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Abstract

In this work, we discuss a one dimensional inverse problem for the heat equation where the unknown
functions are solely time-dependent lower order coefficient and multiplicative source term. We use as
data two integral overdetermination conditions along with the initial and Dirichlet boundary conditions.
In the first step, the lower order term is eliminated by applying a transformation and the problem is
converted to an equivalent inverse problem of determining a heat source with initial and boundary con-
ditions, as well as a nonlocal energy over-specification. Then, we propose a Ritz approximation as the
solution of the unknown temperature distribution and consider a truncated series as the approximation of
unknown time-dependent coefficient in the heat source. The collocation method is utilized to reduce the
inverse problem to the solution of a linear system of algebraic equations. Since the problem is ill-posed,
numerical discretization of the reformulated problem may produce ill-conditioned system of equations.
Therefore, the Tikhonov regularization technique is employed in order to obtain stable solutions. For
the perturbed measurements, we employ the mollification method to derive stable numerical derivatives.
Numerical simulations while solving two test examples are presented to show the applicability of the
proposed method.

Keywords: Inverse coefficient problem; mollification method; parabolic equation; Ritz approximation;
Tikhonov regularization

1. Introduction

In this paper, we consider the inverse problem of finding
(
u(x, t), c(t), d(t)

)
in the parabolic equation

(Shekarpaz & Azari, 2018)

ut − a(x, t)uxx + b(x, t)ux + c(t)u = d(t)g(x, t), (x, t) ∈ Q, (1)

with the initial condition
u(x, 0) = u0(x), −L < x < L, (2)

boundary conditions
u(−L, t) = u(L, t) = 0, 0 < t < T, (3)

and subject to the integral over-specifications of the functions ω1(x)u(x, t) and ω2(x)u(x, t) over the
spatial domain (energy over-specifications)∫ L

−L
ω1(x)u(x, t)dx = µ1(t), t ∈ [0, T ], (4)

∫ L

−L
ω2(x)u(x, t)dx = µ2(t), t ∈ [0, T ], (5)
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where Q = [−L,L] × [0, T ] and a(x, t), b(x, t), g(x, t), µ1(t), µ2(t), u0(x), ω1(x), ω2(x) are
given functions with appropriate conditions. The additional Equations 4-5 are interpreted as the measure-
ments of function u(x, t) by sensor averaging over the segment [−L,L] of space variable. Furthermore,
we assume that the following compatibility conditions hold:

u0(−L) = u0(L) = 0,

∫ L

−L
ω1(x)u0(x)dx = µ1(0),

∫ L

−L
ω2(x)u0(x)dx = µ2(0). (6)

Integral overdetermination conditions are employed to establish an integral or integro-differential equa-
tion of the Fredholm or Volterra type and then the analysis of the existence, uniqueness and continuous
dependence of the solution is given for the new reformulated problem. The properties of the kernel func-
tions ω1(x) and ω2(x) included in the integral boundary conditions can directly affect the solvability
constraints of the problem and further may complicate the application of the numerical techniques to
obtain accurate solutions.

As a special class of the inverse problems, the inverse coefficient problems (ICPs) appear in studying
various physical phenomena in order to determine some unknown properties of a region in parabolic and
hyperbolic equations. The unknown coefficients can be a function of only time variable if the spatial
change in the solution of the direct problem is small in comparison with the change in time (see (De-
hghan & Shamsi, 2006; Shamsi & Dehghan, 2012) and (Shamsi & Dehghan, 2006) and many references
therein). Moreover, if the property of the medium under study does not change rapidly, the unknown
coefficient can be space-wise dependent solely (Liao, 2011). However, in the general form it depends on
the solution of the direct problem (Rashedi, 2021; Samarskii & Vabishchevich, 2008).

