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Abstract

In this paper, Hilbert's integral inequalities with some parameters are considered, by using new methods in the proof. Several

results of Hardy and Yang are special cases of the new given inequality. As an application, we give some applied examples

that illustrate our results.
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1. Introduction

First, let us recall the well-known standard Hilbert’s integral
inequality and Hardy-Hilbert’s
follows:(Hardy et al., 1964).

integral inequality as

Let fand g are real functions, such that

0< ffz(x)dx < 0,0 < ng(y)dy < co.
0
Then
ij(x)g(y) S,-[(ffz(x)dx) (J gz(y)dy> (1)
00 0 0

where the constant factor 7T is the best possible.

The inequality (1) is extended by Hardy et al., 1964 as

follows:
Letp>1, g > 1,% + % =1, f,g > 0satisfy

©

O<ff”(x)dx<oo,0<fgq(y)dy<oo,
0

then
[ [F222 bty < Zo{ [ x| ( [ ey |
sin® (2)
00 P \0 0
where the constant # is the best possible . The

inequality (2) is well known as Hardy-Hilbert’s integral
inequality. Hilbert’s inequalities (1) and (2) are important in
mathematical analysis and its applications. In the past 100
years, a large number of mathematicians have investigated
the subject of Hilbert’s inequalities as well as Hilbert-type

inequalities in a very broad context and proved a variety
of several inequalities (El-Marouf & AL-Oufi, 2012; El-
Marouf, 2013; Marouf, 2014; El-Marouf, 2015; Mingzhe,
1997; Salem, 2006; Peachey, 2003 and Weijian & Mingzhe
2006). An excellent account related to the above inequalities
and many important applications in analysis can be found in
Bashan et al. 2015 and Garg & Chanchlani, 2013.

In this paper, we introduce some new integral

to Hilbert
inequality, which contains some additional parameters . Our

inequalities of  Hilbert’s type or similar

results are generalization of each of the results of Hardy et
al. 1964; Yang, 2000 and Yang, 2004. As an application, we
give some examples on some partial differential equations
that illustrate our results.

2. Lemmas and main results

First, we introduce the following two lemmas .

Lemma 2.1. For p > 1, q>1,%+%= 1, and

o> 0 define the weight function w, (x) as

1

wy(x) = J-—l . (f)q dy , 3)
(xaybtxcyd)” \y
0

wherea>c, d>banda,c,b,d >0.
Then we get

1 - x%(%—o(b)+1—lp—o(a B (i—_b:’ o — (%—boc)>' @)

wy(x) = d_ =D

where B (a,b) is the well known Beta function,a > 0, b > 0.



Proof. From the weight function (3), we have

1

wi(x) = J(xa b)e(1 -I-lxc ay d- b)oc( ) dy . (5)

a—c 1
then we get y = Xd-bUd-b and

Setting u = x¢~%y4~P
1 a-c L—l
dy = ﬂxd—bud—b du and0 < u < o,

Substituting by y and dy in (5), we obtain

1

(x) f ! < X )q ! 3; dlb d

wy(x) = = — Xd-bu. u,
a—-c b d_b

0 (xa (xmudlj) ) (1 + w)~ Xa-b bud b

1
where d—b is constant .
Since x is constant,then we obtain

1- ——boc)

1 a- b(
- b( 1-2— ocb) +gmxa u
x fo 7(1_’_1‘)“ du. ©)

wy (x) -

Use1+1=1, we get
P q

By the well-known Beta function (Andrews, 1985) and
equation (6), we get
1
; — b x
a=————. 7
d—b )
Also, froma + b = , we get
% —b«x
b =x — .
=0 (3)
Properties of Beta function, (7) and (8), give
sl N
“arwr AP e T\amn ) O

0

Substituting from (9) in 6), we get

W) =7 d—b

Hence the lemma is proved.

By similar manner as in the proof of Lemma 2.1., we can
proof the following lemma.
Lemma22.Forp > 1, ¢ > 1 % + é = 1,andoc= 0
define the weight function w, (y) as
1
1 Y\p
w =| ——= (—) dx,
2() J (xayb+ xcyd)* \x (10)
0
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wherea > ¢, d > banda,c,b,d > 0.

Then we have
_ 1 1
y%(%—cxc) +1 —%—o(dB <E_C°( o — (E_C“)>
c a-c’ a—c )|’
(11)

where B (a,b) is the well known Beta function,a > 0, b > 0.

Theorem 2.3. Let f,g be real —
[0 ,00) such that

wy(y) = a

valued functions defined on

O(af”(x)dx < 0,

and

— co< 1—1—d
q

“g1(y)dy < .

