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Abstract

A theoretical investigation of the modulational stability of the ion temperature gradient (ITG) mode in
electron–ion plasma is presented. To examine linear features of dynamic species in plasma, we used
reduction perturbation to solve Braginskii’s transportation equations and get phase and group velocities.
The results reveal that ion species velocities are affected by plasma factors such as ion temperature,
density, and ion temperature gradient coefficient, among others. We also find a nonlinear Schrodinger
equation. This equation shows that the plasma dynamics depends on the coefficients of nonlinearity and
dissipation of the nonlinear Schrodinger equation. These coefficients are strongly related to the plasma
variables. The present investigation may be helpful in space and laboratory plasma, e.g., fusion confine-
ment devices.

Keywords: Electron-ion plasma; ion temperature gradient mode; reduction perturbation; stability anal-
ysis.

1. Introduction

Plasmas are multi-component fluids that are characterised by space and time scales. Understanding
turbulence is one of the most complicated issues for theoretical plasma physicists. Turbulent motion may
be found in a number of plasmas such as in the lab and in space and so on. In recent years, a sufficiently
large number of studies have focused on a specific class of plasma dynamic models in which the ion
temperature gradient (ITG) plays a significant role, such as in confinement devices where the temperature
gradient is larger than the density gradient, resulting in serious diffusion and thermal leakage (Ruderman
& Sutherland, 1975). The ion temperature gradient mode is described as a kind of plasma turbulence
created and sustained by an ion temperature gradient coefficient i.e., ηi = Ln/LT , where LT = 1/(∂x
ln Ti0(x)) and Ln = 1/(∂xlnni0(x)) are the ion temperature and density scale lengths (Rogister et al.,
1988), respectively. Rudakov and Sagdeev (Rudakov & Sagdeev, 1961) initially established such a mode
in slab geometry and it was further extended by incorporating nonuniform density with a shear magnetic
field, an external magnetic field, and pressure effect (Coppi et al., 1967) among other things. Using
the trapped electron mode (Hahm & Tang, 1989), a heat flow effect is introduced in the same mode.
Shukla and Weiland used an ion temperature gradient mode to generate nonlinear structures in the form
of dipolar vortices (Shukla, 1990; Weiland, 2000). The electron temperature gradient mode denoted as
“ηe” is the counterpart of the ion temperature gradient and accounts for micro instabilities (Strintzi &
Jenko, 2007).

Relatively larger amplitude waves in plasma such as vortices, solitons, and shocks are significant
because they play a major role in the movement of heat, mass, and momentum (Temerin et al., 1982;
Block & Fälthammar, 1990; Nielsen et al., 1996). A number of writers investigated the aforementioned
structures under various situations. This sort of plasma is thought to exist both in space and in labora-
tories (Ginzburg, 1971; Manchester & Taylor, 1977; Michel, 1982). In the presence of ions, several low
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frequency waves (Begelman et al., 1984; Helander & Ward, 2003; Liang et al., 1998; Gahn et al., 2000) 
can be generated, which are important not only from a cosmological and astrophysical perspective, but 
also in the context of laboratory plasma (Lominadze et al., 1982; Nejoh, 1996; Mahmood & Akhtar, 
2008). The modulational instabilities of different wave modes in plasma have received a lot of interest in 
recent years due to their importance in stable wave propagation (Dubinov & Sazonkin, 2009; Salahuddin 
et al., 2002; Kourakis it et al., 2006). Some of the authors discussed the modulational instability in 
electron-positron–ion plasma as well as pair ion plasma (Esfandyari-Kalejahi, Kourakis, Mehdipoor & 
Shukla, 2006; Esfandyari-Kalejahi, Kourakis & Shukla, 2006). The authors of (Khan et al., 2020; Khan, 
Ullah & Haque, 2021) investigated the ion temperature gradient (ITG) mode driven soliton and shock 
wave structure in an electron-ion plasma. Further they extended their findings by including the heat flux 
effect and ion entropy in the energy balance equation of the mode (Khan, Zakir, ul Haque & Qamar, 
2021; Zakir U & ul Haque, 2022). Linear and nonlinear ion temperature gradient small amplitude struc-
tures were studied by (Khan, Zakir, Rahman, Ali & Haque, 2021) in electron-ion magnetized plasma 
with stationary charged dust grains. Ion temperature gradient driven mode under the pressure plays a 
role in the formation of nonlinearity in the plasma (Murad et al., 2021). Based on the importance of 
ion temperature gradient modes in plasma confinement devices, the nonlinear component in the momen-
tum equation generate soliton like structures with the smaller frequency limits, these nonlinear structures 
were studied by (Horton et al., 2003; Khan et al., 2022). No one has yet investigated the stability analy-
sis for the same mode and frequency. We conducted the first ever stability analysis of the ITG mode in 
electron-ion plasma. The study can explain some of the instability that occurs in the tokomak or plasma 
confinement devices. The manuscript of our study is divided into the following sections: In section 2, 
we discuss the model and the basic model equations. In section 3, we apply the reductive perturbation 
technique and obtain an expression of the phase velocity of the mode. The derivation of the nonlinear 
Schrodinger equation is discussed in section 4. The stability of the present mode is presented through 
simulation in section 5, and summary of the present work is discussed in section 6.