Although the ICPs in the heat equations are well-studied, the particular problem of determining mul-
tiple unknown time-dependent coefficients in heat transfer is less investigated (Hussein & Lesnic, 2014;
Lesnic et al., 2016). In (Ivanchov & Pabyrivs’ka , 2001) and (Ivanchov & Pabyrivs’ka , 2002), the au-
thors established conditions for the existence and uniqueness of a solution of the inverse problems for a
parabolic equation with two unknown time-dependent coefficients. In (Hussein et al., 2014), the authors
investigated the numerical approximation of time-dependent thermal conductivity and convection coef-
ficients in a one-dimensional parabolic equation from boundary temperature and heat flux. In (Huntul
et al., 2017), the authors studied simultaneous reconstruction of time-dependent coefficients including
the thermal conductivity, convection or absorption coefficients in the parabolic heat equation from heat
moments. In (Lingde et al., 2017), the authors studied an inverse problem of the simultaneous determi-
nation of the right-hand side and the lowest coefficients in parabolic equations and proposed linearized
approximations in time using the fully implicit scheme and standard finite difference procedures in space.

In (Shekarpaz & Azari, 2018), a numerical approach based on the forward finite difference and
backward finite difference methods was presented for solving the problem given by Equations 1-5. Even
though this approach is effective for solving various kinds of partial differential equations, the high
computational cost of FD schemes is a difficulty of this method. Moreover, they can often achieve only
two or three digits of accuracy (Dehghan & Shamsi, 2006; Shamsi & Dehghan, 2012, 2006). In this paper
we use a collocation technique (Canuto et al., 2006; Jahangiri et al., 2016) to provide more accurate and
stable numerical solution for the inverse problem 1-5.

The organization of this article is as follows. In Section 2, we review theoretical results concerning
the uniqueness of the solution for the inverse problem 1-5 and use new variables to derive the equivalent
problem. Section 3, presents the application of Ritz collocation method to the solution of the reformu-
lated problem. In Section 4, some numerical examples are presented to demonstrate the effectiveness of
the proposed method. In Section 5, we present some concluding remarks.

2. Uniqueness

In (Kamynin, 2015), the authors established the situations under which the system of Equations 1-5
possesses a unique solution.

Theorem 2.1 Suppose that all the functions appearing in the Equations 1-5 are measurable and the
compatibility conditions of Equation 6 among the boundary and initial conditions hold. Moreover, as-
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sume that there exist the constants

C1a, C2a, Cu0 , Cg, Cω1 , Cω2 , Cµ1 , Cµ2 > 0, C∗a , C
∗∗
a , Cb, C

∗
b , C

∗
ω1
, C∗∗ω1

, C∗ω2
, C∗∗ω2

, C∗µ1 , C
∗
µ2 ≥ 0,

subject to

• ∀ (x, t) ∈ Q, C1a ≤ a(x, t) ≤ C2a, |ax(x, t)| ≤ C∗a , |axx(x, t)| ≤ C∗∗a ,

• ∀ (x, t) ∈ Q, |b(x, t)| ≤ Cb, |bx(x, t)| ≤ C∗b , |g(x, t)| ≤ Cg,

• ∀ x ∈ [−L,L], |ω1(x)| ≤ Cω1 , |ω′1(x)| ≤ C∗ω1
, |ω′′1(x)| ≤ C∗∗ω1

, ω1(∓L) = 0,

ω1(x) ∈W 2
2 ([−L,L]),

• ∀ x ∈ [−L,L], |ω2(x)| ≤ Cω2 , |ω′2(x)| ≤ C∗ω2
, |ω′′2(x)| ≤ C∗∗ω2

, ω2(∓L) = 0,

ω2(x) ∈W 2
2 ([−L,L]),

• ∀ x ∈ [−L,L], |u0(x)| ≤ Cu0 , u0(x) ∈W 1
2 ([−L,L]),

• ∀ t ∈ [0, T ], |µ1(t)| ≤ Cµ1 , |µ′1(t)| ≤ C∗µ1 , |µ2(t)| ≤ Cµ2 , |µ′2(t)| ≤ C∗µ2 ,

and denoting Gω1(t) :=
∫ L
−L g(x, t)ω1(x)dx, Gω2(t) :=

∫ L
−L g(x, t)ω2(x)dx, then there exists C∆

such that if

∀ t ∈ [0, T ], Det

(
µ1(t) −Gω1(t)
µ2(t) −Gω2(t)

)
≥ C∆ > 0,

then, the inverse problem given by Equations 1-5 has a unique solution.

