial preliminary analysis of GAMs with natural cubic spline in which several
types of representative values, including daily maximum temperature, average temperature, air pressure,
wind and humidity were considered as predictors of daily infection. We applied Akaike′s Information
Criterion (Akaike 1973) and (Schwarz 1978) for the model-fitting criteria. We selected daily average
temperature, daily average relative humidity, air pressure, wind speed all with a 7-day lag (lag 0-7),
14-day lag (lag 0-14), 21-day lag (lag 0-21), 28-day lag (lag 0-28).
Table 1 summarizes the descriptive statistics of all the variables. In this study, we used cases during the
period (May 22, 2021 to June 30, 2021) and the average number was 1035 per day. Average daily mean
temperature, relative humidity, air pressure, and wind speed were 33.71◦C, 43.00%, 997.00 hPa, and
7.00 m/s, respectively.
Table 2 shows the pearson coefficient of correlation between several variables. Mean temperature is
moderately significantly correlated (positively) with relative humidity (r = −0.354) and with air pres-
sure (r = 0.163), using a level of significance α = 0.05. Mean temperature was negatively correlated
with wind speed (r = −0.053, p < 0.05).
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Var Tmp Wind AirP Hum
Tmp 1.00 −0.053∗ 0.163∗∗ 0.053∗

Wind −0.053∗ 1.00 0.274∗ −0.117
AirP 0.163∗∗ 0.274 1.00 0.127
Hum 0.053 −0.117 0.127 1.00

Table 2. Pearson coefficient of correlation between environmental variables. ∗, ∗∗ and ∗∗∗ indicate significance
. . .

3.2 Effect of temperature on infections
The exposure-response curves in Figure 2 show that the relationship between temperature and infection
cases was significantly nonlinear (lag 0-14, with p < 0.001). Specifically, the relationship was approxi-
mately linear in the window of 21◦C (70◦F) for Qatar and became flat above, suggesting that the single
threshold of the temperature effect on COVID-19 was 21◦C. For Kuwait and Saudi Arabia, we found that
the temperature-infection associations using average temperature with a lag of 7 and 14 day exhibited a
J- shaped formation; that is, there was no association or a small negative association for the temperature
range below the threshold and a positive association for the temperature around 26◦C (80◦F).

Fig. 2. Exposure-response curves for the effects of temperature on COVID-19 confirmed cases for Qatar.
The x axis is the mean temperature (F) (14-day rolling average chosen by AIC and BIC). The y axis
expresses the effect of the smoother to the fitted values

Based on GAM’s outcome, a piecewise linear regression was adjusted with a specific value at a 21◦C to
quantify the impact of temperature above and below the threshold for Qatar and Oman (26 for Kuwait and
KSA). As showed in Table 4, each 1◦C rise in mean temperature ed to a 3.471% (95% CI: 2.277-4.586)
increase in the daily number of COVID-19 confirmed cases when mean temperature was below 21◦C for
Kuwait. This positive effect is largest for Oman (percentage change = 6.949%, 95% CI: 2.292-9.205).

4. discussion

Using a generalized additive model, we investigated the nonlinear connection between ambient temper-
ature and COVID-19 confirmed instances in this work. When the mean temperature was in the interval
[20-26]◦C, the exposure-response relationship was positive linear, but it became flat above 26◦C, indi-
cating that greater temperatures may not impede the transmission of this unique coronavirus.
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Fig. 3. Response curves linking temperature with confirmed cases for Kuwait. The x axis is the mean
temperature (F) (14-day moving average chosen by AIC and BIC). The y axis indicates the effect of the
smoother function to the fitted values.

We compared GAM with linear and non-linear approaches such as Random Forest (RF), Support Vec-
tor Machine (SVM), Neural Network(NN), Tree, Gradient Boosting (GBM) and XGradient Boosting
(XGBM) and Linear Regression (GLM). Table 3 summarizes the findings for several models that used
the 10-fold cross-validation (GCV) process to predict the log-transformed COVID-19 counts, with per-
formance metrics like MSE, RMSE, used to assess model performance. The Random Forest regressor
produced the best result after GAM using the metrics MSE and RMSE (1.328 × 103, 823.22) respec-
tively. The models with the least performance are found to be Gradient Boosting Regressor (GBM) and
XGradient Boosting (XGBM).
Since random forest performed best after GAM, we looked at the features that play major roles when
compared to the other features using random forest feature selector algorithm and Figure 5 summarizes
features importance in absolute value. We can see that temperature ranked at the top followed by hu-
midity, wind and air pressure. Previous studies found that temperature plays a role in the survival and

Model. MAE MSE RMSE
GAM 205.19 1.011 ×103 798.10

RF 268.82 1.328× 103 823.22
SVM 274.92 1.544× 103 854.44
GLM 283.16 1.569× 103 885.28
Tree 301.56 2.001× 103 1012.12
NN 271.49 1.981× 103 890.58

GBM 468.15 3.522× 103 974.97
XGBM 461.07 2.966× 103 937.21

Table 3. Results of the state-of-the-art machine learning algorithms for prediction of infection counts of
COVID-19. MAE is the mean absolute error, MSE is the mean square error and RMSE is the root mean
square error.

transmission of other coronaviruses, such as SARS-CoV and MERS-CoV. Based on data from Hong
Kong, Guangzhou, Beijing, and Taiyuan, Tan et al. (2005) discovered that the best environmental tem-
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Fig. 4. Exposure-response curves for the effects of temperature on COVID-19 confirmed cases for
Kuwait. The x axis is the mean temperature (F) (14-day moving average chosen by AIC and BIC).
The y axis indicates the contribution of the smoother to the fitted values.

perature for SARS outbreaks seems to be between 16 and 28 degrees Celsius. In a lab study involving
surrogate viruses to test the impact of temperature on coronavirus viability on surfaces, researchers dis-
covered that viruses inactivated more swiftly at 20◦C than at 4◦C (Casanova et al., 2010). Our study has
some implications. First, the nonlinear relationship between ambient temperature and COVID-19 con-
firmed cases showed COVID-19 may not perish of itself without any public health interventions when the
weather becomes warmer. As a result, the citizens and governments could not expect the high temper-
ature to clear out this particular epidemic. Furthermore, increasing temperature in areas or times below
21◦C is associated with a high likelihood of transmission, providing useful information for policymakers
and ascertaining whether the novel coronavirus can coexist with humans for an extended period of time.

Tmp Hum Win AirP

0.25

0.20

0.15

0.10

0.05

0.00

Fig. 5. Features importance.
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Bruneau, B. and Grégoire, F. (2011). Étude de la distribution spatiale des données d’abondance de ma-
quereau bleu (Scomber scombrus) et de capelan (Mallotus villosus) des relevés d’hiver aux pois-
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