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Abstract

Around the world, the video surveillance system has gained wide acceptance and astonishing growth due to its 
broad applications. The surveillance system has become a paramount tool and benchmark for analyzing the har-
mony and safety of society. Anomaly detection and its associated applications play a key role in the integrity of 
the system. The aim of anomaly detection is to find rare and sparse occurrences of events from videos. Developing 
an accurate and time-efficient system i s s till r emains challenging due t o t he dynamic nature of a nomalies. The 
deep learning-based end-to-end system with full use of both spatial and temporal features from the input videos 
is proposed. The model combines the use of 2DCNN and Stacked LSTM to extract frame-level features through 
an anisotropic Gunnar Farneback Optical Flow algorithm. The system is evaluated on the benchmarked datasets 
namely UCSD Ped1 and UCSD Ped2, and it achieves an AUC of 95% and 94% respectively. The experimental 
results indicate that the proposed method is superior to state-of-the-art algorithms.

Keywords: Active learning; end to end ; 2DCNN; Stacked LSTM; Gunnar Farneback Optical Flow;

1. Introduction

The demand for Intelligent Video Surveillance Systems is expanding due to the rapid growth of urbanization and 
industrialization. Anomaly Detection is one of the interesting and challenging areas of research in the present era. 
Any divergence from expected and customary behaviour is referred to as an anomaly in the system. The importance 
of anomaly detection is the detection and tracking of moving objects, traffic monitoring, loss prevention, monitor 
operations and outdoor perimeter security. In the present scenario, the occurrence of Crowd Anomalies are frequent 
in public places such as railway stations, roads, stadiums and other public places. In this context it is very important 
to improve the anomaly detection methods in overcrowded areas to ensure public safety. Crowd Behaviour Analysis 
plays an important role in implementing an Automatic Video Surveillance system for detecting violence, crime and 
attacks in both public and private areas. This analysis helps evaluating how people behave in large groups and to 
retrieve useful information from crowded videos. Designing a general-purpose model is very difficult because of the 
subjective and context-dependent nature of anomalies (T.Li et al., 2015). The crowd behaviour analysis pipeline 
contains different aspects like detection stages, tracking stages, feature extraction stages and crowd behaviour 
classification s tage. The classification stage seeks to recognize specific behaviour and abnormal patterns in video 
based on the extracted attributes. The extracted features should be added to provide meaningful information on 
crowd behaviour. Different approaches have been developed for detecting abnormal events in crowded scenes and 
usually, they are based on similarity-based models(Y. Cong 2013;C. Piciarelli 2008; Kratz 2009). Such models 
came under Supervised approaches and learned from the changes of motion and appearance.

In recent years, several real-time approaches based on deep learning and classical methods have been adopted 
(S. D. Bansod 2020; R. Nawaratne 2019). When these two approaches are analysed it is noted that deep learning
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networks show a better result than traditional classical methods by combing basic and complicated structures to
learn efficient compact data representations. However, deep learning methods require a large quantity of data to
work well and are quite expensive to train complicated data. Another issue is that this strategy with only spatial
information or only temporal information is not suitable for a variety of crowded scenarios ( Bendali-Braham
2021). As a result, creating a general-purpose model for crowd anomaly detection is quite challenging. An end
to end adaptive system for crowd anomaly detection and its localization is proposed. Firstly, the input video is
split into specific consecutive frames and pre-processing is performed. Background subtraction is performed on
pre-processed frames which helps to isolate the foreground of an image for subsequent processing. The optical
flow vector helps to obtain the apparent motion of objects in video frames and related depth information. These
frame-level features are fed into our model for anomaly detection and localization.

1.1 Contributions

1. An improved end to end model with 2D Convolutional Neural Network with Stacked LSTM is devised.

2. A novel approach for obtaining the apparent motion of an object and depth information using anisotropic
diffusion filter based optical flow is proposed.

3. The proposed model is evaluated by two publically available benchmarked datasets and the result shows that
our proposed method outperforms the other state-of-art approaches.

The rest of the study is structured as follows: Section 2 describes the detailed study of related works in this
domain. The proposed method is detailed in section 3. Section 4 presents experimental results and discussions.
The conclusion of the paper with a plan for future scope is drawn in section 5.

