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Abstract

Almost one out of five people, including children, suffers from musculoskeletal disorders. It is the
second leading cause of disability worldwide. It affects the musculoskeletal system’s major areas, rep-
resented by the shoulder, forearm, and wrist. It causes severe pain, joint noises, and disability. To detect
the abnormality, the radiologist analyzes the patient’s anatomy through X-rays of different views and
projections. To automatically diagnose the abnormality in the musculoskeletal system is a challenging
task. Previously, various researchers detected the abnormality in the musculoskeletal system from ra-
diographic images by using several deep learning techniques. They used a capsule network, 169-layer
convolutional neural network, and group normalized convolutional neural network in musculoskeletal
abnormality detection. However, to propose methods for improving abnormality detection, further work
needs to be done because the accuracy of the conventional methods is far away from 90%. This paper
presents an ensemble learning-based classification system for detecting abnormality in wrist radiographs.
Tags in radiographs may result in learning noisy features hence reducing the performance. Therefore,
tags are segmented and removed using UNet trained on the annotated ground truths. Segmented images
are then used for voting-based diagnosis. The simulation results show that the proposed methodology
improves testing accuracy by 1.5%-4.5% compared to the available wrist abnormality detection methods.
The proposed methodology can be used for any kind of musculoskeletal abnormality detection.

Keywords: Abnormality diagnosis; ensemble learning; medical imaging; radiograph processing; seg-
mentation

1. Introduction

Biomedical image processing is a revolutionized field that enfolds medical signal gathering, image for-
mation, image processing, deep learning, and diagnosis of several medical problems based on the features
extracted from the radiographic images (Nawarathne et al., 2022; Saadawy et al., 2020). Its application
of deep learning offers better interpretations of the images and provides high accuracy. Deep learning
is a powerful field that uses a range of neural networks to perform segmentation, object detection, and
classification (Prajna & Nath, 2021; Minaee et al., 2021; Pal et al., 2021; Wang et al., 2021; Korot et al.,
2021; Sungheetha & Sharma, 2021; Zhang et al., 2021).

A prevalent deep learning method and convolutional neural network are widely used in medical
imaging. A convolutional neural network is an excellent feature extractor. Therefore, it is used to classify
images that can prevent complex and expensive feature engineering (Yadav & Jadhav, 2019).
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In general, medical imaging techniques visualize the body’s interior and specific organs. Medical
imaging covers conventional radiography, MRI, ultrasound, endoscopy, and thermography disciplines
(Zhou et al., 2021). Conventional radiography uses X-ray or gamma rays to view the internal form of an
object. It is used to detect the presence or absence of disorders such as musculoskeletal disorders (Aal et
al., 2018). Musculoskeletal disorders are injuries or disorders in muscles, joints, ligaments, and tendons
that affect the movement of the human body and often cause disability (Yang et al., 2019). More than 1.7
billion people worldwide are suffering from musculoskeletal disorders. It is the second leading cause of
disability worldwide (Yang et al., 2019). The prevalence of these disorders varies by age, as one in two
people over the age of 18 and three in four people ages 65 and over are affected. In 2009–2010, almost
105 million cases of musculoskeletal disorders were reported to physician’s clinics, hospitals, and emer-
gency departments (Chada, 2019).The early detection and treatment of musculoskeletal disorders can
prevent disability. The scarcity of radiologists in primary care hospitals leads to late or no abnormality
diagnosis and may result in a patient’s permanent disability (Bhargavan et al., 2009).

Researchers have proposed deep learning-based approaches to address the issues of efficient and
effective musculoskeletal abnormality detection (Saadawy et al., 2020; Aal et al., 2018; Yang et al.,
2019; Chada, 2019; Goyal et al., 2020; Solovyov & Solovyov, 2020; Irmakci et al., 2019; Rajpurkar et
al., 2017; Saif et al., 2019; Tantawi et al., 2020). Those approaches process bone radiographs in detecting
musculoskeletal abnormality. These approaches aimed to provide expert-level accuracy as false detection
may increase the expense of treatment, dissatisfaction, and poor treatment of the patient hence increasing
severity and disability. Therefore, it is challenging to obtain an accurate diagnosis that results in efficient
and timely patient treatment.