0<fxﬂ
0

e
0

Then we get

fx)g(y)
ff(x ayb 4+ xcy d)"‘dxdys

1 1 w v
1 B ;_b x « ;_b * fxﬁ(——ocb)ﬂ 9D (1) dx
d—»b d—>b d—»b
0

QR

1 1 0
1 ;—C‘X ;—COC d———coc) dx
X a—cB a—c'oc_<a f 9°()dy
0
(12)
where >c,d>b, a,b,c,d=>0, x>0, p>1,q>1,

andl+l=1.
P q

Proof .We can set the left hand side of (12) in the form

g

1
X)pq
(xayb + xcyd)a X

dxdy
(13)

Using Holder’s inequality (Mitrinovic, 1970) on (13), then

[ [
2y )

[ (xya
(eoy? +xeydr (y )

f)g)
b + x yd)o(

(ff(x y{i(?c d)x d dy) <-ff(x ybg:—(fc)yd)x
0 00
(ff (x)(fm( y dy)dx>p

X

dxdy <

1
q

(fg"(y)<fm( ) dx)d )
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From (3) and (10), we have )
ff(x ’;f,"ig)fyy)d)ud xdy < Q FPws(x) dx> (J 91w () dy) .
(14)

Applying the results of Lemma 2.1 and Lemma 2.2 in (14),
we have

([ F9m)
Ofbf(xayb +xcyd)oc dxdy S

1
o »
1 ot c)n e (0% (5%
ffp(x)d— Xy 7B pd—b’oc_<pd—b) dx
0
X
1
( )+1 - «a 1cx 1co !
fg"(y) ya ¢ B (qa_c'“ (qa—c>) dy
and
1
r 1 b b b
— ~—bux
0
X
1
A b( «c) +1 a, [Fe F-cx !
fgq()’) ya ¢ 1 B<qa—c'oc_(qa—C>>dy
0

Hence the theorem is proved.
Remarks 2.1.
l.Leta=d =1, b=c=0 ,and x=1 in (12) ,then we have

fff(x)g(y) <{ (% 1——)ffp(x>dx}{ (;,1—%)fgq(y)dyr-
0 0 0

. 1 1
Since = + — =1, then

p
Ofof (x)g(y)d dy <{ <l% 1——)ffp(x)dx} { (1—%,%)!9‘1()/){@}.
It well known that
B(a,b) =B(b,a),and B(a,1—a) =

fff(x)g(y) SLn(f fp(x)dx> (f () dy) , (15)
) sm; 0 0

which is Hardy - Hilbert’s inequality (Hardy, et. al., 1964).

2. 1f we putp = q = 2in (15), we obtain

fff(x)g(y)d dySn(ffz(x)dx)5<fgz(y)dy>z,
0 o0 0 0

which is the standard Hilbert’s integral inequality (Hardy et.
al., 1964).

3.Let a=d=1, b=c=0 in(12), we get

!!%‘g}fﬁdxdys [B(% , X —%)];[BG , X _l)}?

0

XU

0

X1 fP(x) dx} { f yg(y) dy} ,
0

(16)

which is Yang Bicheng’s inequality (Yang, 2000 and Yang,
2004).

Putting p = q = 2 in (16) , then we obtain the following
inequality

([f@ew), o (L (i i
Ofof (x+y)o< B(z'm—g)u xt fz(x)dX] Uyl gz(y)dy]-

4.Settinga=d=8,b=c=0,and x=1 in (12), we get

[ 29 <33 1- 2]

[B (% - %)]Eu xl_ﬂf”(x)dx}p {Of ¥ Pgi(y) dy]q.

a7)

which is considered as special case of Hilbert-Hardy

fx)g (y)
B +yb

X

inequality.

= |-

5. Putting f=2 in (17), we get
( (@) 1 (1 1
” X4y d"dysz[‘*(a'l‘ﬁ)]

<[p(a- [ {22 } 220

0

Setting p = q = 2 in (18), then we have

which is a generalization of Hilbert-Hardy inequality .



6.Leta=2,b=0,d =c=1in(17),then we get

1
o =

f f (xg J)rgx(y))«d xdy S{B (,1, ' ‘;1;) f X1TEfP (x) dx}p
0 0 0

1

x( o1 1 [ “
{B (E_OC'Z S —5) f yl‘z“gq(y)dy} :
0

Also, this is a generalization of Hilbert-Hardy integral
inequality .
Lemma24.Forp > 1, ¢g>1

+-=1,

Q|-

1
"p
define the weight function wy (x) as

1

0= [ e Gl

wherea, b, a, >0 andy = 0. (19)

Then we get

1 1 \_ 1
W1(x)=ﬁx”(ﬂ ) ay“B( B 'V__ﬁ’
ﬁay_ﬁbﬁ p p

whereB (a,b) isthe well-known Beta function witha > 0, b > 0.

