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Abstract

This study aims to introduce four modified linear estimators for the right-censored high-dimensional data.
Obviously, data of interest involves two important problems to be solved that are censorship and high
dimensionality. This paper can be distinguished from other studies in the literature with that it achieves
to handle these two problems simultaneously. The main contribution of the paper is merging weighted-
ridge method with the imputation techniques to obtain more efficient estimators than its alternatives.
To solve the censorship problem, four imputation techniques are considered based on machine learning
algorithms kNN, sliding-windows, regression and support vector machines. The high-dimensionality
problem is handled by the weighted ridge approach which provides estimator with less risk than its al-
ternatives because it detects the covariates with a weak contribution via the post-selection procedure. To
show the empirical performance of the introduced estimators, a simulation study is made and compara-
tive results are presented. Results show that kNN and regression imputation basis WR esitmators show
satisfying performances on estimation of the high-dimensional right-censored model.

Keywords: High-dimensional data; kNN imputation; machine learning; right-censored data; sliding-
windows

1. Introduction

High-dimensional data (HDD), which is one of the important sub-titles of Big Data phenomenon, has
recently attracted great attention in many fields of science, depending on technological developments.
For instance, in Biology or Bioinformatics, new sequencing techniques allow extracting the data for all
molecular levels, such as mRNA or DNA sequences (see (Dehmer et al., 2011); (Rao et al., 2019)).
In addition, HDD can be encountered in other research areas such as signal processing ( (Gavish et
al., 2010)), Finance and economy ( (Dang et al., 2015); (Abonazel & Rabie, 2019)) and especially in
medical studies ( (Goh et al., 2019); (Dondelinger et al., 2020)). The most interested data type in the
medical applications is gene expression microarray data. This kind of data involve much larger number
of variables (p) than the sample size (n). Note that the key idea in analyzing the microarray data is to
consider the number of ”important” variables (genes) that are assumed as smaller than n. Usually, gene
expression data include orthologous genes that have high sequence similarity because of repeated runs of
amino-acids, pseudo genes and so on (Keith, 2008). In addition, to extract the expression data is an ex-
pensive procedure which makes hard to repeat it. Therefore, the extracted datasets involve the incomplete
(censored) or missing data points mostly. Thus, modelling the gene expression data may cause the biased
and widely variated estimations. Accordingly, researchers across the datasets with two issues to be solve
that are high-dimensionality in explanatory variables and the censorship in the response variable. This
matter indicates the crucial importance of the variable selection in high-dimensional data estimation and
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to solve the censorship problem in regression models.

The main objective of the variable selection or regularization methods (penalty functions) is to de-
cide which variables are important and which are not. Thus, more stable, and interpretable model and
estimators can be obtained. Let us consider the high-dimensional linear model as follows for completely
observed response variable:

yi =

pn∑
j=1

χijβj + εi, 1 ≤ i ≤ n (1)

where yi’s are the uncensored response values, xij’s are the values of pn predictors that form high-
dimensional (pn >> n) explanatory variables εi’s have zero mean and constant variance σε2 . Note that
pn denotes that change of p may be dependent to n which affects the asymptotic properties of estimators
(see (Lei et al., 2018). In this paper, we are interested in estimating the regression coefficients of model
(1) when the observations of response variable are incompletely observed and right-censored by a random
censoring variable ci, but xij’s are completely observed. Therefore, instead of observing the values of
response variable yi, we observe the dataset (zi, δi) with

zi = min (yi, ci) , δ =

{
1 yi < ci

0 yi > ci
(2)

where zi’s are incomplete response observations and δ carries the censorship existence information.
If data point is censored δ = 0 and δ = 1 otherwise. In this case, model (1) transforms into a linear
model with right-censored data, which can also be updated in terms the values of new response variable
zi. By using (2), right-censored high-dimensional model is given in (3):

zi =

pn∑
j=1

xijβj + εi, 1 ≤ i ≤ n (3)

Note that, censorship problem is mostly ignored by the researchers by eliminating them from the dataset
or assuming all data points are completely observed. However, in medical research which is a highly
sensitive field because it focuses on the human health, bias, and high-variance due to the right-censored
data cause the unreliable estimates and interpretations.

There is a rich literature on estimating model (1) based on gene expression data (Segal et al., 2004).
Due to high-dimensional pn >> n nature of the data, they introduced regularized linear regression pro-
cedure based on Lasso (Tibshirani, 1996). Note that there are number of penalty functions that have
high potential on estimating regression models for the microarray data such as Elastic Net (Zou, 2005),
smoothly clipped absolute deviation (SCAD) proposed by (Fan, J., & Li, R., 2011), minimum concave
penalty (MCP) defined by (Zhang, 2010) and their modifications. Some of these methods have been
adapted to microarray data applications. For example, (Zou, 2005) used ElasticNet approach, (Kim et
al., 2009) used SCAD function, (Huang et al., 2011) used MCP function to analyze the microarray data
under high-dimensional settings. Note that the mentioned studies provide the linear estimators based
on commonly used variable selection methods such as Lasso, SCAD or MCP. Although the mentioned
penalties such as SCAD, MCP and Lasso-type functions have widely used in modelling the HDD owing
to their feasible performances and computational easiness, they have a restrictive assumption in model
design which affects the consistency and accuracy of the estimated model. This assumption is that re-
gression coefficients of pn predictors are formed by two subsets S1 and S2 where S2 involves sparse part
of the model with {βj = 0}pn0

j=1 (no signal) and S1 involves the non-zero coefficients with {βj 6= 0}pn1
j=1

(strong signal). This restriction brings some other assumptions about the consistency of estimators ob-
tained based on the penalty functions. On the other hand, (Gao et al., 2016) introduced a new approach
called the weighted ridge method (WR), which includes an important innovation for the estimation of
the high-dimensional linear model. Unlike existing variable selection methods, it divides estimators into
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three subgroups, S1 (strong signals) , S2 (weak signals) and S3 (no signals-sparse). As can be seen, WR
takes into account weak signals, which provide a less risky prediction. In addition, this is one of main
contributions of the paper using the advantage of WR in right-censored dataset.