An ensemble learning-based wrist abnormality classification method is proposed in this paper. En-
semble learning is a voting strategy from more than one model and combines them using hard voting
(Sagi & Rokach, 2018) or soft voting (Tasci et al., 2021). Hard voting counts the number of votes from
each model and follows the majority’s decision, whereas soft voting combines the probabilities of Soft-
max layers of each model. Ensemble learning trains multiple models and combines their predictions thus
outperforming the predictive performance of a single model (Sagi & Rokach, 2018). Few researchers
(Mondol et al., 2019) have used ensemble learning for musculoskeletal abnormality detection to achieve
better accuracy in the diagnosis.

The proposed methodology comprises some steps and follows hard voting. The explanation of the
contribution requires it to break down into two parts. The first part explains how the networks are trained,
whereas the second part is how trained networks are utilized for the diagnosis. For the first part, a UNet
trained on annotated ground truth is used to segment the tags and remove them from the radiographs. Tags
removal is essential as the classifiers may learn them noisy features. Image and edge enhancement using
contrast limited adaptive histogram equalization (CLAHE), smoothing, and unsharp masking is applied
to the intensity images before UNet training. A separate approach is followed as far as creating ground
truth and training UNet for the segmentation. For ground truth creation, an interactive script is created
using Otsu’s thresholding method (Otsu, 1979), Maximally Stable Extremal Regions (MSER) (Chen
et al., 2011), and connectivity information instead of using available contour-based software for quick
annotation. A total of 800 ground truth images are generated using that script, and the UNet is trained
and tested on them to efficiently remove noisy tags. Using the radiographs with tags removed, three
other networks such as DenseNet-169, DenseNet-201, and DenseNet-121, are trained. Augmentation
is applied before training the UNet and the other three classifiers. All the networks are trained and
tested on wrist radiographs of the MUsculoskeletal RAdiographs (MURA) dataset. However, the same
methodology can be used for radiographs of other body parts as all the properties and features are similar.
For the second part, this paper suggests using image enhancement followed by noisy tag removal with
the help of the trained UNet. Given that the MURA dataset contains multiple orientations and views of
radiographs of the same case, as a pre-classification approach, this paper suggests concatenating all these
radiographs to get full advantage of various orientations. The final step is to decide whether a case is
normal or abnormal based on the voting of three trained classifiers.

The rest of the paper is organized as follows: Section 2 describes some conventional deep learning-
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based solutions for musculoskeletal abnormality diagnosis. Section 3 describes the proposed voting-
based approach. Section 4 shows the proposed approach’s results, experiments, and discussion, followed
by the conclusion and future work in Section 5.

2. Related Work

This section discusses some of the conventional state-of-the-art methods for musculoskeletal abnormality
detection. This first describes the dataset used by researchers, followed by the methodologies.

Lindsey et al. (Lindsey et al., 2018) created a dataset that comprises a total of 1,35,845 radiographs
with localized fracture regions. Out of those radiographs, 34,990 radiographs projection were of the
lateral wrist or posterior-anterior. However, this dataset hasn’t been made publicly available. Lower
Extremity RAdio graphs (LERA) is another dataset used by a few researchers that contain 1,299 radio-
graphic images of the foot, knee, hip, and ankle. Rajpurkar et al. (Rajpurkar et al., 2017) introduced the
MURA dataset. It is the largest publicly available dataset that contains 40,561 radiographic images from
14,863 studies and is used mainly by researchers. Out of 14,863 studies, the wrist has 3,697 studies that
are maximum compared to others. Among these wrist studies, 237 studies are kept for validation.

Varma et al. (Varma et al., 2019) trained ResNet-50, DenseNet-161, and ResNet-101 on LERA
dataset. They performed an abnormality diagnosis on the knee, ankle, hip, and foot. With some parameter
tuning, the best accuracy they got was 85%.