2. Related Works

The existing deep learning algorithms used for video anomaly detection are categorized into five categories in terms
of their training and learning frameworks. These five categories are Supervised (M. Sabokrou 2018; S. Lin 2019),
Unsupervised (D. Xu 2015; M. Sabokrou 2015), Semi-Supervised (S. Akcay 2018: L. Ruff 2020), Training less
models ( Y. Yuan 2015; A. D. Giorno 2016) and Active learning-based models (T. Pimentel 2016; Y. Liu 2020).

2.1 Supervised Models

In supervised models, video anomaly detection is considered as a binary classifier and it requires both normal
and abnormal data for training. Well-defined abnormal activities and a balanced dataset are the two constraints
of this model. However, in most cases, it is impossible to clearly define the video due to ambiguous nature,
sparse occurrence, evolutionary quality, and data imbalance problems (R. Chalapathy et al., 2019). (X.Cui et al.,
2011) developed a learned Support Vector Machine for the detection and localization of anomalies. (Biswas et al.,
2016) proposed a unified network for detecting both local and global anomalies from sparse and dense crowds.
(Mahadevan et al., 2010) developed a learning Mixture of Dynamic texture (MDT) for finding both spatial and
temporal abnormalities. These models are based on Spatio-temporal features and appearance-motion descriptors.
Recently, different deep learning-based models are developed for the detection of anomalies in crowded scenes.
(Sabokrou et al., 2018) developed a fully connected neural network for the fastest anomaly detection. (Singh et
al., 2020) proposed an Aggregation of Ensembles (AOE) method which employs an ensemble of fine-tuned CNN
based on the idea that different CNN architectures have different semantic representations of the crowd. This
technique uses transfer learning concepts to eliminate the need for training from scratch. (M. Ravanbakhsh et al.,
2017) developed Generative Adversarial Network (GAN)to learn an internal representation of the normality of
crowd behaviour. Later (Wang et al., 2018) introduced a shallow generative neural network with a more accurate
and powerful learning capacity. This method helps to reduce the loss by using the feature between the encoder
and decoder. (Sabin et al., 2021) introduced a novel approach to reduce the loss and improve the accuracy of the
predicted class by adding Long Short Term Memory (LSTM)with optical features. Supervised approaches give
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better results if the class labels and class boundaries are well known. The major challenges in the supervised
approaches are data scarcity and class distribution imbalance problems.

2.2 Unsupervised Models

Unsupervised anomaly detection methods cannot be directly applied to the system as there is no clear idea
about the values of output. It is required to discover the most relevant features used for discriminating different
samples.(D.Xu et al., 2015) proposed a deep learning-based double fusion scheme by integrating both appearance
and motion. (N.Li et al., 2021) proposed an unsupervised statistical framework based on Spatio-temporal configu-
ration and multiple scale analysis. All the methods under this category fail to detect complex anomalous behaviour
if the normal and abnormal frame distributions are not clearly differentiated.

2.3 Semi-Supervised Models

Methods in this category use a small amount of labelled data during training. Most of the methods under this
category are modelled with autoencoder, which produces high reconstruction costs for abnormal activities and low
error for normal activities. (M.Hassan et al., 2016) proposed an autoencoder to identify irregularity in videos which
helps to detect past and future regular motion from a single frame.( W.Liu et al.,2018) developed a new method for
future frame prediction with temporal and spatial constraints. (E.Hatimaz et al.,2016) introduced a semantic search
interface with optical flow features that are used to detect abnormal crowd behaviour. Sometimes these approaches
cause data scarcity issues due to the imbalance between labelled and unlabelled data.

2.4 Training-less Models

Training-less models are based on the external domain knowledge strategy (A. A. Sodemann et al., 2012). No
training is needed with labelled and unlabelled data. (Zhao et al.,2011) implemented an online detection method
for detecting abnormal events in video with dynamic sparse coding. The basic idea of this approach is to build a
sparse coded dictionary for representing knowledge. Yuan et al. proposed an online anomaly detection method by
constructing a Structural Context Descriptor that helps to represent the interaction between individuals (Y. Yuan et
al., 2015). Models under this category are free from bias and overfitting, but unable to adapt to the dynamic nature
of anomalies.

