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Abstract 

Radar Cross Section (RCS) of perfect electromagnetic conductor (PEMC) cylinder using an 
incident Laguerre–Gaussian (LG) beam has been investigated. LG beam potential function is used 
to expand the incident and scattered electromagnetic (EM) field components. The co- and cross-
polarized scattered field coefficients are determined by applying the PEMC boundary conditions 
at the interface i.e., 𝑟 = 𝑎. The obtained values for co- and cross-polarized scattered field 
components would be helpful to find out the scattered field distribution. A comparison of our 
results for PEMC and PMC for fundamental LG beam with beam mode 𝑝 = 0, 𝑙 = 0, i.e., 𝐿𝐺!! 
match with the gaussian beam scattering as witnessed in published work.  The effects of OAM 
mode index (𝑙), beam waist radius (𝑤!), and PEMC cylinder radius on RCS have been analyzed.  

Keywords: Cylinder; Laguerre–Gaussian (LG) beam; PEMC; PMC ;radar cross section (RCS). 

1. Introduction

The concern of optical researchers towards Laguerre–Gaussian (LG) beam have increased due to 
its intrinsic differential field distribution and helical phase front which results transfer of angular 
momentum along with sensing of small-scale characteristics to the illuminated objects (Friese et 
al., 1996; Tempere et al., 2001; Mair et al., 2001). Beam with helical/twisted phased profile 
carrying orbital angular momentum (OAM) is well known for LG beam. The magnitude of OAM 
associated with each photon is characterized by 𝑙ℏ term. The beam indices, 𝑝 describes the node 
number of the beam radial profile and 𝑙 stands for angular degree of freedom about the propagation 
direction. LG beam form remains stable for free space propagation i.e., scale of intensity profile 
in a cross-section changes but on the optical axis the zero intensity can be observed. Owing to this, 
such beams are also renowned for optical vortices (Yao and Padgett, 2011). 

Recent works have focused on the LG beam scattering for different orders of OAM through 
several types of metamaterials such as PEMC sphere (Arfan et al., 2022b) and chiral coated PEMC 
cylinder (Arfan et al., 2022a) that are being widely used for various purposes.  Furthermore, these 
beams are being used to estimate the RCS of scattered field for various shaped materials as, 
dielectric slab (Li et al., 2017), complicated biological cells (Yu et al., 2018), chiral particles (Cui 
et al., 2021), and chiral sphere (Qu et al., 2016).  
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The suggestion of generality of a perfect electric conductor (PEC) and perfect magnetic conductor 
(PMC) results in perfect electromagnetic conductor (PEMC) as proposed by (Sihvola, 2007) and 
this allows us to study the scattering of LG beam as a substitute for the extended waves infinitely 
using a PEMC cylinder. It has been seen that PEMC, PEC, and PMC differ in that the PEMC 
contains a supplementary cross-polarized field component. The well-defined boundary conditions 
at the surface of PEMC are  

𝒏 × (𝐇 +𝑀𝐄) = 0
𝒏	. (𝐃 −𝑀𝐁) 			= 0																																																																																																																																					(1) 

	Here, 𝒏 is the unit normal and 𝑀 is the admittance parameter of PEMC cylinder. The 
limiting values for admittance parameter as 𝑀 = 0 and 𝑀 → ±∞, the PEMC becomes PMC and 
PEC respectively.  

The study of interaction between EM waves and magnetized plasma slab is discussed to 
compute the reflection and transmission coefficients. Numerical results explore that reflectance 
can be tuned by adjusting the effective collision frequency and metallic substrate (Zhao and Xie, 
2016). The problem of the scattering of EM radiation for PEMC sphere and PEMC cylinder was 
theoretically discussed by (Ruppin, 2006b; Ruppin, 2006a). The study related to PEMC scattering 
for different arrangements has been conducted by many researchers (Ahmed et al., 2011; Ghaffar 
et al., 2013; Lindell and Sihvola, 2005; Sihvola and Lindell, 2006). In this manuscript, the incident 
LG beam is expanded using LG potential function. However, the scattering characteristics of LG 
beam by a PEMC cylinder has not been considered in literature. So, scattering features of LG beam 
towards PEMC cylinder are treated. The interaction of PEMC cylinder by varying the LG beam 
order, beam waist, and cylinder radius on the scattered field is computed. The boundary conditions 
of the PEMC cylinder have been imposed to obtain the scattering field coefficients. In all the 
calculations, the field dependence for time factor i.e., 𝑒"#$% is assumed. 