Rajpurkar et al. (Rajpurkar et al., 2017) used DenseNet-169 layers architecture in the musculoskele-
tal abnormality detection. They replaced the last fully connected layer of DenseNet-169 with the layer
with a single output that provides the probability of belonging to either a normal or abnormal case. They
applied image normalization and resizing as pre-processing steps followed by augmentation to address
dataset imbalance. Solovyov and Solovyov (Solovyov & Solovyov, 2020) ) also used DenseNet- 169 and
improved the accuracy of diagnosis to 86.2% using fine-tuning of the parameters.

Saif et al. (Saif et al., 2019) ) proposed a capsule network-based classification to detect the abnor-
mality in the musculoskeletal system. After training on 64×64, 128×128, and 224×224 sized images,
they evaluated their network and observed that 224×224 provided the best training accuracy of 96% for
the wrist radiographic images. However, the author did not discuss the testing results. Therefore, this
methodology may not be used as a standard for evaluation as sometimes over-fitting results in highest
training but lowest or moderate testing accuracy.

Goyal et al. (Goyal et al., 2020) designed GnCNNr (Group Normalized Convolutional Neural Net-
works with Regularization). The GnCNNr utilizes group normalization, weight standardization, and
cyclic learning rate scheduler (regularizer) for improved performance. The group normalization layer is
used to form sets from channels and calculates their variance and mean for their standardization. Instead
of fixing, a cyclic learning rate scheduler keeps the learning rate cycling between the upper bound and
the lower bound.

Saadawy et al. (Saadawy et al., 2020) detect the abnormality in muscles using a two-stage approach
of the MobileNet model. In the first stage, they classified the skeleton into seven classes according to the
various parts of the anatomy. Those parts are the shoulder, humerus, elbow, forearm, wrist, hand, and
finger. In the second stage, they used seven other classifiers designed for each class of the first stage to
detect whether the case is normal or abnormal. As pre-processing steps, they used adaptive histogram
equalization, data augmentation, and normalization.

Mondol et al. (Mondol et al., 2019) diagnosed the abnormalities in the elbow, wrist, humerus,
and finger using soft voting-based ensemble learning. They used VGG-19 and Resnet architecture for
ensemble learning to get a diagnostic accuracy of 87.86% for abnormality of the wrist. Nazim et al.
(Nazim et al., 2021) also used ensemble learning using CNN and LSTM (Long Short-Term Memory)
based models. Their best training accuracy for the LERA dataset on knee abnormality detection is
99.4737%, whereas the best accuracy of detection on the MURA dataset for the wrist is 78.1086%.

Finally, we may draw the following observations from the literature review: First, the MURA dataset
has been used in most of the literature discussed in this section (Rajpurkar et al., 2017; Saif et al.,
2019; Saadawy et al., 2020; Goyal et al., 2020; Mondol et al., 2019; Nazim et al., 2021). The MURA
dataset contains two or more radiographs taken from different orientations for the same case. How-
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Fig. 1. An example of multiple orientation images in the MURA dataset.

ever, researchers only used a single image instead of getting advantages from the images of multiple
orientations. An example is shown in Figure 1. Second, if the radiographic tags are not removed, the
classifier may detect noisy and useless features thus leading to less accurate results. Lastly, during the
augmentation process, rotation is performed hence reducing the performance of CNN (Saif et al., 2019).

3. Proposed Method

This paper proposes an ensemble learning-based classification method that performs better than con-
ventional methods. The proposed methodology introduces better pre-processing, segmentation using
annotated ground truths, and voting that combines results in improved classification. Wrist images from
the MURA dataset are used for all the simulations, training, and testing.

This section is divided into two subsections. 3.1 discusses the flow of classification using the pro-
posed methodology, whereas 3.2 explains the ground truth annotation for segmentation along with train-
ing the UNet and voting classifiers

3.1 Flow of classification
This subsection explains how a case should be diagnosed using the proposed methodology. Figure 2

discusses the flowchart for the diagnosis of wrist radiographs as either normal or abnormal. The MURA
dataset contains multiple radiographs taken from different orientations for a single case, as shown in Fig-
ure 1. Therefore, the expected input to the system is n number of images described using I1, I2, . . . , In.