Proof. Please refer to (Kamynin, 2015; Shekarpaz & Azari, 2018).
Next, we employ a method to transform problem 1-5 into a problem of finding an unknown heat

source from one additional measurement. Let

v(x, t) = r(t)u(x, t), r(t) = e
∫ t
0
c(z)dz, (7)

then, applying transformation 7 in Equations 1-5 results the following system of equations

vt − a(x, t)vxx + b(x, t)vx = r(t)d(t)g(x, t), (x, t) ∈ Q, (8)

v(x, 0) = u0(x), −L < x < L, (9)

v(−L, t) = v(L, t) = 0, 0 < t < T, (10)∫ L

−L
ω1(x)v(x, t)dx = µ1(t)r(t), t ∈ [0, T ], (11)

∫ L

−L
ω2(x)v(x, t)dx = µ2(t)r(t), t ∈ [0, T ]. (12)

The unknown function r(t) can be disappeared in Equations 11-12 if either one of the functions µ1(t)
or µ2(t) is nonzero on the interval [0, T ]. Without loss of generality, we assume that ∀ t ∈ [0, T ], µ1(t) 6=
0. From Equation 11 we have

r(t) =

∫ L
−L ω1(x)v(x, t)dx

µ1(t)
, (13)

which by substituting the Equation 13 in Equation 12, the following equation is achieved:∫ L

−L
ω2(x)v(x, t)dx =

µ2(t)

µ1(t)

∫ L

−L
ω1(x)v(x, t)dx, t ∈ [0, T ]. (14)
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Now by defining
H(t) := r(t)d(t), (15)

the main problem is reduced to the simplified problem of identifying
(
v(x, t), H(t)

)
using the following

system of equations

vt − a(x, t)vxx + b(x, t)vx = H(t)g(x, t), (x, t) ∈ Q, (16)

v(x, 0) = u0(x), −L < x < L, (17)

v(−L, t) = v(L, t) = 0, 0 < t < T, (18)

and

µ2(t)

∫ L

−L
ω1(x)v(x, t)dx− µ1(t)

∫ L

−L
ω2(x)v(x, t)dx = 0, t ∈ [0, T ]. (19)

Theorem 2.2 Assume that at least one of the functions µ1(t) or µ2(t) is nonzero over the interval [0, T ].
Then, the problems given by Equations 1-5 and 16-19 are equivalent.

Proof. Obviously, if
(
u(x, t), c(t), d(t)

)
is a solution of problem 1-5, then from Equations 7

and 15,
(
v(x, t), H(t)

)
is a sloution of problem 16-19. Conversely, assuming that

(
v(x, t), H(t)

)
is a

solution of problem 16-19, the function r(t) is verified from Equation 13 provided that µ1(t) 6= 0. Then,

Equation 15 yields d(t) = H(t)
r(t) . Utilizing Equation 7 and differentiating r(t) = e

∫ t
0
c(z)dz with respect

to t we get

c(t) =
r′(t)

r(t)
, u(x, t) =

v(x, t)

r(t)
. (20)

Therefore, we will consider problem 16-19 instead of problem 1-5.

3. Solution method

Suppose that Pm(z), m = 0, 1, 2, 3, ... denote the well-known Legendre polynomials of order m which
are defined on the interval [−1, 1] and can be determined via the following recurrence formula:

P0(z) = 1, P1(z) = z, Pm+1(z) =
2m+ 1

m+ 1
zPm(z)− m

m+ 1
Pm−1(z), m = 1, 2, 3, ....

Then, we consider φi(x) := Pi(
x
L) as the shifted Legendre polynomial of degree i in the interval [−L,L]

and ψj(t) := Pj(
2t
T − 1) as the shifted Legendre polynomial of degree j in the interval [0, T ]. The Ritz

approximation vN,N ′(x, t) based on polynomial basis functions is sought in the form of the following
truncated series

vN,N ′(x, t) =
N∑
i=0

N ′∑
j=0

cijt(x+ L)(x− L)φi(x)ψj(t) + u0(x), (21)

and the approximation of H(t) is considered as

HN ′′(t) =
N ′′∑
j=0

αjψj(t). (22)

Substituting the approximations vN,N ′(x, t) andHN ′′(t) in Equations 16 and 19 respectively, the follow-
ing residual functions are constructed