2. Theoretical model

We consider the simplest electron-ion plasma, where the electron is taken to be inertialess because of its 
smaller mass as compared to the ion species that are dynamic. Further, electrons are subjected to obey 
Maxwellian distribution. The variation in the temperature of ions and its number density along x-axis 
i.e., Ti(x) and ni(x) and low frequency of the ITG mode ∂t � ωci where ωci = eB0/mic is the ion 
cyclotron frequency, e is the charge on the ion, B0 is the background magnetic field to the plasma, mi is 
mass for ion species and c is the speed of light. To set the mode dispersion relation we used continuity, 
momentum, energy balance and Poisson’s equation:

∂v

∂t
+ v

∂v

∂x
+ e

∂ψ

∂x
+ τ0

∂(T + n)

∂x
= 0. (1)

The continuity equation for the ion species is

∂n

∂t
+
∂(nv)

∂x
= 0, (2)

and the energy balancing equation is

∂T

∂t
− 2

3

∂n

∂t
− σ1

∂ψ

∂x
= 0, (3)

with σ1 = τ0(ηi − 2/3). Finally, we apply Poission’s equation to get potential which always to be there
due to quasineutrality of the plasma

∂2ψ

∂x2
= (ne − n) (4)

where ne is the electron number density, ni is the ion number density in the electron-ion plasma, and ψ
refer to the potential of plasma. Since we considered Maxwellian distribution for our model, thus we can
write the density expression as

ne = ne0 exp

(
eψ

Te

)
. (5)
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At this point, it should be mentioned that in equations. (1)-(4), the normalized quantities are T = 
Ti1/Ti0, n = ni1/ni0 and τ0 = Te0/Ti0, while Ti0, Te0, ni0 are the unperturbed ion, electron temperature 
and ion number density where as Ti1, ni1 are the ion perturbed temperature and ion number density, ψ is 
the potential due to the perturbation in plasma. Equations (1)-(4) can be coupled with equation (5) to get 
the deserved result for the stability and instability of the ion temperature gradient modulational mode in 
electron-ion magneto plasma.

3. Reductive perturbation method

To obtain a nonlinear partial differential Schrodinger equation and to investigate the modulational stabil-
ity of the ion-temperature gradient mode, we can follow any method but one method which is simplest 
and gives a reliable result is the technique of reductive perturbation method. To simplify our calculation 
we considered the co-moving coordinates as used in (Washimi & Taniuti, 1966), like(

ξ
τ

)
= ε

(
x− v0t
εt

)
, (6)

where ε is a small positive parameter (0 < ε < 1) that gives the weakness of the amplitude and v0 phase
speed of the ion temperature gradient mode in electron-ion plasma. In above stretch, the wave number
is taken of the order of smallness parameter and the different variable in the plasma system that we have
considered can be taken in the power series. One can apply power expansion to expand the variables n,
v, T and ψ about the unperturbed state as:

n
v
T
ψ

 =


1
0
1
0

+
∞∑
j=1

εj
∞∑
l=1


n
(j)
l (ξ, τ)

v
(j)
l (ξ, τ)

T
(j)
l (ξ, τ)

ψ
(j)
l (ξ, τ)

 eι(kr−ωt)l, (7)

here (l, j = 0, 1, 2, 3, 4, ...) j refers to the order while l gives the harmonics of the corresponding vari-
ables in the power series. In terms of stretching coordinates and smallness parameters the given plasma
magnetohydrodynamic equations will be given as:

