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Abstract

This paper discusses the performance of parametric and nonparametric bootstrap for confidence interval (CI) estimation

applied to fine particulate matter (PM, ) data. Preceding the estimation process, several models were investigated to

predict PM, | concentrations from various tobacco smoking venues that resulted in a weighted logarithmic regression

(WLS) model as a best fit. This model is then used as the base fit throughout the bootstrap estimation of the total number

of burned cigarettes 8 within an hour for a given a specific air quality level.
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1. Introduction

Modeling and predicting of fine particulate matter (PM, ) has
recently gained increasing attention due to its sever health
impacts (Pope III & Dockery, 2006) and the complexity
of continuous measurement of its concentrations indoors.
Statistical regression methods are the most common models
available to predict outdoor and indoor air pollutant levels
(Ozbay, 2012). Cyrys et al. (2004) demonstrated the capability
of multiple linear regression models to predict indoor PM, ,
black smoke and particle number concentrations. Similar
results were also reported by Elbayoumi et al. (2014).
Tippayawong & Khuntong (2007) developed the mass-
based balance model to predict PM, in Thailand schools.
Balakrishnan er al. (2013) developed log-linear regression
models that predict household PM, ; from solid cook fuel use.
Evaluating model accuracy through k-fold cross validation
revealed a reasonable degree of correlation (r=0.56) between
modeled and measured values. Barakat et al. (2014) reported
that block maxima and peak over threshold methods along
with bootstrapping techniques resulted in goodness fit for
outdoor emissions of SO,, PM  and O, in two Egyptian cities.
Fuzzy logic technique was also used to develop environmental
indicators for quantifying the environmental performance of
industrial activities (Al-Shayji et al., 2008).

In 1995, smoking in all restaurants and other public places was
banned in Kuwait; however, it was not implemented officially
at that time. The Kuwait Ministry of Health reported (MOH,
2012) that the top three causes of death in the years 2008-2012
were cardiopulmonary diseases (62.3 per 100K inhabitants),
neoplasms (22.4 per 100K inhabitants) and transport accidents
(12.8 per 100K inhabitants). Thus, it is of great importance
to deliver a quantifiable recommendation through some

applicable actions to the Kuwait Environmental Protection
Agency (KEPA) authorities in order to control smoking in
public areas. Hence, the focus of the current work is to explore
the best model for predicting PM, ; concentration Y based on
the total number of burned cigarettes within a one-hour period,
X. Subsequently, the model will be used to estimate X =6
at which the level of PM, ; becomes unhealthy based on ‘US
Idaho air quality health index for 1-hr PM,  concentrations’
developed by the US Idaho State Department of Environmental
Quality (Table 1).

Table 1. Air quality health index rankings based on 1-hour
PM, ; concentration developed by US Idaho State Department
of Environmental Quality

1-Hour average PM, . Conc. Air Quality Index
(ng/m*) Category
0.0-40.0 Good
40.1-80.0 Moderate
80.1-175.0 Unhealtlgr(f)(l)lg Sensitive
175.1-300.0 Unhealthy
300.1-500.0 Very Unhealthy
500+ Hazardous
2.The PM,  data

The TSI SidePak device was used to measure and record
levels of PM, ; concentrations (pg/m’) in selected eighteen
cafes (Figure 1), distributed over all six governorates of
Kuwait, that allow indoor smoking. Sampling was conducted
during the periods of June-July and September-November of
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2014, from 6-11 pm, where frequent visits to these venues
were observed. Six criteria that allow indoor smoking
were adopted for selecting the eighteen venues. These are
closed-area smoking cafes that allow cigarette-smoking only
(no cigar or water-pipes), ground floor, no major cooking
activities, at least 50 percent occupied during the sampling
period, and having well determined dimensions (area &
volume). These criteria were chosen to control the effect of
extraneous variables that might cause a confounded effect on
the variable of interest (smoking). The data logging interval
was set to one minute and the device was turned on and off
inside each venue to prevent contamination with outside
air. The air-monitoring device was positioned in a central
location inside each venue. The duration of air sampling was
60 minutes for all the selected cafes. The number of people
present and number of burning cigarettes were counted every
six minutes. The final collected data consists of one response

3. Model fitting

Preceding model building, an exploratory data analysis was
performed. Table 2 provides descriptive statistics of the
collected variables and correlations r between Y and the
explanatory variables. The highest correlation was found
between Y and X (r=0.812). Stepwise multiple regression
analysis was employed and only X was found to be significant
in predicting Y. The natural logarithmic transformation of Y
(In(Y)) was used to improve the model fit.