2.5 Active Learning-based Models

In the supervised, unsupervised and semi-supervised anomaly detection approaches, the model is only trained
with an offline normal dataset and there is no updation with new data. So these methods are not suitable for effective
real-time-time applications (J. Varadarajan et al., 2017). These issues are solved by using the Active learning
approach in deep neural networks. (Nawaratne et al., 2019) developed a Spatio-temporal learning network with
fuzzy aggregation to get better real-time performance. Recently (Y.Liu et al., 2020) proposed GAN (Generative
Adversarial Network) to directly generate outliers by solving the issue curse of dimensionality .

The above analysis shows that the performance of the fully supervised and semi-supervised methods are con-
strained by data scarcity and class distribution imbalance problems, whereas the unsupervised models fail to clearly
differentiate normal and abnormal samples. On the other hand training less models are free from bias, but not able
to handle the sparse occurrence of scenes. These flaws are overcome by introducing a deep active learning-based
end-to-end system for accurate anomaly detection and localization.

3. Proposed Methodology

The proposed method makes use of different deep learning networks for accurate anomaly detection and local-
ization. It is motivated by observing flaws in the previous work, particularly about false negatives and lack of
experiment design. A novel end-end model with 2D Convolutional Neural Network and Stacked LSTM is used
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for the accurate detection and localization of crowd anomaly by capturing both spatial and temporal features. The
work flow of the system is depicted in Figure 1.

Fig. 1. Architecture of the System

3.1 Pre-processing

The raw video is divided into different consecutive frames and each frame is resized into a size of 128×128.
Pixels values in the images are resized from 0 to 1 to achieve normalization. The dimension of every frame is
converted to grayscale to reduce complexity.

3.2 Background Removal

Background Subtraction is a technique that helps to extract the foreground region of an image for further
processing. It is a widely used method to detect moving objects from the sequence of frames. An Adaptive
Gaussian Mixture Model (AGMM) helps to remove the background region which deals with illumination changes
and dull movements (Zivkovic et al., 2006). Every pixel in the edge is represented as a combination of Gaussian
distributions. The pixel value at a time t is represented as θ(t). The Bayesian decision function Y is used to divide
pixels into two groups: background(BG) and Foreground(FG)regions.

Y =
p(BG)/θ(t)

p(FG)/θ(t)
(1)

Initially, we have no information about how foreground and background region appear in a frame.As a result
we assume that the probability of both foreground and background pixels are same.

p(BG) = p(FG) (2)

If all the foreground objects are considered as a uniform distribution, then

p(θ) = TF (3)

and the pixel is considered as background region if

p(θ) > TB (4)

where TB and TF are threshold values which are not fixed values. The different threshold value is selected for each
pixel and these thresholds are adapted by time based on the spatial variations in illuminations.
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3.3 Optical Flow

Optical flow is one of the commonly used methods to obtain the apparent motion of an object from video
frames. It helps to obtain depth information in relation to object direction and speed. Lucas Kanade algorithm is
a widely adopted method for estimating the movement of interesting patterns from scenes( Xie et al., 2019). But
this technique could not be applied to the video frames, where the motion is greater than one pixel between two
consecutive video frames. This limitation is resolved by using an anisotropic diffusion filter Gunnar Farneback
Optical Flow algorithm to minimize the error between two consecutive frames and preserve the direction of objects
in the video (Farneback 2001; Gharsallah 2017). It assumes that displacement between consecutive frames is
negligibly small or constant. The first step is to apply an anisotropic diffusion filter to preserve the edges and
boundaries. The diffusion filter is defined by

D(I) =
1

||u||2 + 2(u2)
(I ∗ IT + u2I) (5)

where I is the gradient of an image in frame 1 and u is a parameter to control the smoothness. The Optical flow
vector v is defined as

v =

[
vx
vy

]
(6)

Let vx(x, y) and vy(x, y) be the flow vector of frames which is calculated as follows

vx(x, y) = ax+ by + c (7)

vy(x, y) = dx+ ey + f (8)

where x and y represent image coordinates and a, b, c, d, f are the parameters which are computed using Gaus-
sian least square approximation. The spatiotemporal vector v is represented in matrix form as follows

v = Sp (9)

S =

x y 1 0 0 0 0
0 0 0 x y 1 0
0 0 0 0 0 0 1

 (10)

pT =
[
a b c d e f 1

]
(11)