2. Description of the problem and governing equations  

The geometry of our problem is depicted in Figure. 1. A PEMC cylinder is considered to study the 
interaction of LG beam. The radius of the cylinder is 𝑎 with infinite length. The field polarizations 
are defined as, when the polarized incident field is parallel to the axis of PEMC cylinder, then it is 
called transverse magnetic (TM) polarization and when the polarized incident field becomes 
perpendicular to the cylinder axis then it is known as transverse electric (TE) polarization. For 
PEMC cylinder, the cross polarized TM component appears in the scattered field for an incident 
LG beam. 
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Fig. 1. Geometry of the scattering problem. 

Now the LG beam is propagating along the z-axis and its potential with amplitude factor 𝑉!> in a 
cylindrical coordinate system is given as (Mendonca et al., 2009; Shahzad and Ali, 2014; Ayub et 
al., 2011), 

𝑉(𝑟, 𝑡) = 	𝑉!>	𝐹&'(𝑟, 𝑧) exp[𝑖(𝑙𝜑 + 𝑘𝑧 − 𝜔𝑡)]																																																																																							(2) 

The equation (2) tells that LG potential depends on mode numbers 𝑝, 𝑙, and azimuthal angle (𝜑) 
with helical phase structure through exp[𝑖(𝑙𝜑 + 𝑘𝑧 − 𝜔𝑡)] factor. In a cylindrical coordinate 
system (𝑟, 𝜑, 𝑧), the electric field components can be written as, 

𝐸( = −𝜕(𝑉(𝑟, 𝑡) = −
1
𝐹&'

	
𝜕𝐹&'
𝜕𝑟 	𝑉(𝑟, 𝑡)																																																																																																			(3) 

𝐸) = −𝜕)𝑉(𝑟, 𝑡) = −
𝑖𝑙
𝑟 𝑉

(𝑟, 𝑡)																																																																																																																(4) 

𝐸* = −𝜕*𝑉(𝑟, 𝑡) = −	Q𝑖𝑘 +
1
𝐹&'

	
𝜕𝐹&'
𝜕𝑧 R𝑉

(𝑟, 𝑡)																																																																																				(5) 

where the LG mode function is defined as,  

𝐹&'(𝑟, 𝑧) =
1
2√𝜋

V
(𝑙 + 𝑝)!
𝑝! 	(X)|'|𝐿&

|'|(X) exp Y−
X
2Z																																																																														(6) 

where X= (!

,!(*)
 and 𝑤(𝑧) = 𝑤!\1 + ]

*
*"
^
/
 be the beam width which turns to beam waist 𝑤! at 

𝑧 = 0. The term 𝑧0 = ]1
/
^ 𝑘𝑤!/ expresses the Rayleigh length. Beam parameters (𝑝	&	𝑙) denote 

radial and azimuthal index. 𝐿&' (. ) expresses the associated Laguerre polynomial. 
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For parallel polarized incident field, plugging equation (2) into equation (5), so 

𝐸*# = −𝜕*𝑉(𝑟, 𝑡) = −	Q𝑖𝑘 +
1
𝐹&'

	
𝜕𝐹&'
𝜕𝑧 R𝑉!