On the other hand, to solve censorship problem, they preferred the cox hazard model or synthetic data
transformation method. Solutions provide also satisfying estimates, but they manipulate the data struc-
ture. For instance, synthetic data transformation gives the right-censored data points zero and changes
the magnitude of remaining data points (see (Aydin & Yilmaz, 2018)). This study aims to avoid this
issue by using four imputation techniques based on kNN, sliding-windows (SW), regression (RI) and
support vector machine-basis (SVMI) algorithms. Note that the mentioned imputation techniques are
recently used in the literature (see (Malarvizhi & Thanamani, 2012) for kNN imputation, (Emmanuel
et al., 2021) for SVMI, (Doreswamy & Manjunatha, 2017) for RI) and developed by the compilation of
the missing data in general. In this paper, those methods are adapted to the right-censored data and the
modelling procedure. Thus, raw data can be directly on resolving censorship.

The main purpose of this paper is introducing the four linear estimators to estimate the right-censored
high-dimensional linear model (1). To achieve this purpose, weighted-ridge (WR) approximation is used
as a solution of high dimensionality. Thusly, using ridge penalty and lasso-type penalty, new estimators
are introduced for components of (1) where ridge penalty provides to construct a ”data-adaptive post
selection shrinkage estimator (PSE)” as in mentioned by (Gao et al., 2016). Also, four different impu-
tation techniques that are kNN and sliding-windows (SW), regression and support vector machine-based
imputations are considered to handle the right-censored data. Note that, the most important motivation
of this paper is reducing the risk in high-dimensional data modeling which has a crucial importance in
medical studies. From our knowledge high-dimensional right-censored data has no been modelled yet
by the mentioned estimators in the literature.

Remain of the paper is arranged as follows. Section 2 introduces the four imputation techniques
for the right-censored data. Imputation techniques are described with details. Then, linear estimators
based on WR approach are explained. Sections 3 involves the simulation study and the obtained results.
Finally, conclusions are given in Section 4.

2. Material and methods

2.1 Right-censored data
Let assume that F , G and J are the conditional distribution functions of variables y, c and z ∈ R+ or

given value of fixed covariate X = x, respectively. Let r be a positive constant, from that the mentioned
distributions can be written as

F (r | X = x) = P (z ≤ r | X = x), G(r | X = x) = P (c ≤ r | X = x)

J(r | X = x) = P (y ≤ r | X = x) for r ∈ R+ (4)

Due to right-censored response variable y, data pairs to be analyzed (xi, yi)
n
i=1 turn into data triplets

(xi, zi, δi)
n
i=1. It is necessary to add the censorship effect on the estimation process. Also, relationship

between the survival functions of the mentioned variables is given by:

[1− J(r | X = x)] = [1− F (r | X = x)].[1−G(r | X = x)] (5)

To make the estimated model identifiable, there are two critical assumptions to be ensured related with
(5) that are given as follows:
A1. Censoring variable c is independent from (x, y)
A2. P (y ≤ c | y, x) = P (y ≤ c | y)

Note that A1 and A2 are known as general assumptions in the random right-censored models (see,
(Stute, 1993) for details). Because of the censoring, the ordinary estimation methods (such as least
squares or maximum likelihood etc.) for estimating model (3) cannot applied directly. In the literature,
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to overcome the censored observations, different data transformation techniques ( (Koul et al., 1981)) or
weighted least squares ( (Orbe et al., 2003)) are considered. As mentioned before, these methods touch
the structure of all the data points. On the other hand, this study aims to impute the censored observations
without manipulating the data. Accordingly, four different machine learning algorithms are considered
to achieve this purpose that are explained in the following subsections.

2.2 kNN imputation
This section describes the kNN imputation method. It provides reasonable estimates for the right-

censored data points without theoretical restrictions. In this paper, kNN imputation summarized and
provides an algorithm. All the details about the method can be seen in (Ahmed et al., 2019).

The kNN imputation has an advantage which is it can be used for both discrete and continuous
variables. For discrete variables, the most frequently used value among k-nearest neighbors is determined
as an imputed value. Mean value of k-nearest neighbors is used if the variable of interest is continuous.
This is one of the important advantages of the method. Basically, the kNN is a similarity-based machine
learning method which depends on the distance between data points. Therefore, similartiy measure
affects the results seriously. In the litereature, generally, the Euclidean norm is used to evaluate the
distances proposed by (Strike, 2001). The Euclidean norm can be computed as follows:

mE(x, z) =

√√√√ n∑
i=1

(xi − zi)2 (6)

where mE(x, z) represents the function of distance measure. To obtained the imputed values of the
right-censored data points in the response variable yi, this paper considers the algorithm proposed by
(Ahmed et al., 2019) which is given in Algorithm 1:

Algorithm 1 Algorithm for imputed kNN

1: Input: Right-censored dataset zi, Censoring indicator δi, umber of nearest neigbours k, Values of
predictor variable xi (high-correlated one with yi )

2: Output: Imputed dataset yknn =
(
yknn1 , . . . , yknnn

)T
3: Begin
4: for (i = 1 : n) do
5: If (δi = 0) do (if data point is censored)
6: for (j = 1 : n) do
7: Find the Euclidean distances given in (4) between xj and xi for each censored data point
8: Sort the distances from small to large
9: for (j = 1 : k) do

10: end
11: Take the first uncensored k values of zi associated to sorted distances
12: Calculate the ithimputed value (yknni ) with average of nearest k records of yi
13: Replace the imputed values (yknni ) with censored data points (zi, δi = 0) in censored data set Z =

(z1, . . . , zn)
14: end
15: Return yknn =

(
yknn1 , . . . , yknnn

)T
It should be emphasized that neighbours of the instances may be right-censored which makes critical

to determine both the number of neighbours ”k” and their locations. (Cartwright et al., 2004) suggested
a low k (i.e., 1 or 2). However, to choose more efficient ”k” it is selected from between interval of [2, 10]
that minimizes the mean squared error (MSE) score.