∂v

∂t
− εv0

∂v

∂ξ
+ ε2

∂v

∂τ
+ v

∂v

∂x
+ εv

∂v

∂ξ
= −∂ψ

∂x
− ε∂ψ

∂ξ
− τ−1(T + n). (8)

Equation (8) is the ion momentum equation for the plasma. Now the continuity equation is

∂n

∂t
− εv0

∂n

∂ξ
+ ε2

∂n

∂τ
− 2

3

∂n

∂t
+

2

3
εv0

∂n

∂ξ
− 2

3
ε2
∂n

∂τ
− σ1

∂ψ

∂x
− σ1ε

∂ψ

∂ξ
= 0, (9)

the energy balancing equation is

∂T

∂t
− εv0

∂T

∂ξ
+ ε2

∂T

∂τ
+ n

∂v

∂x
+ εn

∂v

∂ξ
+ v

∂n

∂x
+ εv

∂n

∂ξ
= 0, (10)

and the Poisson’s equation as

∂2ψ

∂x2
+ 2ε

∂

∂x

∂ψ

∂ξ
+ ε2

∂2ψ

∂ξ2
= ne − n. (11)

Collecting different terms of these equations in powers of ε, we can get the j-th order reduced equations.
The first order j = 1 equation we obtained as follow;

n
(1)
l =

k

ω
v
(1)
l , (12)

v
(1)
l =

k

ω
ψ
(1)
l + τ−1

k

ω

(
T
(1)
l + n

(1)
l

)
, (13)
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T
(1)
l =

2

3ω
n
(1)
l + σ1

k

ω
ψ
(1)
l , (14)

n
(1)
l =

(
k2 + α

)
. (15)

Here the constants α = ene0/Te0 with Te0, is the unperturbed temperature of electron. Collecting
equations (12)-(15), for l = 1, we can get the following dispersion relation of the ITG mode in electron-
ion plasma

ω

k
=

√
1

k2 + α

(
1 + τ−1σ1

k

ω

)
+ τ−1

(
2

3ω
+ 1

)
. (16)

From equations (12)-(15) we can expressed all the first order variables in terms of ψ(1)
1 as:

n
(1)
1 = ∆1ψ

(1)
1 ,

v
(1)
1 = ∆2ψ

(1)
1 , (17)

T
(1)
1 = ∆3ψ

(1)
1 .

The different coefficients in equation (17) are ∆1 =
(
k2 + α

)
, ∆2 = ω/k

(
k2 + α

)
and ∆3 = 2/3ω

(
k2 + α

)
−

σ1k/ω. Now for the second order j = 2, the reduced expressions with l = 1 are

ιωn
(2)
1 − v0

∂n
(1)
1

∂ξ
+
∂v

(1)
1

∂ξ
+ ιkv

(2)
1 = 0, (18)

ιωv
(2)
1 + v0

∂v
(1)
1

∂ξ
− ∂ψ

(1)
1

∂ξ
− τ−1ιk

(
T
(2)
1 + n

(2)
1

)
= 0, (19)

ιωT
(2)
1 + v0

∂T
(1)
1

∂ξ
+ σ1

∂ψ
(1)
1

∂ξ
− 2

3
ιωkn

(2)
1 −

2

3
v0
∂n

(1)
1

∂ξ
= 0, (20)

n
(2)
1 = 2ιk

∂ψ
(1)
1

∂ξ
(21)

where equations (18)-(21) are the corresponding reduced equation of continuity, ion momentum, en-
ergy balance and Poisson’s. Coupling equations (17)-(21) the following compatibility condition for the
ion temperature gradient modulational mode in electron-ion magneto-plasma gives relation of a group
velocity as:

v0 =
−3 k

3

ω3σ1 + k2

ω2

(
7k2 + 3τ

)
+ 3 kωσ1 (1 + τ) + 3

(
k2 + α

)
τ

2k
2+α
ω

(
k3

ω3 + k2

ω2 − 3
2τ
)
− 3σ1

k2

ω2

. (22)