Image pre-processing is applied to the input image to enhance the image, particularly the edges that
represent possible fractures. To enhance the overall image, CLAHE should be applied first. However,
CLAHE enhanced the unwanted details, as can be seen in Figure 3(B). Applying edge enhancement tech-
niques such as unsharp masking to such an image will also sharpen those unwanted details. Therefore,
the CLAHE result is subjected to the application of smoothing using a 5×5 box filter in suppressing the
minor noisy details. Figure 3(C) shows the smoothing application results. After the smoothing filter is
applied, unsharp masking with σ=3 is applied to obtain an enhanced image as shown in Figure 3(D).
Figure 3(E) shows the magnified absolute difference between Figures 3(A) and 3(D). The magnification
factor is kept to 5 to make the change visible. It can be seen from the figure that the unsharp masking
boosted the edges of the image more than the other unwanted details.

The binary semantic segmentation is applied after applying unsharp masking to the image using the
trained UNet. The process of training the UNet is explained in the following subsections. Segmentation
is applied to remove the tags that may lead the classifier to learn noisy features, resulting in misclassifi-
cation. Results of the application of the UNet-based noisy tag removal are shown in Figure 4. For each
detected segment by UNet, a rectangular region surrounding it is assigned the intensity values of zero, as
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Fig. 2. Flowchart of the proposed ensemble learning-based abnormality diagnosis.

can be seen from Figure 4(B, D, F).
For the classifiers to benefit from radiographs of multiple orientations, all n radiographs are horizon-

tally concatenated. The concatenated image is then resized to 224×224×3 as it is used as input size to
the classifiers.

For the classifiers to benefit from radiographs of multiple orientations, all n radiographs are concate-
nated horizontally. The concatenated image is then resized to 224×224×3 as it is used as input size to
the classifiers.

The final step is the voting-based classification. As the MURA dataset is labeled using the votes of
three radiologists, a similar hard voting-based approach is used for the classification. A case is labeled
as normal if two or more classifiers among DenseNet-169, DenseNet-201, and DenseNet-121 vote it as
normal and vice versa.
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Fig. 3. Results of different steps of pre-processing: (A) input image, (B) CLAHE, (C) smoothing, (D)
unsharp masking, (E) magnified absolute difference of (A) and (D).

Fig. 4. Results of noisy tags removal using UNet: (A-C) input images, (D-F) images after tag removal.
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Fig. 5. Few examples of radiograph tags with different properties along with their generated grouth truths
for segmentation: (A, C, E, G, I, K) intensity images, (B, D, F, H, J, L) corresponding annotated ground
truths.

3.2 Training the networks
3.2.1 Training the UNet

This subsection explains the training of the UNet and three classifiers. It is observed that tags in
the radiographic images act as noisy features that may result in false diagnoses. Those tags are in dif-
ferent sizes, shapes, and orientations and have different intensities, as can be seen from Figure 1(a–f).
Automatic segmentation of all cases is not possible using conventional approaches such as Otsu’s (Otsu,
1979), Maximally Stable Extremal Regions (MSER) (Saadawy et al., 2020), or OCR. Therefore, an in-
teractive Matlab script is generated to select the text region based on connectivity from the result of these
three algorithms and stored as a ground truth image. A total of 800 ground truths are created using the
trained UNet. A few examples of the annotated ground truths can be seen in Figure 5(B, D, F, H, J, L).

Before training the UNet, all of the intensity of the images that correspond to the annotated ground
truths are enhanced using methods shown in Figure 2. To train the UNet, the ground truth images are
augmented using elastic transform, grid distortion, optical distortion, motion blur, rotation with a jump
of 30°, CLAHE, and vertical flip. The UNet is trained on 50 epochs with a learning rate of 0.0001 and a
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batch size of 12. The mean Intersection over Union (IoU) of the trained UNet obtained 0.6112.

3.2.2 Training the classifiers
All the radiographic images selected for the training of classifiers are first subjected to the application

of UNet segmentation. Once the UNet segments the tags in the image, a rectangular region consisting of
the segmented tag is replaced by 0 intensities as CNN ignores zero intensities when learning the features.
After the noisy tag is removed, all n orientation images for the same case are concatenated, then resizing
them to 224×224×3. Training the classifiers is done as follows:

1. Enhancing the image and edges using CLAHE, smoothing, and unsharp masking as discussed in
3.1.

2. Noisy tags removal using UNet.

3. Training the classifiers

(a) Data normalization

(b) Augmentation

(c) Transfer learning

The first two steps are similar to as discussed in 3.1. However, as far as the third step is concerned, it
comprises some parts represented by data normalization, augmentation, and transfer learning.