2.3 Imputation based on sliding-windows
In this section, the sliding-windows (SW) imputation method proposed by (Ahmed et al., 2020) is

introduced which is another censorship solution method. SW imputes the right-censored observations
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by a sliding window method based on predictive model. Note that in data science SW is of the important
machine-learning methods especially in data mining applications. SW includes a fixed window size on
the data points, and it works locally with the data points placed in the specified window then moves to
the next window. The main advantage of the SW from the other imputation methods is its local operation
feature which makes it superior the SW for the datasets with unstable variances. It is works together with
the linear regression model by OLS to estimate the right-censored data point with in-sample prediction.
SW imputation is summarized as follows.

Let assume the following notations.

• w: window size for SW

• t: window of interest (tth window)

• Z∗t : Vector of response variable for tth window

• X∗t : Matrix of explanatory variables for tth window

The number of windows (nw ) changes depends on the window size (w) which is computed by nw =
(n − w + 1). Note that it is substantial to determine the accurate window size (w). (Ahmed et al.,
2020) suggests that w changes according to censoring level. ”When the censoring level increases, ”w”
gets small values and takes large values otherwise” they mentioned. When the necessary parameters are
decided for the SW, OLS can be applied by the subsets in each window. Accordingly, SW model can be
given by:

Z∗t = X∗Tt θt + εt, t = 1, 2, . . . , nw (7)

where θt = (θ1t, θ2t, . . . , θpt)
T vector of coefficients tth window and εt ∼ N

(
0, σ2t

)
. Hence, estimation

of θt is obtained in the equation (8)

θ̂t =
(
X∗Tt X∗t

)−1
X∗Tt Z∗t (8)

and the fitted values are given by:
Ẑ∗t = X∗Tt θ̂t = HtZ

∗
t (9)

where Ht = X∗t
(
X∗Tt X∗t

)−1
X∗Tt . Thusly, imputation for the right-censored observations placed in the

tth window can be estimated by using (9). Detailed information can be seen from the attached algorithm.
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Algorithm 2 SW imputation for right-censored data

1: Input: Right-censored data points zi (obtained from equation (2)) Corresponding δi = I(yi < ci),
Values of predictor variable xi (high-correlated one with zi), window size parameter w

2: Output: Imputed dataset ŷsw =
(
ysw1 , ysw2 , . . . , yswnc

)T
3: Begin
4: for (i = 1 : n) do
5: If (δi = 1) do
6: obtain z∗i with z∗i = zi
7: obtain x∗i with x∗i = xi
8: end
9: Determine the number of windows (nw) with (n− w + 1)

10: for (j = 1 : nw)
11: Estimate the θ∗j for jth window
12: Obtain the fitted values for the jth window by ŷswj = X∗j θ̂j
13: end
14: for (i = 1 : w) do
15: if (δi = 0) do
16: zi = yswi (replacing the censored ones by the imputed ones)
17: else (δi = 1) do
18: zi = z∗i
19: end (for loop in Step 12)
20: Return ŷsw =

(
ysw1 , ysw2 , . . . , yswnc

)T
21: end

2.4 Regression imputation (RI)
Regression imputation uses the classical linear regression model estimated by the ordinary least

squares (OLS) to make imputation Let assume that ”m” be the number of the uncensored observations
and (zRIi )mi=1 be the value(s) of them. From that, regression model for the imputation can be given in
equation (10):

zRIi = (XRI
i )Tη + εRIi , i = 1, . . . ,m (10)

where zRIi is the ith value of the response variable, XRI
i denotes the predictor variables, η = (η0, . . . , ηpRI )T

is the vector of regression coefficients and εRIi N(0, 1) is the random error terms for the RI model. The
key idea of the RI method is to estimate η and making in-sample predictions for the right-censored data
points. In this manner, similar to SW imputation method, equation (10) is estimated by OLS as follows:

argmin
(
ηRI

)
=

n∑
i=1

(
zRIi −

(
XRI
i

)T
ηRIi

)

η̂RI =
((

XRI
)T

XRI
)−1 (

XRI
)T

zRI (11)

Thus, by using ηRI and XRI
i , the imputed values can be obtained based on the censorship information

provided by δi. Then, the imputed ones are replaced with the censored ones. Note that RI brings some
extras about the imputed values with the magnitude and signs of the regression coefficients. As with
other two imputation methods, an algorithm for RI is given in Algorithm 3.
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Algorithm 3 RI imputation for right-censored data

1: Input: Right-censored data points zi. Censoring indicator δi = I(yi < ci), Values of predictor
variable xi.

2: Output: Imputed dataset ŷRI =
(
ŷRI
1 , ŷRI

2 , . . . , ŷRI
nc

)T
3: Begin
4: for (i = 1 : n) do
5: If (δi = 1) do
6: obtain zRIi with zRIi = zi
7: obtain xRIi with xRIi = xi
8: end
9: Obtain the η from equation (11)

10: for (i = 1 : n) do
11: If (δi = 0) do
12: Estimate ith right-censored observation using estimated model
13: Replace the fitted value (ŷRIi ) with censored data point zi.
14: end
15: Return ŷRI =

(
ŷRI
1 , ŷRI

2 , . . . , ŷRI
n

)T
16: end

2.5 Support Vector Machine-based imputation (SVMI)
SVM is one of the most commonly used machine learning algorithms to complete the missing data

(see (Stewart et al., 2018)). Note that SVMI is generally used to make imputation for the missing cate-
gorical variables not continuous data. Thusly, SVM classifier is preferred as a imputation tool. However,
this paper modifies the SVM for the continuous right-censored data imputation by using censorship in-
formation and SVM regression estimator. Then it is integrated with the high-dimensional data modelling.
Imputation procedure is explained with details in Algorithm 4. To make imputations, SVM regression
is used and as in RI method, right-censored data points are imputed by in-sample predictions. In this
manner, SVM regression is summarized as follows.