)» (20)

Proof. From the weight function (19), we have

©

wy (%) = f;

Xy
o Gy (1+27) G e @0

ax®

1
Setting u = ==, theny = ( ) xBuB we get

y = (;)%xEuE and dy = E(E); xﬁur Ydu,0 < u <o,

By substituting by y and dy in (21), we obtain

q
i

[ 1
Wl(x) =!(ax«)y(1+u)y< «

1.
where = is constant.

Therefore
1

10C 1 1__a_%__15a%£l_1
= B B | (=) xBup
wy (x) ﬂf(ax“)y(1+u)l’(x (b) u ) (b) xPuP” “du
0
w 1 1
1 ,a\F 75 CL 119 g uf TR
= (= B [ -
Ba¥ (b) Xt (1+u)7du
0
wu%(l—%)—l

Aruy &

H1-2) « 1), 1
_1 (E)f”(l o) A

pa¥ \b 0

But sine % + % = 1, thus we have
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1 YA ®—-= du
wy (%) = ———— wolpV)-ar+t 1+
Ba’ vEbrE 0
(22)
From (22) and definition Beta function, we get
1
a=—, (23)
pB
b= ! 24
=y ——
B (24)
From Beta function, (23) and (24) we obtain
o uph ! J 1 1
o A+ =551 5p) @5

Substituting from (25) in (22), we have

1 %(2—1)—ay+1 i _i
Wl(x)_ 1 T X B B(Pﬂ’y pﬁ>

Bat vE brk
Then the proof is completed.

In similar way, as in the proof of Lemma 2.4., we can prove
the following lemma.

Lemma25.Forp >1,qg >1, % +-=1,

Qe

define the weight function w,(y) as

— 1 BAY
o) = fm(x) dx (26)
0
Then we get
1 LEa)-pr+a 1 1
wy(y) = ————<y9“ B(—,y—-—
’ o« qa=p ¥ = (q qa:) (27)

whereB(a,b) isthe well known Beta function,a > 0, b > 0.

Theorem 2.6. Let f, g be real — valued functions defined on
[0,:0) such that

1/a
0<fx5(5_1)_ay+1fp(x)dx <o,
0
and

0

1(B_4)\_
0 <fyq(a DB gat)dy <o
0

Then we get

fx) g()
ff(ax +byﬁ)dedyS

1
1 B(l 1
- 1 1 —— Y
ﬁay_ﬁ b pp pB 5

X[% B(i 'V—i)fyi’(i1)_57+1g"(y)dy¥ )
0

a awp? e
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wherea, b, a, f>0,y=20, p>1, q>1,and%+§=1.

Proof. Setting the left hand side of (28) in the following form

([ 0w LN L) o
of of (ax +by? )y f f (ax* + byﬁ)" ) (ax™ + byﬁ)g (x) dxdy.

Using Holder’s inequality on (29), we get

f(x) g(y)
ff(ax“+byﬁ)?’ drdy =

Q=

f J (ax* f:(;zzb’ )Y G)E dx dy Oj Oj (axf j_(z]; Fyv G); dx dy

[ee] 0 1

_ pr(x) f(ax +1byﬁ)y()dy dx | x

0

fgq(y) f(ax +byﬁ)y(y) dx |dy

From (28) and (29) , we have

1 1
f@) g
ff(axoc T by Py XS ff”(x)wl(x) dx fg"(y)WZ(y) dy
0 0 0 0
Applying the results of Lemma 2.4 and Lemma 2.5 in (30), we have
([ f90)
dx dy <
_f Jy(a;x <+bpyB)y xay =
0 0
1
( 1 e 1)-ay+1, (1 1 ’
ffp(x) T —XPP 4 B(—,y——)dx
. Ba? PF bok ph pB
X
1
0 q

1 16 4)- 1 1
[ 97—y e (- ay )
0 a qp’ aa

qa qa

(29)

(30)
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where B(a,b) is constant function and T also is constant.
qa

Then, we obtain

X
fj f&) g@) dxdy <
(ax*+b yP)
0 0
1
1 1 1\ [ ) ’
)
Ba' PE brE pB pB 4
© L
1 1 1 18 4 1 1
X{i—_iB(_ary——)fyq( Sore "(y)dy}
a qwp’aa M q 0
Then the theorem is proved.
Remarks 2.2.
1. Leta=b =ox=p =y =1in(28), then we get the Hilbert’s integral inequality as follow

