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Abstract

Human activity recognition (HAR) encompasses the detection of daily routine activities to advance us-
ability in detecting crime and preventing dangerous activities. The recognition of activities from videos
and image sequences with higher exactitude is a major challenge due to system complexities. The ef-
ficient feature optimization approach can reduce system complexities by removing ineffective features,
which also improves the activity recognition performance. This research work presents a novel quantum
behaved intelligent gravitational search algorithm to optimize the features for human activity recogni-
tion. The proposed intelligent variant is termed as INQGSA, which optimizes the features by using the
advantageous attributes of quantum computing (QC) and intelligent gravitational search algorithm (IN-
GSA). In INQGSA, the intelligent factor avoids the trapping of mass agents in later iterations by using
the information of the best and worst agents to update the position of agents. The addition of quantum
computing based attributes (such as quantum bits, their superposition, and quantum gates, etc.) ensures
a better diversity of discrete optimized features. To analyze the superiority of INQGSA, the feature
optimization is also conducted with the gravitational search algorithm (GSA) and the quantum-inspired
binary gravitational search algorithm (QBGSA). Finally, the optimized selected features are utilized by
the deep neural networks (DNN) of ResNet-50V2 and ResNet-101V2 for the classification of activi-
ties. The activity recognition experiments are conducted on the UCF101 and HMDB51 datasets. The
performance comparison of the proposed HAR system with state-of-the-art techniques signifies that the
proposed system is superior and effective in detecting the different activities.

Keywords: Deep neural networks; feature optimization; gravitational search algorithm; human activ-
ity recognition; quantum computing

1. Introduction

The concept of video-based HAR has aroused the interest of industrialists and academicians in devel-
oping intelligent recognition systems. The effective recognition of activities can fulfil the future needs
of building smart homes and intelligent monitoring systems. The data captured as RGB videos with the
cameras is an effective means of recognizing the activities with great ease. The digitization of the world
has increased the use of cameras in daily life with their already existing presence in public places such
as airports, banks, hospitals, etc. Moreover, human beings themselves generate a massive amount of
video content and upload it on social networking and other online websites. The primary motivation for
adapting to video-based human activity recognition is the availability of a wide range of applications (Xu
et al., 2013; Serpush & Rezaei, 2020; Özyer et al., 2021).

At the early stage of human activity recognition, the researchers focused on recognizing the simple
kinematic activities from a video with a plain background. Recently, the focus of researchers has turned
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towards the determination of activities in real-time and uncontrolled environments. Chen et al. (2012)
used the extreme learning model for human activity recognition, which was a device displacement free
recognition model. Shieh & Huang (2012) adapted a pattern recognition model to take care of aged
people with video surveillance. Moreover, an autonomous falling detection algorithm was utilized to
determine the falling activities. Khemchandani & Sharma (2016) proposed the robust least square twin
support vector machine (RLSTW-SVM) model along with the feature descriptors of optic flow and sil-
houette. The work was effective in handling the heteroscedastic noise and incorporating the outlier effect.
Kushwaha et al. (2017) used contour-based pose features from silhouettes as well as features based on
the rotation invariant local binary approach.The activity classification was conducted using the multi-
class support vector machine. Ijjina & Chalavadi (2017) utilized the deep convolutional neural networks
with features through depth stream videos and RGB motion streams. The presented model could tolerate
robust noise. Bouachir et al. (2018) used different machine learning and ensemble methods to determine
the suicide attempt activities. The authors determined the SVM-RBF (SVM with radial basis kernel)
method as superior among others. Kong et al. (2019) explored the three-stream convolutional neural
network to determine the multi-view falling activities. The first two streams of the model adapted the
Silhouettes and motion history images as the input, and the third stream considered the dynamic images.
The method lacked effectiveness due to inefficient results for the lousy representation of video clips.
Jaouedi et al. (2020) used the Gated Recurrent Neural Network for the recognition of human activities.
The Kalman Filter and Gaussian Mixture Model were used to extract the features to recognize normal
and sports activities. Verma et al. (2020) used RGB and skeleton information as the feature attributes to
recognize human activities. The combined approach of convolutional and recurrent neural networks was
adapted by the authors.

Although different methods are used in the discussed contributions for activity recognition, the us-
ability of machine learning (Khan et al., 2016) and deep learning (Al-Hmouz, 2020) techniques can be
majorly noticed. Simple activities with fixed backgrounds can be easily recognized with higher recogni-
tion accuracy. The recognition of activities with diverse backgrounds, performed by different individuals,
is a complex task. In addition, it is considerably more challenging to build automated systems with bet-
ter precision. Computer vision has been used to make many automated systems, but the current systems
cannot recognise very complicated human actions.