Let consider the training dataset of pairs as {(xi, zi)}nj=1 ∈ Rn × R where x∗i is the high-correlated
covariate among pn covariates in model (3) with right-censored response variable zi to make more ac-
curate imputation. As known, SVM considers the linear relationship between by solving the following
regression function:

z = 〈ws ·X∗〉+ b (12)

where ws is the vector of gradient and b is the intercept term. In model (12), the objective function min-
imizes some error on the training set for a determenied loss function. Even if there other loss functions
such as absolute loss, here, square loss function is used which can be given in equation (13):

L (zi, ẑi) = (zi − ẑi)2 (13)

By using (13) the objective function to minimized for the SVM regression can be written as:

J(ws) =
1

2
w′sws + Csvm

n∑
j=1

(
ξj + ξ∗j

)
(14)

where C is called as a box contraint, a positive numeric value that controls the penalty term which
prevents the overfitting problem. ξ’s are the slack variables to make possible the optimization. To save
the space, all details of SVM regression cannot be given here. For further details see (Stewart et al.,
2018).

By using estimated model via minimizing equation (14) and obtaining gradients ŵs , right-censored
observations can be imputed by using the following algorithm. Thusly, imputed data set can be con-
structed.
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Algorithm 4 SVMI imputation for the right-censored data

1: Input: Right-censored data points zi. Censoring indicator δi = I(yi < ci), Values of predictor
variable xi, a training dataset without censored data points, a tolerance threshold and a maximum
iteration number for the iterative process that are 10−5 and 200 respectively.

2: Output: Imputed dataset ŷSVMI =
(
ŷSVMI
1 , ŷSVMI

2 , . . . , ŷSVMI
nc

)T
3: Begin
4: Estimate the SVM model by using training model from (14)
5: for (i = 1 : n) do
6: If (δi = 0) do
7: Make in-smaple prediction for ith right-censored observation by using ŵs and the SVM model.
8: Replace the fitted value (ŷSVMI

i ) with censored data point zi.
9: end

10: Return ŷSVMI =
(
ŷSVMI
1 , ŷSVMI

2 , . . . , ŷSVMI
n

)T
11: end

2.6 Procedure of weighted-ridge method
In this section, WR approach is summarized firstly with some important details and then, its integra-

tion to the right-censored responses is explained. Linear estimators based on the kNN and SW imputation
techniques are obtained. At first, WR procedure is summarized. Details can be found in (Gao et al.,
2016).

As mentioned before, in WR approach works with three subsets S ⊂ {S1, S2, S3} that involve re-
gression coefficients βj’s according to their signal strength. Basically, WR uses two penalties to obtain
the estimators gradually. Firstly, using with Lasso, sparse and non-zero βj’s are obtained that can be
expressed as S ⊂ Ŝ1, ŜL where ŜL ⊂ Ŝ2, Ŝ3. Secondly, the post selection shrinkage is made for ŜL
to separate the weak signals (Ŝ2) from the sparse ones (Ŝ3) by ridge regression. Due to WR method,
obtained estimators are expected to be more sensitive to taking account for the data structure.

To understand clearly and to make sense the separating the signals (regression coefficients) into three
subsets S1, S2 and S3 as mentioned above, some conditions need to be assumed that are explained by
(Gao et al., 2016) with details. Here, these conditions are summarized as follows:

(i) for given ω > 0, |βj | > ω
√

(log (pn) /n if j ∈ S2

(ii) β should ensure that
∥∥βS3

∥∥ = O
(
n`
)
, for 0 < ` < 1

(iii) βj = 0 if j ∈ S1

As usual in all variable selection methods in the literature, WR is adopted to the regression analysis
with a penalty function which can be expressed briefly with ”Loss function + penalty function”. In this
paper, loss function is determined as objective function of the penalized least squares (PLS) and the
penalty function is chosen as WR. Basically, general minimization criterion can be given by:

{
β̂J

}
= arg min

β∈Rp

zi −
pn∑
j=1

xijβj


2

+

pn∑
j=1

pλr (βj) (15)

where λr > 0 is a shrinkage parameter for the WR penalty which controls the shrinkage level. Note that
in this section, we focused on the WR penalty function

∑pn
j=1 pλr (βj). As known

∑pn
j=1 pλr (βj) is a

quite common notation to show the penalty function. For instance, it takes λlasso
∑pn

j=1 |βj | for Lasso
which is used in this paper to obtain the subset of strong signals Ŝ1. The selection of the shrinkage
parameter λr has a crucial importance on estimation procedure. Therefore, cross-validation (CV) crite-
rion is used to decide λr which is one of the most widely used methods for the regularization parameter
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selection (see (Lukas, 1993); (Jung et al., 2018)).

WR works with two stages. At the first place, the subset of weak signals S2 is ignored and a model
is obtained which includes only the strong signals (βj ∈ S1) and if j 6∈ S1, it is decided
hatbetaj = 0. Accordingly, by using penalized least squares (PLS), restricted least squares estimator
(RE) is obtained as follows:

β̂
RE

S1
=
(
XT
S1

XS1

)−1
XT
S1

Z (16)

The focused point by using WR approach is to reduce the risk of the estimator given in (9). To achieve
that it is needed to use information from the subset Sc1 that means to add some weak signals into the
model. In this context, let assume that X = (XS1 |XS2 |XS3) and corresponding regression coefficients
are β =

(
βS1

∣∣βS2

∣∣βS3

)T . To make simple to understand, the following notations are used; s(S1) =
p1, s(S2) = p2 and s(S3) = p3. From that p = p1 + p2 + p3. Also, it is important to mentioned the
restriction of h = p1 + p2 ≤ n with R = (XS1 ,XS2). Here, Σ = n−1RTR is an inversible matrix.

By using the given information, three steps to obtain the WR estimator and β̂
PSE

can be given below in
three steps:

Table 1. Estimation steps of β̂
PSE

based on WR approach

Step 1. Obtain the subset Ŝ1 by using Lasso and β̂RE
Ŝ1

given in (9).

Step 2. Obtain β̂
WR

=
(
β̂
WR

Ŝ1
, β̂

WR

Ŝc
1

)
based on WR penalty threshold and Ŝ1 which found in Step 1.

Step 3. Obtain the post selection shrinkage estimator β̂
PSE

by shrinking the β̂
WR

estimated in Step 2.

Note that β̂
PSE

can eliminates the three main problems in high-dimensional data modeling that are
i) Extracting the sparse signals, ii) Eliminating the multi-collinearity, iii) Adding the weak signals to the
model. WR approach can solve the mentioned (i-iii) problems with in Steps 1-3.