Res1(x, t) =
N∑
i=0

N ′∑
j=0

cij

{
(x2−L2)φi(x)(ψj(t)+tψ

′
j(t))−a(x, t)ψj(t)

(
2φi(x)+(x2−L2)φi

′′(x) (23)
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+4xφ′i(x)

)
+b(x, t)

(
2xφi(x)+(x2−L2)φ′i(x)

)}
−
N ′′∑
i=0

αig(x, t)ψi(t)+b(x, t)u′0(x)−a(x, t)u
′′
0(x),

(24)

Res2(t) =
N∑
i=0

N ′∑
j=0

cijt

{
µ2(t)ψj(t)∆

∗
i − µ1(t)ψj(t)∆

∗∗
i

}
+ µ2(t)µ1(0)− µ1(t)µ2(0), (25)

where

∆∗i =

∫ L

−L
ω1(x)φi(x)dx, ∆∗∗i =

∫ L

−L
ω2(x)φi(x)dx.

Collocating the residual functions Res1(xi, tj) = 0 and Res2(t∗k) = 0 at the points

(xi, tj) =

(
(2i− 2−N)L

N + 2
,

jT

N ′ + 2

)
, t∗k =

kT

N ′′ + 2
i = 1, N + 1, j = 1, N ′ + 1, k = 1, N ′′ + 1,

(26)
forms a linear system of algebraic equations

AC = g, (27)

where C is the vector of unknown constants cij , αk. Generally, A is an ill-conditioned matrix, therefore
we require using regularization techniques to obtain stable solution. Hence, instead of Equation 27,
according to the Tikhonov regularization method we solve the modified system of equations

(AtrA+ λI)c = Atrg, (28)

where I is the identity matrix, Atr denotes the transpose of the matrix A and λ > 0 is the regularization
parameter (Hansen, 1992). Therefore, the approximations of functions v(x, t) and H(t) are specified.

It is worthy to note that the approximation given by Equation 21 satisfies the initial and boundary
conditions 17-18 exactly, provided that the compatibility conditions of Equation 6 hold. Thus by in-
creasing the parameters N , N ′ and N ′′, if the residual functions Res1(x, t), Res2(t) −→ 0, then the
Equations 16 and 19 are satisfied and the approximations vN,N ′(x, t) and HN ′′(t) converge to the exact
solutions v(x, t) and H(t), respectively.

In the following, we consider the approximation of the function r(t) as

GN,N ′(t) :=

∫ L
−L ω1(x)vN,N ′(x, t)dx

µ1(t)
, (29)

and calculate the approximation of the unknown functions c(t), d(t) and u(x, t) in two different situa-
tions.

Case 1: Suppose that all the initial and boundary conditions 17-19 are given accurately. By substi-
tuting the approximations 22 and 29 in Equations 15 and 20, the following approximations are obtained

capprox(t) =

d
dt

(
GN,N ′(t)

)
GN,N ′(t)

, dapprox(t) =
HN ′′(t)

GN,N ′(t)
, uapprox(x, t) =

vN,N ′(x, t)

GN,N ′(t)
. (30)

Case 2: In real applications, due to the presence of inaccuracies in the input data we need to perform the
regularization procedure to deal with the derivative of the perturbed data such as G′(t) since it involves
perturbed function µ′1(t). Therefore, regarding the perturbed boundary data, let µσ1 (t) and GσN,N ′(t) =∫ L
−L ω1(x)vN,N′ (x,t)dx

µσ1 (t) be perturbations such that

max{‖GσN,N ′(t)−G(t)‖∞, ‖µ1(t)− µσ1 (t)‖∞} ≤ σ.
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Then, we employ the mollification method of (Murio, 1993) by taking into account the Gaussian mollifier

Fδ(t) =
exp(− t

2

δ2
)

δ
√
π

where δ > 0 is the radius of mollification. The mollification of the perturbed data
(GσN,N ′(t))

′ is performed using the convolution{
Fδ ∗ (GσN,N ′)

′
}

(t) :=

∫ +∞

−∞
Fδ(r)(G

σ
N,N ′)

′(t− r)dr. (31)

We use {
Fδ ∗ (GσN,N ′)

′
}

(t) =

{
F
′
δ ∗ (GσN,N ′)

}
(t), (32)

such that for a given δ > 0 the function
{
F
′
δ ∗(GσN,N ′)

}
(t) is calculated numerically using the mid-point

integration rule, that is

{
F
′
δ ∗ (GσN,N ′)

}
(t) ' π

mδ

mδ−1∑
i=0

Q(t,−π
2

+
πi

mδ
+

π

2mδ
), Q(t, r) = F

′
δ(tan r)GσN,N ′(t− tan r) sec2 r.