3.4 2D Convolutional Neural Network

The 2D CNN Model is used to identify frame-level features and extract spatial high level features. The 2D
convolution is obtained by combing the 2D kernel into the cube generated by stacking consecutive frames together.
Hence, the motion information is easily obtained by constructing a feature map in convolutional layers. The
proposed 2DCNN architecture contains four convolutional layers and two max-pooling layers. The first and second
convolutional layer has 4 filters with a kernel size of 3×3 and the corresponding pooling layer has a kernel size of
2×2. The second and third convolutional layer has 8 filters with kernel size 3×3. The operation performed in the
convolutional layer is defined by

F (i, j) = (I ∗K)(i, j) (12)

where F is the output feature map, I represent the input matrix and K denotes the 2D kernel filter. All the
convolutional layers have a relu activation function and each layer is modelled as time distributed layer to reduce
the complexity. ReLu function f(x) is represented as

f(x) = max(0, x) (13)

Finally, flatten layer is added to convert the output of the final pooling layer into a sequence of vectors. Table 1
shows the details of 2D ConvNet architecture.
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Table 1. Structure of 2D ConvNet Architecture

LAYERS INPUT KERNAL OUTPUTS
CONV1 128×128×1 4, 3×3 128×128×4
CONV2 128×128×4 4, 3×3 128×128×4
MAXPOOL2 128×128×4 2×2 64×64×4×
CONV3 64×64×4 8, 3×3 64×64×8
CONV4 64×64×8 8, 3×3 64×64×8
MAXPOOL2 64×64×8 2×2 32×32×8
FLATTEN1 32×32×8 - 8192

3.5 Stacked LSTM

Long Short Term Memory networks are a type of recurrent neural network which helps to learn long term
dependencies and shorten the time between frame processing. LSTM model helps to capture frame-level temporal
features and successfully solve vanishing gradient problems (Hochreiter et al., 1997). In the proposed work, we are
using Stacked LSTM with Adam optimization to reduce overfitting and to improve the accuracy of classification.
The Stacked LSTM is an expansion of LSTM that has multiple hidden layers with numerous cells in each layer.
Each layer in the Stacked LSTM outputs a sequence of vectors that will be utilized as an input to the next LSTM
layers. This structure of the hidden layer helps to capture the information from data at different scales. The general
architecture of stacked LSTM is described in Figure 2. The output values of hidden layers are updated at each step
as shown below.

ht = ottanh(ct) (14)

ot = σ(wx0xt + wh0ht−1 + b0) (15)

ct = ftct−1 + ittanh(wxcxt + whcht−1 + b1) (16)

ft = σ(wxfxt + whfht−1 + b2) (17)

it = σ(wxixt + whiht−1 + b3) (18)

where xt is the input vector, σ is the sigmoid activation function,W and b represents weight vector and bias,ht
and ht−1 are the current and previous state respectively. In order to reduce the overfitting problem, initialize the cell
state value c0 = 0 and N(µ, σ) using normal distribution (Sabih et al., 2021). The LSTM generates the probability
map which helps to find anomalies in the frame.

3.6 Training

The entire network is trained from end to end using active learning approaches. The weight vectors of the
Stacked LSTM networks are tuned with the backpropagation algorithm using gradient descent optimization. The
2D CNN network weights are updated using simple gradient optimization. This procedure ensures that CNN
retrieved features are directly relevant to the Stacked LSTM sequence classification. The Active Learning steps
used in the system is described below.

1. Train the model on the labelled data. (Supervised learning).

2. Evaluate the model with unlabelled data.
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Fig. 2. Architecture of Stacked LSTM

3. Based on this evaluation, choose the valuable samples to be labelled.

4. These valuable data samples are labelled and added to the labelled list.

5. Retrain the model using a new dataset.

6. Repeat the above steps until the performance of the model is stable.

The Adaptive Moment Estimation (Adam) algorithm with a learning rate of 0.001 and momentum of 0.99 are
used for loss optimization. Adam is a combined RMSprop and Stochastic Gradient Momentum algorithm with
an adaptive learning rate. The learning rate of each network weight is adjusted with the help of both the first
and second moments of the gradient. Initially, both the first and second-moment values are set to zero. Moving
average parameters are used to update the moment values, and weight updating is done based on these values. The
procedure is continued until the weight is converged. The steps for weight updation are described in algorithm 1.

Algorithm 1 Algorithm for Weight Updation

• Step 1: Set the firstmoment and secondmoment values to zero.

• Step 2: Repeat steps 3 to 6 until the weight converges.

• Step 3: Compute dx = computegradient(x).