A short algorithm is provided in Algorithm 5 for WR approach and obtain the β̂
PSE

. To see further
discussion, see (Gao et al., 2016). After the algorithm, β̂

PSE
is integrated with the imputed response

variables obtained from kNN and SW techniques.

9

Ersin Yilmaz, Dursun Aydin, S. Ejaz Ahmed



Algorithm 5 Estimate model (3) with WR approach

1: Input: Response variable zi (ykNNi or yswi ), high-dimnesional covariate matrix X ∈ Rn×pn , pn � n

2: Output: β̂
PSE

3: Begin

4: Minimize the β̃(r) = arg minβ

{
‖Z−Xβ‖2 + λ

∥∥∥βŜc
1

∥∥∥2} for obtained Ŝ1 and Ŝc1

5: Obtain the WR estimators based on λ and WR threshold α based on Ŝ1 as follows:

β̂WR
j (λr, α) =

{
β̃j (λr) , j ∈ Ŝ1
β̃j (λr) I

(
β̃j (λr) > α

)
, j ∈ Ŝc1

6: Based on the WR threshold α, obtain the subset of weak signals Ŝ2 by

Ŝ2 := Ŝ2

(
Ŝ1

)
=
{
j ∈ Ŝc1 : βWR

j (λr, α) 6= 0
}

7: Obtain the subset of sparse signals Ŝ3 as Ŝ3 := Ŝ3

(
Ŝ1

)
=
(
Ŝ1 ∪ Ŝ2

)c
8: Compute the necessary arguments:

T̂r =
(
β̂
WR

Ŝ2

)T (
XT
Ŝ2

MS1XŜ2

)
β̂
WR

Ŝ2
/σ2 and MS1 = In −XŜ1

(
XT
Ŝ1

XŜ1

)−1
XT
Ŝ1

9: Obtained estimator β̂
PSE

based on β̂WR
j (λr, α) and the matrices in step 6 as follows:

β̂
PSE

= βWR
Ŝ1
−
([(∣∣∣Ŝ2∣∣∣− 2

)
/T̂r

]
∧ 1
)(
βWR
Ŝ1
− βRE

Ŝ1

)

Note that, the threshold α which is used in step 3 of Algorithm 5, is needed to ensure the following
condition:

∣∣∣Ŝ2∣∣∣ = s
(
Ŝ2

)
> 2 and

∣∣∣Ŝc3∣∣∣ = s
(
Ŝc3

)
< n According to that its calculation is given by

α = ϑn−d, 0 < d ≤ 0.5, ϑ > 0. Based on the β̂
PSE

fitted values for the determined model are
calculated as follows by using matrix X∗ = [XS1XS2 ]

µ̂Sc
3

= Ẑ = X∗β̂
PSE

(17)

As can be seen, Algorithm 5 is used incomplete response variable zi as input argument. However, as
we mentioned before, zi cannot be used directly in the estimation process. To overcome this issue,
four imputation techniques are introduced in in Section 2. In this manner, instead of zi imputed response
variables should be used as input in Algorithm 5. If yknni is used as a response variable, β̂

PSE
is obtained

based on kNN imputation method. Similarly, ysw1 gives SW based estimator β̂
PSE

and the procedure is
same for the RI and SVMI methods.

3. Simulation study

This section provides a design and results of the detailed simulation experiments to show performances
of the introduced four linear estimators for right-censored high-dimensional data. Note that simulation
study is realized with R-software. Simulation design, data generation and model settings are summarized
as follows:

Data Generation: Regarding to model (1), each element of the model obtained as follows:

Xi ∼MN
[
µpn×1,Σpn×pn

]
and εi ∼ N

(
µε = 0, σ2ε = 0.5

)
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The true vector of regression coefficients are given by:

βj =


−5 if j = 1, 2, 3, 4, 5
5 if j = 11, 12, 13, 14, 15

0.2 if j = 21, 22, 23, 24, 25
0 otherwise

Thus, it can be said that there are 15 signals to be estimated and for each sample size there are (n− 15)
sparse signals.

Regarding the censoring data, censoring variable ci is generated as ci ∼ N
(
µy, σ

2
y

)
indepen-

dently of the initially observed variable yi. Hence, partially observed responses are obtained with
zi = min(yi, ci). An algorithm for censoring procedure is provided by (Aydin et al., 2021).

To show the multicollinearity and censorship problems in the generated datasets, Figure 1 is pre-
sented which is formed by two panels. In panel (a), collinearity can be seen obviously and in panel (b),
right-censored responses are indicated with blue ”∆” when CL = 25%.

(a) Correlation plot for high-correlated 5 covariates (b) Scatterplot for the right-censored response variable
(zi) and completely observed (yi)

Fig. 1. Multicollinearity problem (a) and right-censored responses (b) in the generated data

Simulation Design:The sample size was determined as n = 50, 100, 150 and 200 and the number of
variables as (pn = 200, 300, 500). Accordingly, it is planned to examine different p >> n states. Data
is produced by using the correlation coefficient ρ = 0.95 for explanatory variables in order to show the
multicollinearity problem, which is frequently encountered in microarray data. However, these correla-
tions were applied for a certain number of variables, not for each variable. This number is intuitively set
to 5 which will be enough to emerge the multicollinearity problem the generated datasets. Also, all the
simulations are realized for the two censoring levels CL = 5%, 10%, 15% and 25%. Each simulation
was repeated 1000 times.

Performance of the methods are evaluated by mean square error (MSE) of the model based on the
fitted values given in (10) and relative mean squared error (ReMSE) for estimated regression coefficients
that can be computed as follows:

MSE(ẑ) = n−1
n∑
i=1

(zi − ẑi)2 = (z− ẑ)T (z− ẑ)

ReMSE
(
β̂kNN , β̂SW

)
=

(
β̂kNN − β̂SW

)′ (
β̂kNN − β̂SW

)
(
β̂SW − β

)′ (
β̂SW − β

) (18)

where β̂kNN and β̂sw are the estimated coefficients by the WR approach in Algorithm 2. Details are
discussed in Section 2. If ReMSE > 1, it means β̂sw gives better estimates than β̂kNN and vice versa.
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Also, to compare the imputation methods individually, averaged-bias (AvB) for the imputed values, and
inaccuracy (IA) measure are used that are given by:

AvB =
1

ncens

ncens∑
i=1

∣∣∣yi − yimpi

∣∣∣ , IA =
1

ncens

ncens∑
i=1

∣∣∣yi − yimpi

∣∣∣
yi

(19)

where ncens is the number of censored data points, yimpi denotes the imputed data points any of kNN or
SW methods. Note that these scores can be computed for only the simulation experiments because both
real and censored responses are known. Before the estimation of the model, imputed response variables
are obtained from the kNN and SW imputation methods. Selection of window size for SW and number
of neighbors for kNN imputations are determined by using mean squared error (MSE) imputed values.
Example plots are given in Figure 2 for all possible simulation combinations.