(33)
Then, we consider the following

(GσN,N ′)
′(t) =

{
F
′
δ ∗ (GσN,N ′)

}
(t) '

N ′′∑
i=0

βδ,σi ψi(t), (34)

and consequently

(GσN,N ′)(t) '
N ′′∑
i=0

βδ,σi

∫ t

0
ψi(z)dz +GσN,N ′(0), GσN,N ′(0) ≈

∫ L
−L ω1(x)u0(x)dx

µσ1 (0)
. (35)

The strategy given by Equations 32-35 is admissible if for small value ε > 0, and the appropriate given
values δ and mδ we find

‖
N ′′∑
i=0

βδ,σi

∫ t

0
ψi(z)dz +

∫ L
−L ω1(x)u0(x)dx

µσ1 (0)
−
∫ L
−L ω1(x)vN,N ′(x, t)dx

µσ1 (t)
‖∞ ≤ ε. (36)

If so, the approximate solution for c(t) is given by

capprox(t) =
µσ1 (t)

∑N ′′
i=0 β

δ,σ
i ψi(t)∫ L

−L ω1(x)vN,N ′(x, t)dx
, (37)

and the approximations of u(x, t) and d(t) are derived as follows

dapprox(t) =
HN ′′(t)

GσN,N ′(t)
, uapprox(x, t) =

vN,N ′(x, t)

GσN,N ′(t)
. (38)

4. Numerical experiments

To test the applicability of the proposed technique, we solve two examples. The notations

E(u(x, t)) = |uexact(x, t)− uapprox(x, t)|, E(d(t)) = |dexact(t)− dapprox(t)|

and
E(c(t)) = |cexact(t)− capprox(t)|,

6
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Fig. 1. Representation of the exact (blue line) and approximate solutions for c(t) obtained by applying
the proposed method with N = N ′ = N ′′ = 5 and λ = 10−5, δ = 0.01, mδ = 600, ε = 0.25 in the
presence of the perturbed boundary data subject to different values of σ, i.e. + + +: corresponding to
σ = 1× 10−2, ♦♦♦: corresponding to σ = 3× 10−2, ◦ ◦ ◦: corresponding to σ = 6× 10−2, discussed
in Example 4.0.2.

Table 1. The results of l2-norm of functions Res1(x, t) and Res2(t) and the relative root-mean square
error for functions c(t), d(t) and u(x, t) with M = 50, discussed in Example 4.0.1.

(N,N ′, N ′′) ‖Res1(x, t)‖2 ‖Res2(t)‖2 RRMSE(c) RRMSE(d) RRMSE(u)

(6, 6, 4) 8.2× 10−1 1.3× 10−4 2.6× 10−2 1.3× 10−3 2.2× 10−3

(8, 8, 5) 1.9× 10−1 3.9× 10−5 2.4× 10−3 6.4× 10−4 6.4× 10−4

(9, 9, 6) 3.1× 10−2 8.83× 10−7 5× 10−4 8× 10−5 1.2× 10−4

(10, 10, 7) 6× 10−3 6.86× 10−7 7.4× 10−5 1.72× 10−5 1.3× 10−5

are defined as the absolute error for functions u(x, t), d(t) and c(t) respectively. Moreover, we define
the relative root-mean square error for functions c(t), d(t) and u(x, t) as follows

RRMSE(c) :=

√√√√∑M
i=0E

2(c( iTM ))∑M
i=0 c

2( iTM )
, RRMSE(d) :=

√√√√∑M
i=0E

2(d( iTM ))∑M
i=0 d

2( iTM )
,

RRMSE(u) :=

√√√√∑M
i,j=0E

2(u(2Li
M − L,

jT
M ))∑M

i,j=0 u
2(2Li

M − L,
jT
M )

.