• Step 4: Compute firstmoment = beta1firstmoment + (1− beta1)dx.

• Step 5: Compute secondmoment = beta2secondmoment + (1− beta2)dx.

• Step 6: Wnew = Wold − ρ(firstmoment)
(secondmoment

)

where beta1 and beta2 are moving average parameters and their values are 0.9 and 0.999 respectively. The loss
function L is calculated using the binary cross entropy loss method and is given by equation (13).

L = −yilog(yi) + (1− yi)log(1− (yi)) (19)

where (yi) is the predicted value and yi is the probable class value of xi. The loss function is regularized with
L2 regularizer to avoid overfitting. The new loss function is given by the equation

Lossnew = L+ γ||w||2 (20)

Where γ is the hyper parameter that is used to tune the regularization.
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4. Results and Discussion

The performance of the proposed method is evaluated by conducting an experiment on publically available datasets
UCSD Ped 1 and UCSD Ped 2. A comprehensive analysis of both quantitative and qualitative indexes are per-
formed to compare the performance of the proposed system with different state-of-the-art methods. The system is
implemented using Keras framework and experiments are conducted on Intel Xeon W-2145(8C 3.70GHz,11Mb),
32GB DDR4-2666rg with NVIDIA Quadro V100 GPU.

4.1 Evaluation Criteria

The performance of an anomaly detection model can be measured using three different criteria such as frame
level, pixel-level and dual pixel level anomalies. The frame level criteria means crowd anomaly is measured at the
frame level and is used to verify the accuracy of abnormal crowd anomaly events detection. A frame is detected as
an anomaly even if at least one pixel in the frame is found as abnormal (M. Sabokrou et al., 2017). In the pixel level
criteria, the anomaly is measured at pixel level and then the accuracy of anomaly localization is calculated. If a
frame is considered as anomalous when at least 40 percentage of true anomalous pixels are overlapped with Ground
Truth(GT) labels (C. Lu et al., 2013). This criterion helps to evaluate the accuracy of both anomaly detection and
localization. The frame level criteria is used for evaluating the performance of the proposed model.

4.2 Evaluation Metric

The following three quantitative metrics are used for comparing the performance of proposed method with
other state-of-the-art algorithms.

1. Area under the Curve (AUC): The area under the ROC curve helps to quantify the accuracy of the crowd
anomaly detector.

2. Equal Error Rate (EER): It helps to calculate the percentage of misclassified frames when the true positive
rate equals to false-negative rate.

3. Error Detection Rate (EDR): It is the ratio of number of anomaly detected to the total number of anomalies.
Hence, it is used for pixel-level evaluation.

4.3 Experimental Setup

All raw video frames are divided into different consecutive frames and resized into 128×128. An anisotropic
diffusion filter based on Gunnar Farneback optical flow maps for each frame is generated from spatiotemporal maps
with a size 128×128×3. The Adam optimizer with a learning rate of 0.0001 is used to change the parameters during
the training stage of our model.

4.4 Dataset

The publically available benchmarked datasets UCSD Ped 1 and Ped 2 dataset, generated with the help of a
stationary camera mounted at pedestrian walkways are used in the experiment (Li et al., 2014). It is divided into 2
subsets Ped1 and Ped 2 and its crowd density ranges from sparse to crowded. The UCSD Ped1 contains 34 training
videos and 36 testing videos. The content in the videos is a group of people walking in a public area. Bikes,
Skaters, tiny carts and individuals walking on a sidewalk are the common anomalous events. Both training and
testing sequences have approximately 200 frames of dimension 158×238. The UCSD Ped 2 contains 16 training
videos and 12 testing videos. Each sequence has approximately 120 to 180 frames of dimension 360×240. Table 2
shows the dimensions of the datasets.
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Table 2. Dimension of Datasets

DATASET TRAINING SET TESTING SET FRAME DIMENSION
UCSD PED 1 34 36 238×158
UCSD PED 2 16 12 360×240

4.5 Performance Analysis

The performance of the proposed method is compared with other state-of-the-art. The proposed method accu-
rately detects anomalous events like vehicles, skaters, bikers, etc from the crowded scenes. The effective detection
of anomalies in both datasets using the proposed model is shown in Figure 3. Figure 4 shows the ROC Curve
on UCSD Ped1 and UCSD ped2. The obtained ROC curve is closer to the top left corner, which indicates better
performance of our model.