The phase velocity equation (16) and group velocity equation (22), of the waves passing through the
electron-ion plasma, gives a clear dependency of the plasma parameters on the phase as well as on
the group velocity. Also one can demonstrate its graphical variation on Mathematica with different
parameter of plasma. We have shown in figure 1, the variation of group to phase velocity ratio with the
mode parameter ηi. For graphical discussion we used parameters as mention in the (Weiland, 2000). The
second order perturbed quantities can be express in terms of ∂ψ(1)

1 /∂ξ as

n
(2)
1 = ∆4

∂ψ
(1)
1

∂ξ
,

v
(2)
1 = ∆5

∂ψ
(1)
1

∂ξ
, (23)

T
(2)
1 = ∆6

∂ψ
(1)
1

∂ξ
.
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Fig. 1. Plot of v0/vp against k, for different value of ion temperature gradient coefficient ηi and all the
other parameters keep constant as mention in the text.

We have neglected the second order perturbed potential in the equation (23) i.e., ψ(2)
1 = 0 and the coeffi-

cients are defined as ∆4 = −2ιk, ∆5 = 1/ιk (2ωk + v0∆1 −∆2) and ∆6 = 1/ιk (v0∆3 + 2/3(v0∆1) + σ1)−
4/3ιk(ωk). Now to obtain second harmonic of the carrier wave we can obtain this in terms of | ψ(1)

1 |2,
that shows the nonlinear interaction of the mode. Fixing j, l = 2, we can get relation of the second
harmonic variables as:

n
(2)
2 = ∆7 | ψ(1)

1 |2,

v
(2)
2 = ∆8 | ψ(1)

1 |2,

T
(2)
2 = ∆9 | ψ(1)

1 |2, (24)

ψ
(2)
2 = ∆10 | ψ(1)

1 |2,

with ∆7 =
(
k2∆2

2 + ωk∆1∆2

)
/
(
ω2
(
4k2 + α

)
− k∆6

)
, ∆8 = k + k/τ(2/3(α)− σ1k) + k/τ(α),

∆9 =
(
2kω∆1∆2 + k∆2

2

)
/ (k∆8 − ω (α)) and ∆10 = ι(2k∆1∆2+ω (α) ∆9)∆1+(∆6∆7+k∆2

2)∆1/ω+(
4k2 + α

)
∆7∆2. Here the zeroth-harmonic mode that we have expressed in terms of the | ψ(1)

1 |2, that
type of harmonic modes are found to be obtained from the self interaction of the carrier waves.

n
(2)
0 = ∆11 | ψ(1)

1 |2,

u
(2)
0 = ∆12 | ψ(1)

1 |2,

T
(2)
0 = ∆13 | ψ(1)

1 |2, (25)

ψ
(2)
0 = ∆14 | ψ(1)

1 |2,

with ∆11 = ι(2k∆1∆2 + ω (α) ∆9)∆2 + (∆6∆7 + k∆2
2)∆2/ω, ∆12 = 1/τ (∆5 − 2ιk) − v0∆2,

∆13 = −
(
2ιω2k + ∆12ω − (v0∆5 + 4/3(v0ιk)) k2/τ

)
/
(
ι
(
k2/τ − ω2 + 2k2/3τ(ω)

))
and ∆14 =(

(∆2k + ∆1ω)ω + ∆3 − 2k2/3τ
)
/
(
ι
(
k2/τ − ω2 + 2k2/3τ(ω)

))
. Equations (23)-(25) show differ-

ent plasma parameters with its first, second and zeroth harmonics. First harmonic is linear with respect
to the first order perturbed normalized potential of the plasma. The second and zeroth harmonic varies
with the second power of the perturbed potential.

4. Derivation of nonlinear Schrodinger’s equation

To get the nonlinear Schrodinger equation of our assumed plasma, we obtain first the reduced equations
for third order, j = 3, l = 1 component, of the model equations, so the continuity equation takes the
form

−ιωn(3)1 − v0
∂n

(2)
1

∂ξ
+
∂n

(1)
1

∂τ
+ ιkv

(3)
1 + ιk

(
n
(1)
1 v

(2)
0 + n

(2)
0 v

(1)
1 + n1−1v

(2)
2 + n

(2)
2 v

(1)
−1

)
= 0. (26)
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The energy balance equation is

−ιωT (3)
1 − v0

∂T
(2)
1

∂ξ
− 2

3
ιωn

(3)
1 +

2

3
v0
∂n

(2)
1

∂ξ
− 2

3

∂n
(1)
1

∂τ
= 0, (27)

and momentum equation is

− ιωv(3)1 − v0
∂v

(2)
1

∂ξ
+
∂v

(1)
1

∂τ
+ ιk

(
v
(2)
0 v

(1)
1 + v

(2)
2 v

(1)
−1

)
+ τ−1

(
T 3
1 + n

(3)
1

)
(28)

+ τ−1
∂v

(1)
1

∂ξ

(
T
(2)
1 + n

(2)
1

)
= 0.