Figure 2 shows the optimal No. neighbors for the kNN. In a similar manner, window size for SW
imputation method is decided optimally as seen in Figure 2. Note that, optimum values of w and k
are provided in Tables 2-7 and, for each configuration, optimal values of them are determined before
the model estimation. Imputation performances are clearly seen in Tables 2-7 for all possible simula-

Fig. 2. Selection of window size (w) of SW imputation (panel (a)) and no. neighbors (k) of kNN
imputation (panel (b)).

tion configurations. At the first look, kNN imputation method achieves the impute the right-censored
observations quite better than other three imputation methods. In detail, for large number of covariate
(pn = 500) RI technique shows better performance than others regarding the AvB and IA scores. Be-
cause of there is no distributional assumption for kNN, its performance is not affected by the sample size
which can be counted as both advantage and disadvantage. From a positive aspect, it can give satisfying
results for small sample sizes even CL = 25% such as n = 50, p = 500 and CL = 25% configura-
tion. On the other hand, it cannot be said that when the sample size is getting larger, the performance of
kNN is getting better due to its nonparametric nature. Regarding the SW, RI and SVM, they work based
on the least squares method. Therefore, as can be seen from the tables, their performances are getting
better when sample size is getting large in contrary to kNN imputation. if IA scores in Tables 2-7 in-
spected carefully, it is obvious that in most of the cases, imputation methods give closer values. Although
SW, RI and SVM cannot give good performances on this simulation study, They show more stable and
predictable performances than kNN imputation After the performances of the imputation methods, esti-
mation of the model based on WR can be applied by using obtained imputed response variables ykNN ,
ySW , yRI and ySVMI . To achieve that estimation procedure given in Table 1 and Algorithm 5 are applied
to the generated dataset.

At first, a candidate model and subset of strong signals Ŝ1 are obtained by Lasso. As known, Lasso
is a shrinkage method and it shrinks the regression coefficients towards to zero by using a iterative

12
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Table 2. AvB and IA scores for the imputation methods for CL=5% and CL=10%

CL n
AvB IA Optimum

pn kNN SW RI SVMI kNN SW RI SVMI k w

5%

50
200 0.377 0.591 0.717 0.777 0.614 0.921 1.038 1.307 11 12
300 0.374 0.562 0.668 0.749 0.558 0.638 0.612 0.962 11 11
500 0.371 0.548 0.612 0.722 0.521 0.580 0.593 0.963 10 11

100
200 0.443 0.502 0.624 0.736 0.435 0.591 0.825 0.848 5 8
300 0.284 0.476 0.489 0.587 0.624 0.527 0.730 0.808 16 12
500 0.433 0.467 0.674 0.823 0.807 0.889 0.708 0.766 8 12

150
200 0.421 0.425 0.423 0.575 0.420 0.532 0.693 0.819 11 13
300 0.419 0.409 0.345 0.511 0.702 0.409 0.616 0.724 11 13
500 0.412 0.402 0.267 0.447 0.677 0.786 0.639 1.729 11 13

200
200 0.423 0.396 0.188 0.383 0.378 0.395 0.462 0.734 11 13
300 0.429 0.384 0.110 0.319 0.505 0.408 0.385 0.730 11 13
500 0.435 0.372 0.032 0.255 0.333 0.621 0.208 0.684 11 14

10%

50
200 0.409 0.615 0.802 0.821 0.258 1.174 1.774 1.478 5 8
300 0.351 0.621 0.772 0.663 0.341 0.869 1.074 1.293 9 12
500 0.390 0.604 0.727 0.665 0.458 0.773 1.049 1.028 5 13

100
200 0.481 0.587 0.625 0.709 0.310 0.918 1.487 1.133 11 14
300 0.324 0.582 0.521 0.670 0.624 0.833 0.991 1.015 12 15
500 0.487 0.587 0.645 0.750 0.495 0.781 0.822 0.915 3 14

150
200 0.376 0.495 0.535 0.652 0.150 0.732 1.067 1.042 8 14
300 0.472 0.421 0.511 0.659 0.468 0.665 0.976 0.901 16 14
500 0.442 0.468 0.621 0.733 0.266 0.639 0.951 0.965 10 18

200
200 0.458 0.444 0.571 0.654 0.551 0.707 0.964 0.799 9 17
300 0.440 0.441 0.601 0.685 0.444 0.644 0.817 0.787 14 17
500 0.424 0.401 0.570 0.675 0.935 0.698 0.688 0.732 10 16

The best scores are indicated with bold color

process. In this process, shrinkage parameter of lasso λlasso > 0 has a crucial importance which is
mentinoed before. As in selection of shrinkage parameter of WR, CV criterion is preferred to choose the
λlasso. Figure 3 is drawn to show the implementation of the selection of the shrinkage parameter for two
simulation configurations. Note that all configurations cannot be shown here due to space restrictions.
For the remaining configurations, selection of λlasso are applied similarly.

After the determined the Ŝ1 and Ŝc1 via Lasso, as shown in Algorithm 5, estimated coefficients are
seperated into three subsets by using both λr and α parameteres Ŝ1, Ŝ2 and Ŝ3. Table 4 provides the
number of elements of the subsets Ŝ1, Ŝ2.