Throughout this work, we select the regularization parameters λ by applying the L-Curve criterion
(Hansen, 1992) and find the appropriate values for δ and mδ by trial and error. Numerical implementa-
tion is carried out with Wolfram Mathematica software in a personal computer.
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Table 2. The results of the infinity norm of errors for the approximations of unknown functions c(t), d(t)
and u(x, t) in the presence of exact boundary data, discussed in Example 4.0.1.

(N,N ′, N ′′) ‖E(c(t))‖∞ ‖E(d(t))‖∞ ‖E(u(x, t))‖∞ λ

(6, 6, 4) 6.9× 10−2 5.8× 10−3 8.5× 10−3 10−11

(8, 8, 5) 3.61× 10−3 3.87× 10−3 4× 10−3 10−12

(9, 9, 6) 7.1× 10−4 3.9× 10−4 8.7× 10−4 10−13

(10, 10, 7) 5× 10−5 5.3× 10−5 5.7× 10−5 10−13

4.0.1 Example 1
Consider the inverse problem

ut − xtuxx + (x2 + t2)ux + c(t)u = d(t)g(x, t), in [−1, 1]× [0, 1], (39)

where

g(x, t) = sin(πx)ex
(

1 + e−t
2

+ (t2 + x2)− tx(1− π2)

)
+ π cos(πx)ex(t− x)2,

with initial condition
u0(x) = ex sin(πx), −1 ≤ x ≤ 1, (40)

and homogeneous boundary conditions

u(−1, t) = u(1, t) = 0, 0 ≤ t ≤ 1, (41)

and overspecifications

∫ 1

−1
(1− x2)u(x, t)dx =

2πet−1

(
5 + π2 + e2(−1 + 3π2)

)
(1 + π2)3

, (42)

and

∫ 1

−1
x2(x2−1)u(x, t)dx =

−2πet−1

(
125− 89π2 − 25π4 − 3π6 + e2(−25 + 101π2 − 59π4 + 7π6)

)
(1 + π2)5

.

(43)
The exact solutions of this problem are

c(t) = e−t
2
, d(t) = et, u(x, t) = et+x sin(πx).

We solve the problem by applying the numerical scheme discussed in Section 3 in the presence of exact
boundary data and use the approximations given by Equation 30. The results for relative root-mean
square error for functions c(t), d(t) and u(x, t) together with l2-norm of fuctionsRes1(x, t) andRes2(t)
are presented in Table 1. Moreover, in Tables 2-3 we report the infinity norm and l2-norm of errors for
the approximations of unknown functions c(t), d(t) and u(x, t) per different number of basis functions
which indicate that the accuracy is improved by increasing the number of basis functions.
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Table 3. The results of the l2-norm of errors for the approximations of unknown functions c(t), d(t) and
u(x, t) in the presence of exact boundary data, discussed in Example 4.0.1.

(N,N ′, N ′′) ‖E(c(t))‖2 ‖E(d(t))‖2 ‖E(u(x, t))‖2 λ

(6, 6, 4) 2× 10−2 2.4× 10−3 4.9× 10−3 10−11

(8, 8, 5) 1.81× 10−3 1.07× 10−3 1.4× 10−3 10−12

(9, 9, 6) 3.8× 10−4 1.3× 10−4 2.7× 10−4 10−13

(10, 10, 7) 5.2× 10−5 2.8× 10−5 3× 10−5 10−13

Table 4. The results of the infinity norm of errors for the approximations of unknown functions c(t), d(t)
and u(x, t) in the presence of exact boundary data, discussed in Example 4.0.2.

(N,N ′, N ′′) ‖E(c(t))‖∞ ‖E(d(t))‖∞ ‖E(u(x, t))‖∞ λ

(4, 4, 4) 0.051 0.056 0.024 10−4

(6, 6, 5) 0.0034 0.0027 0.0009 10−6

(8, 8, 6) 0.0001 0.00067 0.00021 10−9

(10, 10, 7) 2× 10−6 1.1× 10−7 1.6× 10−5 10−11

Table 5. The results of l2-norm of functions Res1(x, t) and Res2(t) and the relative root-mean square
error for functions c(t), d(t) and u(x, t) with M = 50, discussed in Example 4.0.2.