>	𝐹&'(𝑟, 𝑧)𝑒𝑥𝑝	[𝑖(𝑙𝜑 + 𝑘!𝑧 − 𝜔𝑡)]																																(7) 

Now using equation (10) of (Kozaki, 1982) under special case i.e., on substituting 𝛼 = 0 and 
putting in equation (7) so the above mathematical expression for incident field can be modified as,  

𝐸*# = −𝑉!>exp[𝑖(𝑙𝜑 − 𝜔𝑡)] Q𝑖𝑘	𝐹&' +	
𝜕𝐹&'
𝜕𝑧 R𝐹&'(𝑟, 𝑧) c 𝑗2𝐽2(𝑘!𝑟)𝑒#2)𝑧̂

3

24"3

																															(8) 

The scattered field can be expressed as, 

𝐸*5

= −𝑉!>exp[𝑖(𝑙𝜑 − 𝜔𝑡)] Q𝑖𝑘	𝐹&'

+	
𝜕𝐹&'
𝜕𝑧 R𝐹&'

(𝑟, 𝑧)h𝑗2[𝑎2𝐻2
(/)(𝑘!𝑟)𝑧̂ + 𝑏2(

𝑖𝑛
𝑘!𝑟

𝐻2
(/)(𝑘!𝑟)𝑟̂ − 𝐻2

(/)6(𝑘!𝑟)𝜑l)]	𝑒#2)
3

24"3

										(9) 

Where 𝐽2(. ) and 𝐻2
(/)(. ) are the Bessel functions of the 1st kind and Hankel functions of the 2nd 

kind, respectively. Prime denotes the derivative of the function with respect to the whole argument. 
In these expressions, 𝑎2 & 𝑏2 are the scattering coefficients of co- and cross-polarized field. The 
magnetic field components 𝐻)#  and 𝐻)5  can be known by using Maxwell’s equations (Jackson, 
1999) on the field equation (8-9).  

To find out the unknown coefficients, the tangential and radial EM field components would satisfy 
the boundary conditions on the surface of the PEMC cylinder i.e., 𝑟 = 𝑎 (Ruppin, 2006a) as, 

𝐻%# +𝑀𝐸%# + 𝐻%5 +𝑀𝐸%5 = 0																																																																																																														(10) 

𝜖!𝐸(# + 𝜖!𝐸(5 −𝑀𝜇!𝐻(# −𝑀𝜇!𝐻(5 = 0																																																																																												(11) 

On implementing the above-mentioned boundary conditions, the linear equations are obtained. 
These are solved simultaneously to determine the co- and cross polarized scattering field 
coefficients. 

3. Results and discussion 

The complete theoretical formulation is derived in Section 2 and its implementation into 
Mathematica program is done in Section 3. In this section, scattering characteristics of the PEMC 
cylinder illuminated by an LG beam is numerically presented. The source frequency is set at 1 
GHz and beam waist radius is 𝑤! = 1.0	𝜆.  In Figure. 2, the radial component of the incident 
electric field at different z positions i.e., 𝑧 = 𝑧0 , 3𝑧0, and 7𝑧0 for 𝐿𝐺!1 beam is depicted. The top 
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Figure. 2a presents the distributions in a quite small area as compared to the remaining Figures. 
2(b-c) respectively. It can be seen that for LG beam incidence, a broadening is noted with 
increasing the propagation distance. The LG electric field distributions lead to a twisted field type 
structure which gives a strong basis for helical LG beam oscillations.  

 

 

 

 

Fig. 2. Radial electric field amplitude associated with LG beam by varying the propagation 
distance (a) 𝑧 = 𝑧0 (b) 𝑧 = 3	𝑧0 (c) 𝑧 = 7	𝑧0. 

The scattered field distribution depends on LG beam parameters i.e., topological charge (𝑙) and 
beam waist radius (𝑤!). The normalized scattered field distribution is plotted against equation (9) 
and discussed by varying the different influencing factors. On plotting equation (13) of Ref.  
(Kozaki, 1982) for (𝛼 = 0!, 90!) and also keeping the beam parameters i.e., 𝑝 = 0	&	𝑙 = 0 for 
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different configurations of cylinder (a) PEMC (b) PMC, the scattering behavior of 𝐿𝐺!! beam and 
gaussian beam is same. It is observed that scattered field response at (𝛼 = 0!, 90!) for equation 
(13) of a gaussian beam of (Kozaki, 1982) coincides with the PEMC cylinder and PMC cylinder 
of 𝐿𝐺!! beam. The results are shown in Figure. 3(a) and 3(b) respectively.   