13

Ersin Yilmaz, Dursun Aydin, S. Ejaz Ahmed



(a) kNN, CL=5% (b) SW, CL=5% (c) RI, CL=5% (d) SVMI, CL=5%

(e) kNN, CL=15% (f) SW, CL=15% (g) RI, CL=15% (h) SVMI, CL=15%

(i) kNN, CL=25% (j) SW, CL=25% (k) RI, CL=25% (l) SVMI, CL=25%

Fig. 3. Selection the regularization parameter of Lasso for kNN, SW, RI and SVMI imputations when
n = 50, p = 200 and CL = 5%, 15%and25%.

14

Regression with right-censored high-dimensional data: An application with different imputation techniques



Table 3. Outcomes obtained from the simulation configurations when CL=5% and CL=10%

CL n
ReMSE MSE

pn kNN SW RI SVMI kNN SW RI SVMI

5%

50
200 0.022 0.021 0.024 0.024 0.266 0.315 0.315 0.318
300 0.050 0.051 0.057 0.058 0.779 0.801 0.842 0.832
500 0.025 0.025 0.027 0.025 0.985 0.964 1.044 0.943

100
200 0.018 0.020 0.016 0.023 0.167 0.190 0.265 0.314
300 0.011 0.012 0.010 0.011 0.275 0.273 0.305 0.316
500 0.006 0.050 0.040 0.060 0.486 0.490 0.489 0.484

150
200 0.093 0.093 0.022 0.037 0.201 0.262 0.391 0.400
300 0.062 0.062 0.020 0.038 0.373 0.403 0.348 0.361
500 0.032 0.032 0.018 0.039 0.740 0.748 0.304 0.323

200
200 0.052 0.061 0.016 0.040 0.427 0.447 0.261 0.284
300 0.055 0.065 0.014 0.041 0.418 0.437 0.218 0.246
500 0.058 0.069 0.012 0.042 0.408 0.428 0.174 0.207

10%

50
200 0.019 0.014 0.013 0.016 0.674 0.717 0.725 0.809
300 0.009 0.008 0.010 0.010 0.726 0.537 1.022 0.965
500 0.003 0.002 0.002 0.002 0.933 0.644 1.332 1.291

100
200 0.020 0.019 0.016 0.021 0.429 0.504 0.782 0.946
300 0.009 0.009 0.009 0.016 0.564 0.578 0.715 0.881
500 0.055 0.057 0.077 0.097 0.970 0.951 0.939 0.983

150
200 0.016 0.016 0.017 0.023 0.287 0.385 0.788 1.068
300 0.011 0.009 0.009 0.017 0.414 0.417 0.597 0.729
500 0.005 0.005 0.005 0.006 0.079 0.082 0.087 0.091

200
200 0.076 0.084 0.078 0.097 0.161 0.415 0.566 0.664
300 0.011 0.008 0.008 0.011 0.369 0.455 0.749 0.910
500 0.007 0.006 0.004 0.005 0.605 0.633 0.772 0.860

The best scores are indicated with bold color

4. Conclusions

In this paper, the right-censored high-dimensional model is estimated by four different linear estimators
based on four imputation techniques and a weighted-ridge procedure. Also, the performance of these
introduced estimators is inspected with the simulation study given in Section 3. Results are given in
Tables 2-7 and Figures 1-3.

The obtained results that are provided in the tables and the figures can be interpreted individually
for the imputation and the model estimation. Tables 2 and 7 present the performance of the imputation
techniques that are kNN, SW, RI, and SVMI by using AvB and IA measures. Obviously, kNN and RI
methods show more satisfying imputation performance than SW and SVMI methods. It is clear that
kNN imputation is a more practical method and easy to compute. On the other hand, RI, SW, and SVMI
are more predictable and reliable types of imputation methods than kNN because they make imputa-
tions based on least squares and they have a distributional background. Thus, the censorship problem
is solved which is the first part of the study. In the second part, by using imputed response variables,
the high-dimensional model is estimated by WR. The results of estimated models are given in Tables
3-6. Results show that kNN and RI-based estimators give smaller ReMSE and MSE scores and SW and
SVMI. However, in most cases, four estimators provide closer performance scores.

The success of the kNN and RI methods can be explained by the linear data structure which makes
it easy to impute the censored observations for the kNN and RI. On the other hand, although the SVMI
is used in non-linear data mostly, in this paper, it is not the best but shows close performance to the best.
In SW-based estimator is more reliable than kNN as in RI, but because it works with small partitions
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Table 4. Numbers of selected covariates for strong and weak signal subsets when CL=5% and CL=10%

CL n
s(Ŝ1) s(Ŝ2)

pn kNN SW RI SVMI kNN SW RI SVMI

5%

50
200 26 25 17 17 3 4 4 5
300 24 22 17 14 2 3 7 10
500 19 18 12 11 3 3 2 3

100
200 21 21 19 19 2 2 3 3
300 30 23 22 21 9 11 14 22
500 26 25 24 21 2 3 4 8

150
200 16 15 14 14 10 9 17 24
300 17 16 14 16 18 18 12 20
500 20 18 20 21 11 14 25 34

200
200 14 12 13 14 5 7 7 8
300 15 12 11 12 3 5 5 6
500 12 15 13 13 2 2 4 6

10%

50
200 31 29 3 3 2 2 2 2
300 21 16 11 9 6 12 9 13
500 23 11 14 8 10 30 20 30

100
200 20 17 20 24 17 32 38 40
300 33 27 22 18 11 14 23 38
500 23 23 24 16 3 6 16 13

150
200 17 17 15 13 3 4 5 6
300 17 17 18 20 3 3 4 5
500 17 20 20 18 13 17 3 5

200
200 13 14 14 15 7 8 8 8
300 12 14 14 14 4 5 7 9
500 18 14 14 13 23 4 7 8

of data due to its nature, sometimes it cannot catch the total dispersion of the data which diminishes its
performance. From our knowledge, SW shows good performance when the dataset involves outliers.