Several curves were investigated to fit In(Y) on g(X), where
the function g(X) was taken as linear, quadratic, and natural
logarithmic in X. The weighted least squares (WLS) regression
was also employed for fitting Y on X as well as In(Y) on g(X),
with weights taken based on the Volume. Table 3 compares
different models in terms of Adjusted-R* and mean square
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Fig. 1. Map of sampling sites

variable PM, ; concentrations (Y) and several explanatory
variables such as: the total number of burned cigarettes
within 1-hour testing period (X), venue volume (Volume),
active smoking density defined as X divided by 100 m* (X,)
and number of people during the 1-hour testing period (N
people). Most statistical analyses and simulations throughout
this paper were conducted using software package R.

error (MSE) criteria. The quadratic model (Model 3) showed
lower performance and hence excluded from further analysis.

Residual analysis started with three main steps that were
followed for the regression diagnostic in this study: 1)
checking the assumptions of the model; 2) diagnosing
outliers and influential points; and 3) cross-validation. Both



1 and Model 2 have comparable Adjusted-R?. However, a
close inspection of Figure 2 indicates a possible influential
outlying point in the fit of Model 1. Diagnostic case statistics
were performed on each of the 18 cafes by focusing on the
three characteristics: discrepancy, leverage and influence.
It can be seen from Figures 3(a)-3(b) that the standardized
residuals are randomly scattered around the zero horizontal
line. However, there is a point with standardized residual > 2
for Model 1 and therefore Model 1 is excluded from further
attention.

Table 2. Descriptive statistics and correlations

Variables | Mean (Std. Deviation) Correlations
Y 229.61 (189.2) Y In(Y)
X 18.89 (7.9) 0.81%* | 0.86%*
Volume 397 (220) 0.50* | 0.55*
X, 7.03 (6.1) 0.44+ 0.32
N people 18.17 (12.5) -0.20 -0.31

(**), (*), (*) correlation significant at level 0.01,0.05 & 0.10, respectively.

For Model 2 in Table3, the relationship between In(Y)
and In(X) satisfies linearity based on the lack of fit test
(p-value=0.42). The normality assumption was validated
using Shapiro-Wilks (p-value=0.8). The assumption of
independence was verified using the Durbin-Watson test,
which was found within the acceptable range from 1.5 to
2.5. The homoscedasticity assumption was validated using
the residual plots (Figure 3(b)), and the Breusch-Pagan test
(p-value=0.85).

Cross validation methods were used to estimate the
prediction error and to identify the model with the lowest
prediction error estimate(s). The data analysis and graphing
(DAAG) package in R was employed in our program to
conduct repeated cross validation. The 10-fold method as
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well as the 3-fold method (Harrell, 2013) were incorporated.
The process was repeated 1000 times for each model in order
to obtain a better prediction error estimate. It was found that
both Model 2 and Model 5 have the minimum mean squared
prediction error (MSPE) (10-fold CV=0.257) and lower than
that of Model 4. However, in terms of Adjusted-R?, Model
5 is better than Model 2. Consequently, based on both cross
validation and residual analyses, Model 5 gives the best-fit
for the PM, ; data under investigation.

4. Estimating 0

The main objective of this paper is to come up with a
measurable indicator that helps maintain PM, , concentrations
within an acceptable air quality index (AQI) through
controlling the number of burned cigarettes in indoor public
venues. Hence, an estimation criterion is employed to obtain
an estimator of 6 = 6(C, 1) such that

Pr(Y >C|X=0)<m,

where C is a given AQI limit as in Table 1 and =
€{0.10,0.05,0.01} is given. Using Model 5, the solution of
In(0) is given by

~ In(C)—by—6z;

b= by M

where Z is the mth percentile of the standard normal
distribution. The coefficients by, b; and 62 are the intercept,
slope and the MSE of Model 5, respectively. Hence the
estimate of 0 is

6 = |exp (0)], )

where l J is the floor function.

Table 3. Model summary and regression equation

Fit Adjusted-R? MSE Model Equation
Linear 0.727 0.243 Model 1: In(Y)=3.116+0.103 X
Logarithmic 0.730 0.241 Model 2: In (Y)=0.320+1.668 In (X)
Quadratic 0.721 0.249 Model 3: In (Y)=2.685+0.156 X -0.001 X2
WLS 1 0.824 0.705* Model 4: In (Y)=0.106+3.025 X
WLS 2 0.822 0.713%* Model 5: In (Y)=0.286+1.681 In (X)

* weights are embedded in MSE
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Fig. 3. (a) Residual plot Model 1

Parametric and nonparametric bootstrap confidence interval

estimation methods are investigated and compared (see for
example, Davison & Hinkley, 1997; Chernick & LaBudde,
2014). The bootstrap estimation (Fox, 2002) of 6 is computed
based on Model 5 and the original data set. The number of

bootstrap samples is m=1999 and consequently m estimators
are generated in a vector [é(l), é(z), . é(m)] ! where 0 )
is computed from the j* sampled data of size n. The bootstrap

estimator of [n(8) and its standard error are given by

1 A~
QB = Ezyil 9(1)'

se(85) = jz;f;l(éw — 0,)2/(m — 1).