Most of the existing systems have adapted the autonomous approach to extract and select the features
for activity recognition, which is less effective. The different types of activities captured in unconstrained
scenarios need their relevant feature attributes to determine the type of activity. The present work has
adapted distinct strategies for the different modules of the human activity recognition process. The
proposed HAR system is described in four major modules: pre-processing, feature extraction, feature
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Fig. 1. Architecture of proposed HAR system.
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selection, and classification. The architecture of the proposed HAR system is illustrated in Figure 1.
In the proposed HAR system, the process of recognising the activities begins with the pre-processing

module that segments the background region from the extracted video frames. The processed frames
(images) are evaluated to determine the features using the uniform rotation invariant LBP (Local Binary
Pattern) technique. The extracted features need to be optimized to reduce the feature dimensionality and
computation time by eliminating redundant and irrelevant features. Here, the INQGSA is proposed for
the feature set optimization. The DNN models of ResNet-50V2 and ResNet-101V2 use the selected fea-
tures to classify the activities. The performance of the proposed system is accessed for the UCF101 and
HMDB51 datasets. The UCF101 dataset consists of 101 different activities, and the HMDB51 dataset
is composed of 51 different activities. The focused section of the paper is the proposal of INQGSA for
the feature optimization which selects the discrete feature set by adapting the attributes of an intelligent
variant of GSA and the quantum computing concepts. In summary, the key contributions of the work are
described as follows:

• The proposal of a novel INQGSA approach to optimize the features for the application of human
activity recognition. The INQGSA approach avoids the trapping of mass agents in local optima by
intelligently incorporating the advantageous attributes of QC and INGSA.

• The incorporation of advanced techniques of uniform rotation invariant LBP for multi-pose fea-
ture extraction and Deep Neural Networks (ResNet-50V2 and ResNet-101V2) for human activity
recognition.

• The extensive experiments of the proposed HAR system for the video-based datasets of UCF101
and HMDB51.

The organization for the rest of the paper is described as follows. Section 2 presents the work related
to feature selection and optimization techniques for human activity recognition. Section 3 illustrates
the video data processing and feature extraction modules for activity recognition. Section 4 discusses
the proposed INQGSA approach for the optimization of features. Section 5 exhibits the classification
modules of the activities using DNN models. Section 6 describes the results and discussion of the
experiments on the UCF101 and HMDB51 datasets. Section 7 concludes the paper with some future
viewpoints.

2. Related work

The automation of the HAR from videos is an imperative research domain in pattern recognition as it
is essential to meet the demand for a smart future in terms of automated video surveillance and smart
homes. But the selection/optimization of features is the major concern in pattern recognition. During
the feature extraction phase, the feature extractor can extract the different types of features for activity
recognition. But the increasing feature vector can grow the dimensions of the Eigen vector, which in-
creases the computational complexities and time consumption. Therefore, the selection and optimization
of features is essential as it can determine higher recognition accuracy by consuming the least but appro-
priate features. The feature optimization phase contributes the relevant selected features to the HAR by
removing the redundant and irrelevant features. The section describes the feature optimization based on
relevant studies for video-based human activity recognition.

The feature optimization improves the HAR system performance compared to the usability of the
entire feature set (Wang et al., 2016). Siddiqi et al. (2014) presented the method of stepwise linear
discriminant analysis for feature selection, which evaluates the localized features from video frames.
The method was determined as efficient for the experiments on the single subject based dataset, but
it lacks for the experiments on the real-time datasets having different subjects for different activities.
Fang et al. (2014) used the inter-class distance method for feature selection and neural networks with a
back propagation algorithm for activity recognition. The authors tested the results by incorporating six
different feature sets and a recognition method that was evaluated as efficient compared to the Hidden
Markov Model and Naive Bayes algorithm. Zheng (2015) adapted a hierarchical feature selection ap-
proach along with the classifiers of Naive Bayes and Least Squares Support Vector Machine for human
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activity recognition. The authors defined the requirement to place the sensors at the correct place to
determine the activity accurately. Mazaar et al. (2016) explored the ensemble learning model by incor-
porating the methods of random forest and gradient boosting for feature optimization. The classification
of the activities is performed using support vector machine with a linear kernel. Baldominos et al. (2017)
conducted the feature optimization at the dimension level and attribute level using the genetic algorithm.
The authors presented four different feature selection methods by incorporating with and without fea-
ture sensibility for both the dimension and attribute levels. Wang et al. (2018) optimized the features
using the correlation-based binary particle swarm optimization approach. In this approach, the k-nearest
neighbor method was used as a fitness method to determine the performance of the optimized feature
set. Siddiqui et al. (2018) presented a codebook-based feature selection approach that includes models
of visual vocabulary learning, quantization of features based on learned visual vocabulary, and represen-
tation of images by using the frequency of visual words. In the final module, activity classification was
conducted using the support vector machine algorithm.