All the radiographic images are normalized for training. The horizontal flip and translation are done
for data augmentation to balance the two classes. Rotation is avoided as CNN sometimes fails to perform
well on rotated images (Saif et al., 2019). In addition, rotation results in several images having similar
properties and hence can produce overfitting.

After augmentation, transfer learning is applied to train the DenseNet-169, DenseNet-201, and
DenseNet-121 classifiers. These classifiers are fully trained on the ImageNet dataset before transfer
learning is applied. All the layers except for the last convolutional layer are frozen before training the
classifiers for transfer learning. Optimizers such as Adam, SGD, Adadelta, and RMSprop are evaluated.
The RMSprop is selected because it provides the best results for the testing dataset. A total of 500 test
cases from the training are randomly isolated using the train test split method of the Sckit-learn library
for Python. The LERA dataset would have been used for testing, however, it doesn’t contain wrist cases.
The batch size used is 32, whereas classifiers are trained on 200 epochs. Figure 6 shows the plot of
training and validation accuracies of classifiers for the discussed parameters.

Furthermore, to choose between hard and soft voting for ensemble learning, the experiment was
conducted on 500 training radiographic images. Figure 7 shows the receiving operating characteristics
(ROC) plot for all three classifiers, whereas Figure 8 shows the confusion matrix comparison between
the hard and soft voting. If the number of abnormal votes for hard voting is more than one, a case is
considered abnormal. For all three classifiers for the soft voting, the probabilities were obtained from
the Softmax layer. Afterward, the probabilities of both classes were added, and a case was diagnosed
based on the maximum sum. Hard voting-based ensemble learning performed better in diagnosing the
true negatives as seen in Figure 8. However, there is no significant difference among the true positives.

4. Experiments, Results and Discussions

This section discusses some of the performed experiments to finalize the methodology and results. There-
fore, this section is divided into two subsections which are the “Experiments” and “Results and Discus-
sions”.

4.1 Experiments
All three classifiers are evaluated using the segmented and non-segmented datasets to verify the

significance of the noisy tag removal. The segmented dataset is pre-processed for enhancement and
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Fig. 6. Training and validation accuracies: (A) DenseNet-121, (B) DenseNet-169, (C) DenseNet-201.

removes the noisy tags, as shown in Figure 4(D–F), whereas the non-segmented dataset is only enhanced
using the same pre-processed techniques.

Tables 1 and 2 show the results of the classifier training on the non-segmented and segmented
datasets, respectively. The segmented dataset improved accuracies by 4%–5%, 6%–7%, and 9%–11%
for the training, validation, and testing, respectively.

Before finalizing the DenseNet-121, DenseNet-201, and DenseNet-169 classifiers for the ensemble
learning, experiments were performed on various networks to see which network is best fitted for the
segmented dataset. Figure 9 shows the comparison of training accuracy for DenseNet-201, inceptionV3,
and vgg19 as used by Mondol et al. (Mondol et al., 2019), and MobileNet as used by Saadaway et al.
(Saadawy et al., 2020). Comparison after 80 epochs is shown to make the difference clear by reducing the
vertical scale. The DenseNet-201 classifier is selected because it provides the lowest training accuracy
compared to DenseNet-121 and DenseNet-169. The figure clearly shows that the DenseNet-201 provides
better accuracy than other classifiers.

4.2 Results and Discussions
Table 3 compares the performance of the proposed methodology among the three voting classifiers

used. The significant improvement in the performance matrices for the voting-based model compared to
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Fig. 7. ROC plot for DenseNet-121, DenseNet-169 and DenseNet-201.