4.1. Nonparametric bootstrap

3)

“4)

The following bootstrap confidence intervals (CI) of [n(6)

will be used.

Regression Standardized Predicted Value

(b) Residual plot Model 2

1. Normal:

(20—-65) F 2, ¢ se(fg)
2. Percentile 1 (PI):

[é(lower) ) é(upper)]

3. Bias-corrected accelerated percentile (BCa_1):

[H(adj_lower) ’ e(adj_upper)]

4. Percentile 2 (P2):
[2a - é\(upper) ’ 25 - é\(lower)]
5.(BCa_2):

[25 - é(adj_upper) ) 2@ - é(adj_lower)]

®)

(6)

(N

®)

)



where éisasinEquation(l)and é(l) < 9(2) < < é(m)
are the ordered values of §U ), Jj =1,...,m. The desired

estimator of the parameter of interest is then taken by
applying the exponential function (e*) on the limits of each
confidence interval.

Table 4 lists the results of the nonparametric bootstrap
estimation including the values of the bootstrap estimator
Op, its standard error se(6p), the estimator g, and the five
bootstrap confidence intervals from Equations (5) - (9) at 95%
level. Other CI levels were also computed but not reported
due to similarity of findings. The estimation performance
in terms of minimum averaged interval length are ranked
from best to worst as follows: P2 < Normal < P1 <
BCa 1 < BCa_2. The proposed P2 reveals that the total
number of burning cigarettes within 1-hr should range between
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5 and 9 cigarettes in order to maintain the concentration of
PM, . less than 80 ug/m’. If the number of burned cigarettes is
above 24, this implies hazardous AQI.

4.2, Parametric bootstrap estimation

The nonparametric bootstrap makes no assumptions about
the underlying distribution and re-samples observations from
the original data. The parametric bootstrap, nevertheless,
generates the bootstrap samples from a given distribution
as explained next. For i=1, 2,..., m=1999, we generate Ef ~
N(OMSE), j=1,...,18 and X"’s are selected with replacement
from the original X vector. The Y]* 's are computed using the
formula

In(Y") = by + by In(X;") + ¢,

where b, b; and MSE are computed from fitting Model 5 on
the original data. Mimicking Equations (3) - (4), we denote the

Table 4. Nonparametric bootstrap estimation

CI
C | m | 0 | se(@p) | 6 | Normal P2 P1 BCa 2 | BCa_1
10 | 2.00 | 0.139 | 8 | [6, 10] [6, 10] [6, 10] 6,111 | [5,9]
80 | .05 |1.92] 0154 | 7 | [5,9] 5, 9] 5, 10] 6,10] | [5,9]
01 | 176 | 0.189 | 6 | [4,8] [4, 8] [4, 9] [5,13] | [28]
10 | 3.09 | 0.104 | 23 | [17,26] | [17,26] [19,28] | [19,28] | [17,25]
500 | .05 | 3.01 | 0.116 | 21 | [15,24] | [16,24] 17,26] | [17,34] | [12,24]
01 | 285] 0137 | 18 | (13,211 | [13,21] [14,23] | [14.26] | [11,21]

parametric bootstrap estimator and standard error, respectively,
as Oy, and se(0p,). When replacing 6, with 0,
Equations (5) - (9) will provide the Normal, P1, BCa_I, P2,
and BCa_2 parametric-bootstrap ClIs.

Table 5 lists the results of the parametric bootstrap estimators
and five bootstrap confidence intervals at 95% level. In general,
the P and Normal show minimum averaged interval length for
C=80, whereas for C=500 the Normal and Pg are the best. At
error size TT = 5%, the Normal CI shows that 7] ranges between
5 and 11 cigarettes in order to maintain the concentration of
PM, less than the moderate stage of AQI, while when 0>2s
cigarettes indicating the hazardous stage. It is also noted that
all five CIs have larger average length than those in the case

of nonparametric estimation. Further comparisons between the
two methods are investigated in the next section.

5. Simulation analysis

We generated N=1000 samples of size n from the model
In(Y) =6, + B In(X) +e,
wheree~N(0,07),0°=0.22,8, = 0.25, B; = 1.70and

X was randomly selected with replacement from the original X
vector.