Ofojf(x)g(y) {B (%,1—%)0]fp(x)dx; {B (3,1_%)0[gq(y)dy]_

Since = + = =1, then
p q

1 1

0 Oof(x)g(y) (1 1>f » 11\ [ a
dxdy <{B(=,1-=) [ fP(x) dx B(1——,-)f 1(y)dy! .

fj Y p p / pp A

00 0 0

According to the properties of Beta function ,we have

B(a,b) =B(b,a) ,and B(a,1 —a) = ——, therefore

1 1
4 0

o0 00 o0 q
fx )g(y) m
[[FolE aray < ff”(x)dx [eeay ),
sin—
00 P \0 0
which is Hardy-Hilbert’s inequality (Mitrinovic, 1970).
2. Putting « = B = 1in (28), then we have

o0

[JEC I )
0 0 5

1
P

a p pp
. 1
1 1 31
X{ T y——f - Vg"(y)dy}, G
aQby—q 5

this is a generalization of Hilbert-Hardy integral inequality.

Setting y = 1 in (31),we deduce that
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joofw x) g(y) dy S{ﬁB(% 1——)jofp(x) dx}

1
{ 1 1 N[ a
=Y oom]
;)

1
p

Since l + l = 1, then

szg)igl xdy <
{azlzlpr< 1__ jfp(x)dx} { a;b%B<1_pl'pl>ngq(y)dy

from the properties of Beta function, we have

o]

fff( )g(y) dy SlL ff”(x)dx _ fgq(y)dy
00

ax+by aqbz’smg 0

Set p = q = 2in(32), we get

1
2 0

Ojof - f(gzz dy<m ff(x)dx Ofgz(y)dy ,

which is the same result of Yang, 2000.

1
2

3. If weput a = b = 1in (32), then we obtain the inequality

1

2 »

II% dx dy S{B(%,y—%)ojxl—yfp(x)dx}

1
0 st

X {B (3 Y= 3) J yY gl (y)dy }q,
0

which is a special case of Hilbert-Hardy integral inequality.
Letp = q = 2 andy = 1in (33), we have

fff(x)g(y) dxdy <m jofz(x)dx E jogz(y)dy E,
0 0 0 0

which it is the standard Hilbert’s integral inequality (El-Marouf, 2013).

1
q

:

)

(32)

(33)
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Taking a = b =
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1 and x= B = § in(28), we obtain the inequality
1
f) g 1 < 1 1 )f ’
dxdy <={B(— .,y —— =6V fP(x) d
ff(5+y5))’xy_6 pé pd x fPex) dx
00 0

1
0 =

ol revom]

0

This is similar to EI-Marouf, 2103 integral inequality.
Puttingy = 1 and p = q = 2 in (34), we deduce that

1

fff(x) g(y) dx dy S%{B(% .1—%>wal_6f2(x) n }2
00

0

o B(l " 1)f162()d :
55’ 25) | Y yay
0

From the properties of Beta function,we have

1 1

fff(ax)-l_g;y) x dy S6s;£{fxl_6fz(x)dx }Z{f s z(y)dy}z
00

26 \o 0

It is a generalization of Hilbert-Hardy integral inequality.
Set & = 2 in (35), we have

“D(x)goo ([ (92
(1220 dygm%{of ¢ d}{f ( dy},

f()ﬂﬁ dySEUF@%M}
0 0

Also this is a special case of Hilbert-Hardy integral inequality.

14

(34)

(35)

4. Applications

In this section we introduce some examples of partial

differential equation, which is considered as applications of
our obtained results.
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Examplel. Consider the following partial differential equation

) g®)
Yoy =70 xy ' (36)
where
Uy (x,0) = a(x), (37)
u(0,y) = b(y). (38)
From (36) and (37) by integrating from 0 to y , we get
Y f(x) g(©)
Uy (%, ) — ux(x,0) _fo T xat d
Hence
V) g (t)
e y) = aGe) + [ ST (39)
From (38), (39) by integrating from 0 to x , we have
* rf(s)g®)
;) —u(0,y) = d ——— dsdt,
u(x,y) —u(0,y) La(s) 5+LL 1+ st s
ie.
X X y S t
u(x,y)zb(y)+f a(s)ds+f f f( )9 ds dt. (40)
0 0 “1+4st
Thus if
f ff(s)g()dsdtsf f(S)g()det' 1)
o Jo 1+st
Then it follows from (40) and (41) that
X o0 o0
f(s) g®)
< 17/ I07
u(x,y)_b(y)+f0a(s)ds+j0 L TTst ds dt
1
X - 1 2 p 0 1
<b(y)+ J- f s PfP(s)ds _2 1
»+ ] — fP(s) Ut ng(t)dt}‘
P 0
0
(42)
which is application of Hilbert’s integral inequality.
Example 2. Consider the following partial differential equation
X
) gy) 43)

Uyy = P b K
where

u,(x,0) =alx), (44)