Combining equations (26)-(28), finally we can write the NSLE equation as

ι
∂ψ

(1)
1

∂τ
+ L

∂2ψ
(1)
1

∂ξ2
+Mψ

(1)
1 | ψ(1)

1 |2= 0 (29)

where L = Re(ιB2/B1) and M = Re(ιB3/B1), while B1 = − (ιω∆14 −∆1)ω/k + (∆3) k/τω −
2/3(∆1)k/τω− (∆14)k/τω+ ι∆14k/τ + ∆2, B2 = −ι (ω∆13 − 2kv0)ω/k− (2ι/3(ω∆13)) k/τω+
(v0∆5 + 4ι/3v0k) k/τω + ι∆13k/τ + ∆12, B3 = − (ιω∆15 −∆10)ω/k − ∆15k/τω + ιk/τ∆15 +
∆11, and ∆15 = ι (∆11k + ∆10ω)ω/

(
k2/τ − ω2 + 2k2/3τω

)
, From equation (29), the stability and

instability of the ITG mode is totally dependent on whether the coefficients positive or negative. L is the
dissipation coefficient and M is a nonlinear coefficient of the corresponding NLSE. These coefficients
are also dependent on the plasma variable and ηi coefficient.

5. Results and discussion

We illuminate here the problem through graphical simulation by taking data as used in (Weiland, 2000),
where some of these data are: mi = 1.67 × 10−24g, ne = 1014cm−3, Te0 = 10kev, Ti0 = 0.1Te0 and
ηi = 2. In figure 1, we have plotted the variations of the group to phase velocities (ratio) versus the
wave number k of the modulational wave. This observation clearly shows that the ratio is step-down
with a ηi ion temperature gradient coefficient. As we know, the medium in which the group velocity of
the wave depends on the wave number is a dispersive medium. As our ηi coefficient is proportional to
the ion temperature variation with respect to the ion density, the opposition to the group velocity may be
due to the drag forces enhanced in plasma. Further, hot places will have high temperatures and will be
more viscous as compared to cold places in a fluid. To discuss the modulational stability or instability of
the ion temperature gradient mode in electron-ion plasma, we know from previous observations (Ghosh
& Banerjee, 2014; Chowdhury et al., 2018, 2019; Sultana & Kourakis, 2011) that the product of LM
can provide information about modulational stability and instability for the mode. There are three main
conditions for the modulational waves.

1. A positive LM product indicates a modulationally unstable ion temperature gradient mode in
which modulational waves can file up in one region of the plasma while wave intensities become
lower in other areas, causing the pendermotive forces created to destabilise the plasma and move
the dynamic species from the highly intense region to the lower.

2. For negative LM , we obtain modulationally stable ion temperature gradient mode. Here for that
condition, the modulational wave can move to a specific region with no disturbance, so we can say
that the modulational ion temperature gradient mode is stable in this condition.

3. For LM equal to zero, we obtain the modulational critical condition. Here on this condition the
modulational waves move from stability to instability.

We discussed the product of the dispersion and nonlinear coefficient, i.e., LM versus wave number k
with different ion to electron temperature ratios in figure 2. We can see from the plot for Ti = 0.1Te,
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Ti = 0.2Te

Ti = 0.3Te
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Ti = 0.5Te
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K

L
M

Fig. 2. Plot of LM (stability/instability) against wave number k,

based on equation (29), for different value of Ti and all the other pa-

rameters keep constant as mention in the text.
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Fig. 3. Plot of LM (stability/instability) against wave number k,

based on equation (29), for different value of ion temperature gradient

coefficient ηi and all the other parameters keep constant as mention in

the text.
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K
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Fig. 4. Plot of LM (stability/instability) against wave number k,

based on equation (29), for different value of ω and all the other param-

eters keep constant as mention in the text.