Finally, as result, kNN and RI imputation-based WR estimators show better performance than the
other two. In addition, a remarkable finding was obtained in this study. As pointed out in Section 3,
as the censorship increases, four imputation methods include more weak signals in the model which is
important merit brought by the WR approach. Thus, the information loss caused by the censorship is
tried to be compensated by using more weak signals.
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APPENDIX

A. Tables for remaining simulation configurations

Table 5. Outcomes obtained for CL=15% and CL=25%

CL n
ReMSE MSE

pn kNN SW RI SVMI kNN SW RI SVMI

15%

50
200 0.018 0.014 0.013 0.011 0.622 0.577 0.872 0.933
300 0.008 0.006 0.008 0.005 0.635 0.566 0.836 0.912
500 0.002 0.002 0.002 0.002 0.730 0.910 0.863 0.840

100
200 0.022 0.020 0.022 0.023 0.461 0.593 0.707 0.928
300 0.012 0.011 0.016 0.017 0.673 0.708 0.690 0.844
500 0.005 0.005 0.006 0.009 0.666 0.659 0.648 0.799

150
200 0.038 0.036 0.036 0.053 0.360 0.584 0.625 0.894
300 0.012 0.011 0.010 0.020 0.440 0.510 0.566 0.987
500 0.010 0.010 0.009 0.014 0.797 0.892 0.501 0.879

200
200 0.011 0.012 0.011 0.013 0.183 0.510 0.595 0.724
300 0.012 0.012 0.010 0.013 0.407 0.496 0.513 0.716
500 0.006 0.007 0.006 0.007 0.633 0.651 0.466 0.655

25%

50
200 0.166 0.167 0.125 0.128 0.717 0.865 1.174 1.380
300 0.077 0.077 0.087 0.068 0.943 0.990 1.077 1.125
500 0.026 0.026 0.018 0.024 1.055 1.042 0.975 1.090

100
200 0.038 0.034 0.045 0.039 0.523 0.828 1.037 1.177
300 0.012 0.011 0.015 0.017 0.758 0.816 0.916 1.002
500 0.008 0.008 0.012 0.007 1.047 1.057 0.851 0.936

150
200 0.051 0.051 0.053 0.077 0.501 0.768 0.962 1.067
300 0.031 0.027 0.034 0.047 0.562 0.753 0.923 0.973
500 0.008 0.006 0.008 0.008 0.836 0.969 0.871 0.989

200
200 0.016 0.015 0.015 0.016 0.162 0.473 0.736 0.947
300 0.023 0.021 0.023 0.027 0.513 0.803 0.687 0.750
500 0.010 0.010 0.009 0.017 0.754 0.844 0.685 0.794

The best scores are indicated with bold color
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Table 6. Numbers of selected covariates for strong and weak signal subsets when CL=15% and CL=25%

CL n
s(Ŝ1) s(Ŝ2)

pn kNN SW RI SVMI kNN SW RI SVMI

15%

50
200 27 23 2 1 6 4 2 2
300 13 8 5 3 2 2 5 3
500 19 11 4 1 12 20 13 15

100
200 21 19 20 18 2 3 4 8
300 32 26 16 9 1 2 5 2
500 24 25 16 7 5 11 12 23

150
200 17 16 13 11 3 4 6 7
300 18 17 21 19 3 4 5 8
500 23 22 18 17 1 2 5 8

200
200 14 16 15 17 7 8 8 8
300 14 23 15 15 4 5 7 9
500 17 21 15 14 16 14 28 10

25%

50
200 21 11 1 1 7 2 2 2
300 18 9 2 1 6 5 3 3
500 14 8 3 2 3 5 13 14

100
200 23 22 11 11 2 4 8 9
300 22 27 7 4 2 3 12 14
500 22 24 9 1 6 16 17 15

150
200 19 20 12 6 2 3 7 2
300 20 21 14 7 3 3 8 4
500 23 24 12 6 6 17 8 15

200
200 15 18 16 17 7 7 8 9
300 15 21 15 13 13 11 8 11
500 19 25 15 11 26 15 10 14
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Table 7. AvB and IA scores for the imputation methods for CL=15% and CL=25%

CL n
AvB IA Optimum

pn kNN SW RI SVMI kNN SW RI SVMI k w

15%

50
200 0.398 0.585 0.550 0.625 0.868 0.949 1.003 0.960 4 17
300 0.463 0.699 0.550 0.634 0.704 0.830 0.948 0.773 8 14
500 0.322 0.712 0.608 0.674 0.622 0.752 0.538 0.732 2 13

100
200 0.487 0.778 0.569 0.652 0.664 0.654 0.768 0.732 10 13
300 0.357 0.621 0.552 0.679 0.566 0.699 0.649 0.657 17 14
500 0.466 0.843 0.642 0.744 0.558 0.524 0.555 0.544 4 13

150
200 0.472 0.634 0.455 0.657 0.440 0.468 0.408 0.457 7 15
300 0.443 0.784 0.430 0.682 0.479 0.524 0.479 0.481 8 16
500 0.432 0.723 0.622 0.720 0.572 0.372 0.465 0.372 10 14

200
200 0.436 0.747 0.436 0.604 0.248 0.288 0.295 0.309 12 18
300 0.436 0.766 0.552 0.622 0.225 0.228 0.251 0.259 15 21
500 0.461 0.774 0.374 0.666 0.204 0.260 0.205 0.243 11 17

25%

50
200 0.432 0.738 0.668 0.760 1.516 1.740 1.103 1.109 5 14
300 0.428 0.739 0.532 0.610

0.701
0.713 0.811 0.751 5 14

500 0.427 0.736 0.637 0.668 0.383 0.407 0.678 0.613 5 14

100
200 0.472 0.814 0.460 0.635 0.771 0.828 0.931 0.946 10 17
300 0.409 0.676 0.398 0.470 0.700 0.841 0.753 0.791 12 18
500 0.442 0.793 0.400 0.689 0.565 0.529 0.698 0.588 9 13

150
200 0.432 0.778 0.577 0.558 0.728 0.791 0.734 0.771 9 17
300 0.434 0.785 0.469 0.784 0.567 0.699 0.451 0.403 12 17
500 0.437 0.785 0.412 0.724 0.585 0.668 0.267 0.493 13 17

200
200 0.435 0.762 0.591 0.640 0.209 0.332 0.247 0.250 12 17
300 0.419 0.788 0.558 0.615 0.186 0.191 0.201 0.206 12 18
500 0.429 0.757 0.590 0.679 0.362 0.189 0.142 0.173 10 18

The best scores are indicated with bold color
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