(N,N ′, N ′′) ‖Res1(x, t)‖2 ‖Res2(t)‖2 RRMSE(c) RRMSE(d) RRMSE(u)

(4, 4, 4) 1.9× 10−1 2.54× 10−3 2.4× 10−2 7.2× 10−3 2× 10−3

(6, 6, 5) 1.8× 10−2 5.2× 10−5 1.51× 10−3 3.3× 10−4 1.4× 10−4

(8, 8, 6) 1.09× 10−3 1.6× 10−5 6× 10−4 6.7× 10−5 1.2× 10−5

(10, 10, 7) 5.03× 10−5 1.58× 10−6 2.24× 10−6 6.9× 10−6 7.7× 10−7
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Fig. 2. Representation of the exact (blue line) and approximate solutions for d(t) obtained by applying
the proposed method with N = N ′ = N ′′ = 5 and λ = 10−5, δ = 0.01, mδ = 600, ε = 0.25 in the
presence of the perturbed boundary data subject to different values of σ, i.e. + + +: corresponding to
σ = 1× 10−2, ♦♦♦: corresponding to σ = 3× 10−2, ◦ ◦ ◦: corresponding to σ = 6× 10−2, discussed
in Example 4.0.2.

4.0.2 Example 2
Consider (Shekarpaz & Azari, 2018) the problem given by Equations 1-5 defined over the bounded

domain Q = [−1, 1]× [0, 1] with the following properties:

a(x, t) = 1, b(x, t) = 1, g(x, t) = −2t+ (π2 − 2t) cos(πx) + t(2− t)(1 + cos(πx)), (44)

u0(x) = 1 + cos(πx), ω1(x) = 1 + x2, ω2(x) = 1− x, µ1(t) = (
8

3
− 4

π2
)et, µ2(t) = 2et, (45)

and the exact solutions

c(t) = −1− t2, d(t) = et, u(x, t) = et(cos(πx) + 1).

By using the approximations 30 presented in Section 3 with different valuesN, N ′, N ′′, we produce the
results tabulated in Tables 4-5. From the numerical findings it can be seen that the infinity norm of errors
as well as the relative root-mean square errors are decreased as the number of basis functions increases
gradually which indicate that our method is convergent. Next, we study the numerical stability of the
solution with respect to the boundary conditions. Thus, we generate the perturbed boundary data using
the following rules (Kirsch, 2011)

µσ1 (t) = µ1(t) + σ sin(
t

σ2
), σ = r × 10−2, r ∈ N, (46)

µσ2 (t) = µ2(t) + σ sin(
t

σ2
), σ = r × 10−2, r ∈ N. (47)

By employing the investigated method with N = N ′ = N ′′ = 5 and σ ∈ {1, 3, 6}×10−2 and taking the
approximations 37 and 38, we obtain the results as shown in Figures 1-2. From the illustrations, it can
be seen that the performance of the method is good and the proposed technique finds the stable solution
while the amount of noise tends to zero. Indeed, the fair agreement between the exact and approximate
solutions holds since the errors imposed to the additional data and propagated with the approximations
are of the same order.
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5. Conclusion

This article gives a stable numerical solution of an inverse coefficient problem in the one-dimensional
heat equation from integral overdetermination conditions. By utilizing new variables, the main problem
is converted to a problem of reconstructing an unknown heat source from one additional measurement.
We propose a Ritz approximation as the solution of the unknown temperature distribution and consider
some truncated series as the approximation of unknown time-dependent function in the heat source.
Then, the collocation technique is employed to reduce the inverse problem to the solution of algebraic
equations. We take advantage of the mollification method to derive the stable numerical derivatives and
solve the ill-conditioned system of equations by using the Tikhonov regularization technique in order
to obtain the stable solutions. Following the numerical simulations, it is confirmed that our method
proposes a robust approach in dealing with introduced artificial errors in the input boundary data and
performs quite well in the presence of exact boundary data since the approximate solutions converge to
the exact solutions numerically. Compared to the results presented in (Shekarpaz & Azari, 2018), it can
be observed that the algorithm proposed in the present paper yields better results because of providing
higher accuracy with lower computational cost. This technique can be extended to solve similar problems
in higher dimensions.
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