all the three conditions for modulational waves through electron-ion plasma i.e., LM is positive for
wave numbers k < 2.3 and k > 3.8, but negative for 2.3 < k < 3.1, indicating that the ITG mode
modulational waves are stable in this range, LM = 0 for 3.1 ≤ k ≤ 3.8. We demonstrated the effect
of the mode parameter ηi on the modulational stability and instability of ITG in electron-ion plasma in
figure 3, for ηi = 2, we found LM positive for the wave numbers k < 1.6 and k > 4.2, its value
is zero for 2.8 < k < 3.2 and negative for the rest within the given range. This region of instability,
stability, and critical conditions shifts to a lower wave numbers as the ion to electron temperature ratio
increases, which could occur due to the ηi coefficient varies directly with ion temperature with respect
to ion density, changing the value and sign of the product. Figure 4 shows the influence of the mode
frequency on the LM versus k, observation of the plot shows that for ω = 1 rad/sec, we observe LM
positive for the wave number k < 1.6 and k > 3, so the ITG modulational waves are unstable for this
range. The product has a negative value for 1.6 < k < 2.2, showing that the modulational mode is stable.
These regions of instability, stability, and critical conditions are shifted to higher wave numbers with the
increase of modulational mode frequency, so that can change the strength and polarity of the product.
The shifting of these regions is in contrast compared to figures. 2 and 3. Figure 5 is the contour plot of
the stability (i.e., LM product) against ion temperature gradient coefficient ηi and frequency ω, here we
can see positive, negative and zero points for the product LM in the plot. We can also find the location
of maximum modulational stability and instability of the ITG mode. In figure 5, we can get the point
of maximum modulational stable point (−0.04) and the maximum instable point (0.04). In figure 6, we
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Fig. 5. LM contour plot against ion temperature gradient coefficient
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Fig. 6. LM contour plot against ion temperature gradient coefficient

ηi and k, Shows different stable, unstable and neutral points.
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have shown the instability of the e-i magnetized plasma against ion temperature gradient coefficient ηi
and wave number k, where we can see positive, negative and zeros of the product LM in the contour
plot. Also the points for the intense stability and instability for the ITG mode are shown in the same plot.
In figure 6, the point of maximum modulational stable point is (−0.6) and the maximum unstable point
is (0.8). In figure 7, we have discussed the stability versus ω and k, here the maximum modulational
stability point is (−0.75), and the maximum unstable point is (1.25), for the given range of the plasma
variables as shown in the plot.
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6. Conclusion

This study focuses on the modulational stability and instability of the ITG mode in electron-ion plasma,
where the set of magnetohydrodynamic (MHD) equations are used for the ion species while electrons
in the plasma are taken to be Maxwellian. By the reduction perturbation technique, we get the phase as
well as group velocities of the modulated ion temperature gradient mode, which are dependent on various
plasma parameters such as electron and ion number densities, their temperatures, and especially on the
ion temperature gradient coefficient. The study was extended to the derivation of nonlinear Schrodinger’s
equation from the set of magnetohydrodynamic (MHD) equations for the ion species in the plasma and
obtained two very useful coefficients, i.e., L the dissipation coefficient, and M the nonlinear coefficient.
These are also strongly related to plasma variables, and their product LM tells us about the modulational
stability and instability of the plasma. The wave number in critical conditions is kc, on which the product
of M and L is zero. For kc = 0, the ion temperature gradient modulational mode goes from stability to
instability. Since the modulational instability of the mode occurs when the product of these coefficients
is positive, the modulational wave speed is reduced. The crests of the waves are concentrated in one
direction with varied intensities. A ponderomotive force is observed in such scenarios, where dynamic
plasma species move from higher density to lower density, destabilising the entire plasma, which is a se-
vere concern in tokamak fusion reactors. We have shown in various plots that the product can be changed
from positive to negative and vice versa by changing the ion to electron temperature ratios, density ratios,
and ion temperature gradient coefficient. Moreover, the contour plots also show the location of different
stable and unstable points for the ITG modulational mode electron-ion plasma. The maximum stability
and instability points are recognised from the same plots within the given range of various plasma vari-
ables clarified that the stability of the madulational waves also changes with the ion temperature gradient
mode frequency and wave number. Therefore, if we manage this stability under the effect of the dynamic
ion temperature gradient mode, we can confine the total plasma to the region of interest.
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