 

   

Fig. 3. Comparison of the scattered field of gaussian beam and 𝐿𝐺!! beam with its mode indices 
i.e., 𝑝 = 0 and 𝑙 = 0 (a) PEMC cylinder (b) PMC cylinder. 

After that we focused to probe the effects of OAM i.e., by varying (𝑙) so, we held the parameter 
𝑝 = 0. To layout the effect of the OAM, the scattered field response of LG beam for PEMC 
cylinder for four feasible cases with different combinations of 𝑝 and 𝑙, that are., (a) 𝑝 = 0, 𝑙 = 	1 
(b) 𝑝 = 0, 𝑙 = 	2 (c) 𝑝 = 0, 𝑙 = 	3 and (d) 𝑝 = 0, 𝑙 = 	4 is shown in Fig. 4. For 𝑙 = 1, 2	a smooth 
field pattern appears in between 𝜑 = 0! − 150! and 𝜑 = 200! − 350!, but around the center of 
optical axis i.e., 150! − 200!, a peak for the scattered field becomes more prominent. Here a sharp 
hump can be seen. However, the scattered field has maximum value for 𝑙 = 4.  

 

Fig. 4. Scattered field response of 𝐿𝐺 beam for OAM index 𝑙 = 1,2,3,4 for PEMC cylinder. 
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The effects of varying the beam waist radius for PEMC cylinder is shown in Figure. 5. The 
scattered field distribution increases as the waist radius increases. On continuous increasing the 
waist radius, the size of the hole for the LG beam intensity distribution increases and leads to 
increase the beam width which in turn increasing the normalized scattered field pattern. The 
distance among the various peaks becomes shorter due to continuous increasing the waist radius. 
It seems that field pattern for LG beam increases by increasing the beam waist radius (𝑤!) as for 
the gaussian beams.  

 

Fig. 5. Scattered field response of 𝐿𝐺 beam for beam waist radius (𝑤!) for PEMC cylinder. 

Figure. 6 shows the scattering behavior of LG beam versus admittance parameter by changing the 
OAM index. The scattering response increases by increasing the 𝑙 parameter. The RCS for all the 
other values of admittance parameter show flat response but at the center of the optical axis, a 
sharp peak appears which corresponds to the more involvement of internal field modes. The central 
peak size also increases by increasing the OAM mode number. The difference among various 
peaks increases form minor to major by increasing the beam 𝑙.                     

 

Fig. 6. Scattered field response of 𝐿𝐺 beam versus admittance parameter for PEMC cylinder. 
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In Figure. 7, the effect of cylinder radius on scattered field has been plotted. The scattered field 
distribution depends on cylinder radius also. It is clear from the Figure. 7 that when the radius of 
the cylinder is small the scattered field is small and it increases by increasing the radius. A 
noticeable pattern is also observed by increasing the cylinder radius. It can be observed that the 
scattered field for LG incident beam does not always increase with the increase of PEMC cylinder 
radius. However, there exists an optimum PEMC cylinder size for the maximum scattered field 
which is also controlled by beam order and beam waist radius. 

 

Fig. 7. Scattered field response of 𝐿𝐺 beam for the radius of PEMC cylinder. 

 

4. Conclusions 

We have developed an analytical technique to study the scattering field pattern of a PEMC cylinder 
that is illuminated by an incident LG beam. The field components of LG beam need to be described 
by mathematical expressions in cylindrical coordinate system. Here, we briefly described an 
arbitrary incident LG beam by using the method of constructing scalar potential. The present 
theoretical treatment is considered to be more general for considering any perfect conductor 
cylinder i.e., (PEC/ PMC/ PEMC). A comparison of the numerical results with the published 
results under some special case confirm the validity of our analysis. It is concluded that scattered 
field for PEMC cylinder can be tuned by varying the OAM mode index, beam waist radius, and 
PEMC cylinder radius.   
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