Fig. 8. Confusion matrix for: (A) soft voting, (B) hard voting.

all three classifiers used proves the ability of ensemble learning.
Table 3 also discusses a comparison of the proposed methodologies with state-of-the-art methods

proposed by Saadawy et al. (Saadawy et al., 2020), Mondol et al. (Mondol et al., 2019), and Goyal et
al. (Goyal et al., 2020). Saadawy provided two types of accuracies when it comes to wrist abnormality
classification. Accuracy is obtained when an extra classifier takes a radiograph of any part of the skeleton
and classifies it as either shoulder, elbow, forearm, wrist, hand, etc., and is used as the first stage. The
accuracy, in that case, is 75.61%. However, it is not appropriate to compare with it the accuracy of the
proposed methodology because the accuracy of the abnormality detection depends on the accuracy of the
first stage classifier. Fortunately, the accuracy of wrist abnormality detection was provided by Saadawy
without using the first stage classifier. Therefore, Table 3 has the accuracy of the classifier proposed

Table 1. Evaluation of voting classifiers on the non-segmented dataset.

Model Training Validation Testing Training Validation Testing
Accuracy Accuracy Accuracy loss loss loss

DenseNet-121 0.85 0.82 0.75 0.32 0.44 0.50
DenseNet-169 0.85 0.81 0.76 0.33 0.45 0.54
DenseNet-201 0.81 0.78 0.73 0.44 0.47 0.56
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Table 2. Evaluation of voting classifiers on the segmented dataset.

Model Training Validation Testing Training Validation Testing
Accuracy Accuracy Accuracy loss loss loss

DenseNet-121 0.9 0.88 0.86 0.23 0.35 0.36
DenseNet-169 0.89 0.87 0.85 0.31 0.37 0.38
DenseNet-201 0.86 0.85 0.84 0.34 0.4 0.42

Fig. 9. Training accuracies for multiple classifiers.

by Saadawy that takes wrist radiographic image as input and classifies it as either normal or abnormal.
Therefore, given that Saadawy did not provide results for other performance matrices such as specificity,
sensitivity, precision, and F1 score, they are left blank. As seen from the table, Goyal et al. (Goyal et
al., 2020) provided accuracy, sensitivity, and specificity in abnormality detection. Table 3 shows that the
proposed method has better accuracy in detecting abnormality than both Saadawy and Goyal’s. Goyal
performed better in terms of specificity. However, the proposed method has better sensitivity. Mondol
proposed an ensemble learning-based method and provided testing accuracy and F1 score. For accuracy,
the proposed method is 1.35% better than the Mondal method, whereas the F1 score is slightly better.
Overall, the proposed method performed nearly 1.5%–4.5% better in terms of accuracy, 3.4%–6% in
specificity, 1.9%–3.4% in sensitivity, 2.8%–5% in precision, and 2.71%–3.38% in F1 score.

Table 3. Comparison of proposed voting-based classification method with other classification methods.

Model Accuracy Specificity Sensitivity precision F1 Score
DensNet-169 0.8540 0.8348 0.8696 0.8664 0.8680
DensNet-201 0.8460 0.8251 0.8628 0.8597 0.8631
DensNet-121 0.8660 0.8514 0.8777 0.8809 0.8613
Saadawy 0.8194 - - - -
Goyal 0.85 0.964 0.793 - -
Mondol 0.8786 - - - 0.8933
Voting base model 0.892 0.8858 0.8968 0.9097 0.8951
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5. Conclusion and Future Work

This paper proposes an efficient classifier voting-based method for wrist abnormality detection. The
results show that the proposed method introduces segmentation for noisy tags removal thus improving
accuracy. For the segmentation, ground truth is created with the help of various segmentation methods
and connectivity information. Edge-based image enhancement, segmentation, tags removal, and voting-
based classification are good combinations thus improving matrices’ performance. This paper discusses
only the wrist abnormality detection; however, similar abnormality detection for other skeletal regions
may be fruitful.

In the future, segmentation that obtains other skeletal regions will be applied by creating another
ground-truth dataset. In addition, instead of working on a specific skeletal region, a two-tier architecture
will be proposed to classify the radiographs according to the skeletal region, followed by the abnormality
detection. To further improve the performance, an input size of 512×512 will be used for classification
as concatenated 224×224 may not contain enough details. Moreover, instead of colored images, the
grayscale images will be processed to reduce the computational requirement.
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