Note that from Equation (2) the true value of 6 is

o = [oxp (O umomy]

Table 5. Parametric bootstrap estimation

CI

C | m |0Opp |se@pr) | 8 | Normal P2 PI BCa 2 | BCa 1l
10 [ 196 | 0224 | 8 | [5.12] 6, 12] 5, 10] [6.16] | [4.10]

80 | .05 | 187 0229 | 7 | [511] 5, 12] [4,10] 5.16] | [3,9]

o1 [171] 0272 | 6 | [4,10] (4. 11] 3. 9] [5.18] | [2.8]
10 | 3.09] 0125 | 22 | [17.27] | [17.27] [18,29] | [18.30] | [16.26]
500 | .05 | 3.00 | 0.134 | 21 | [15,25] | [15,25] [16,27] | [16,31] | [13,24]
01 | 283 | 0160 | 17 | [12,22] | [12,23] [13,23] | [14,40] | [7.21]
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For each of the 1000 data sets, we estimated 8 and the
nonparametric and parametric bootstrap Cls of Tables 4 and 5.
These results were used to compute the average interval length
and coverage proportion of each methods used in Tables 4 and
5. The results of this study are reported in Table 6. The results
of Table 6 suggest that:

1. For nonparametric and parametric bootstrap when n=20 and
C=80, the BCa _1, Normal and P2 are more or less similar in
terms of average length and coverage proportion with BCa _1
slightly better. For C=500 and n=20, both the Normal and P2
perform better than the rest. For n=50, the BCa _1, Normal and
P2 perform better than the rest.

2. For n=20, the nonparametric bootstrap has, in general,
shorten average length and slightly less coverage than the

6. Conclusion

We considered the data on PM, ; concentrations in a sample of
18 cafés in Kuwait. The WLS model was used to fit the data.
Nonparametric and parametric bootstrap methods were used to
estimate the total number of burned cigarettes within one hour
for a specific AQI level. The results suggest that to maintain
the PM, , concentrations within an acceptable or moderate air
quality level, the total number of burning cigarettes should not
exceed 9 cigarettes in an hour. A number above 24 burning
cigarettes per 1-hr would most likely leads to a hazardous
stage of air pollution.
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Table 6. Average CI length (coverage proportion) for nonparametric (NP) and parametric (P) bootstrap simulations

B;)/[(:ttslgi(llp n C T Normal P2 PI BCa_2 BCa_1
.10 4.19 (91.3) 4.07 (90.3) 3.80 (87.9) 6.09 (84.3) 401 (92.2)
05 427 (92.3) 420 (91.2) 3.90 (88.3 14.16 (84.4) 4.08 (93.0)
80 01 420 (91.9) 4.19 (90.4) 3.95 (86.5) 10.09 (82.8) 4.04 (93.7)
.10 9.51(93.6) 8.39(92.8) 9.62 (85.6) 8.61(88.3) 8.22(90.2)
20 | 500 05 8.96(92.0) 8.10091.1) 9.23(82.4) 8.61(86.1) 8.01(89.1)
01 8.60 (91.6) 8.03 (92.3) 9.15(81.4) 15.50(84.3) 8.20 (88.9)
.10 2.34(92.3) 2.38(92.1) 2.35091.1) 2.62(87.4) 2.40093.4)
NP 05 2.39(92.0) 2.43(914) 2.40 (904) 2.72(87.5) 2.45(93.3)
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.10 4.1192.4) 4.32(91.0) 3.93 (92.3) 5.40(86.2) 4.11(95.3)
05 4.20(92.6) 4.43(91.3) 3.99 91.8) 5.74(84.9) 4.17(95.2)
80 01 4.22(92.1) 4.48(90.2) 401 (91.4) 6.12(84.6) 4.14(95.3)
.10 8.93(934) 8.87(94.6) 9.57 (88.7) 9.58(90.2) 8.91(91.9)
20 | s00 05 8.71(94.0) 8.72(94.6) 9.33 (88.5) 9.91(88.8) 8.83(93.6)
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p .10 5.37(94.1) 5.37(94.7) 5.51(92.1) 5.55(92.5) 5.38(93.8)
50 | s00 05 5.28(94.7) 5.29(94.8) 542 (93.5) 5.57 (93.0) 5.33(94.2)
01 5.27(94.4) 5.30(94.5) 540 (91.3) 5.74 (89.4) 5.36(95.1)

parametric bootstrap. For n=50, the parametric bootstrap
performs better than the nonparametric bootstrap.
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