Table 3 demonstrates the comparison of AUC values of the proposed method with other state- of-the-art
techniques S2-VAE (Wang et al., 2018), MDT (S. D. Bansod et al., 2020), Conv-AE (M. Hasan et al., 2016),
(Nawarante et al., 2019),SCG-SF (Chu et al., 2019),ST-CaAE (Li et al., 2020) and (M.Sabokrou et al., 2018). The
results show that the proposed method achieves 95 % AUC on ped1 and 94% AUC on the ped2 dataset which is
higher than other methods. The higher value of AUC indicates high performance and accuracy of detection for
a given test dataset. Table 4 demonstrates the comparison of EER and EDR of the proposed method with other
state-of-the-art methods. To calculate the percentage of misclassified frames, an Equal Error Rate metric is used.
EER value of our method is 16.7 and 16.8 which indicate the misclassification rate of the proposed system is lesser
than other state-of-the-art methods. The Error Detection Rate(EDR) of our method is 83.23 which indicates the
anomaly can be clearly detected and localized. Compared with other state-of-the-art methods, our method elimi-
nates false-negative detection by capturing spatio-temporal high-level features. Figure 5 shows the model accuracy
of both UCSD Ped1 and Ped2 datasets and Figure 6 shows the comparison of model test loss between basic LSTM
and Stacked LSTM on both datasets UCSD Ped1 and UCSD Ped 2. It is clearly understood that in the case of basic
LSTM testing loss of the model is higher than training loss. While in the case of Stacked LSTM testing loss is
comparatively lesser than training loss and these graphs show that our model is free from overfitting and an optimal
model with a validation accuracy of 98.86%.

Table 3. Comparison of AUC score with state-of-the-art methods.

METHOD UCSD PED 1 UCSD PED 2
MDT (S. D. Bansod et al., 2020) 0.818 0.829
Conv-AE (M. Hasan et al.,
2016)

0.750 0.850

(Nawarante et al., 2019) 0.752 0.911
(M.Sabokrou et al., 2018) - 0.925
SCG-SF (Chu et al., 2019) 0.909 0.902
S2-VAE (Wang et al., 2018) 0.94 -
ST-CaAE (Li et al., 2020) 0.90 0.92
PROPOSED METHOD 0.95 0.94

Anoopa S, Salim A, Nadeera Beevi S

9



Table 4. Comparison of EER and EDR of the proposed method with other state-of-the-art methods

METHOD UCSD PED 1 UCSD PED 2
EER EDR EER EDR

MDT (S. D. Bansod et al., 2020) 25 45 25 46
Conv-AE (M. Hasan et al., 2016) 27.9 - 21.7 -

(Nawarante et al., 2019) 29.9 - 8.9 -
PROPOSED METHOD 16.7 83.23 16.8 83.24

(a) (b) (c)

Fig. 3. Anomaly detection results on UCSD PED Datasets, (a) original frames. (b) frame showing detected
anomalies and (c) localization of anomalies.
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UCSD Ped1: ROC Curve UCSD Ped2: ROC Curve

Fig. 4. ROC curve of UCSD Ped Dataset

UCSD Ped1: Accuracy UCSD Ped2: Accuracy

Fig. 5. Model Accuracy of UCSD Ped1 and UCSD Ped2 dataset

UCSD Ped1: Model Loss UCSD Ped1: Model Loss

UCSD Ped2: Model Loss
(a)Basic LSTM

UCSD Ped2: Model Loss
(b) Stacked LSTM

Fig. 6. Comparison of model test loss between basic LSTM and Stacked LSTM on both datasets UCSD Ped1 and
UCSD Ped 2

Anoopa S, Salim A, Nadeera Beevi S

11



5. CONCLUSION

A novel deep active learning-based end-to-end method is developed for detecting and locating abnormal events in
surveillance video. The architecture of the proposed method is simple and it effectively captures both spatial and
temporal features. The Stacked LSTM combined with 2D CNN helps to reduce the overfitting problem and to im-
prove the accuracy of detection by reducing false prediction. The proposed method produced competitive results of
AUC 95% 94% respectively on two publically available benchmarked datasets and validation accuracy of 98.86%,
which shows a competitive performance than the existing state-of-the-art methods. In future, the performance of
the presented system can be improved with the help of more datasets by finding a solution for both motion position
artifacts.
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