Furthermore, Siddiqi et al. (2019) used a normalized mutual information-based feature selection
technique for the optimization of features. The authors also used linear discriminant analysis to reduce
the feature space for the extracted features by using the curvelet transform. The final classification of fea-
tures was performed using a hidden Markov model. Sharif et al. (2019) explored strong correlation and
the Euclidean distance method to select the optimal feature for activity recognition. Berlin & John (2020)
used a particle swarm optimization approach with a multi-objective function to reduce the feature space
by selecting an appropriate feature set. The activity recognition was conducted using a deep learning
neural network model. Helmi et al. (2021) proposed a hybrid approach of Grey Wolf Optimizer (GWO)
and Gradient-Based Optimizer (GBO) for feature optimization. The GWO method was used to optimize
the performance of the GBO algorithm. Tian et al. (2021) presented a feature selection methodology
by combining the wrapper and filter feature selection approach. In this method, the initial feature se-
lection was conducted using a game-theory filter approach, and further reselection was performed using
the wrapper approach of the binary firefly algorithm. Fan & Gao (2021) integrated the deep Q-network
with bee swarm optimization for the feature optimization. The bee swarm optimization approach retains
the exploration and exploitation balance in the feature space, and the deep Q-network uses the advanta-
geous attributes of reinforcement learning to make the local search space more efficient. Bulbul et al.
(2022) focused on enhancing the performance of 3D auto-correlation gradient features. The space-time
auto-correlation of gradients descriptor was used to obtain the three vectors in the method. Siddiqi &
Alsirhani (2022) employed the mutual information algorithm for feature selection. The method was the
extension of the max-relevance and min-redundancy to select the more appropriate and relevant features
for activity recognition. In the future, the authors indicated testing the presented method in a real-time
scenario.

As per the existing studies, the feature optimization techniques significantly contribute to improving
the system accuracy in HAR. However, the higher recognition accuracy requires the use of an appro-
priate technique that can select relevant features without redundancy and can reduce the computational
complexities. In addition, the standard and individual optimization techniques are observed with lacking
feature attributes that increase computational cost due to higher feature dimensionality (Helmi et al.,
2021). The improved and ensemble approaches are essential to increase the feature optimization abil-
ity in HAR. The current work proposes the INQGSA approach, which ensembles the attributes of the
quantum computing concept with an intelligent gravitational search algorithm for feature optimization.
To determine the superiority of the proposed INQGSA approach, the feature optimization is also per-
formed using the standard GSA (Rashedi et al., 2009) and QBGSA (Ibrahim et al., 2012). The GSA
and QBGSA use Kbest agents to maintain the balance of exploration and exploitation, but the Kbest
is a reducing function, so its value decreases over time and iterations. This decreasing value leads to
the trapping of agents at later iterations. The proposed INQGSA approach overcomes this drawback by
using an intelligent variant of GSA in which the position of agents is updated intelligently by using the
worst (gWorst) and best (gBest) information values of the agents (Mittal & Saraswat, 2019). The mass
agents get attracted towards the gBest information to attain the best position and start getting away from
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the gWorst. This avoids the trapping of agents in local optima and optimizes the features effectively.

3. Video data processing and feature extraction

The section describes the pre-processing and feature extraction modules of the HAR process. These are
the initial and essential modules for activity recognition.

3.1 Pre-processing
The pre-processing module segments the background region from the foreground of the image se-

quence (video frames). The image sequences for the proposed system are processed with a statistical
model, which evaluates the variance to analyze the absolute variations and co-variance to determine the
relative variations of the pixels (Singh et al., 2019).

For an array of frames (ηi = (ϕ, ψ)) with a starting value of SF and an ending value of EF , the
variance (V ar) is determined with Equation (1), and the co-variance (Cov(α, β)) between the frames α
and β is evaluated with Equation (2).

V ar =

(
1

EF

EF−1∑
i=0

(ηi − η̄)2
)

(1)

Cov(α, β) =

(
1

EF

EF−1∑
i=0

αiβi

)
−

(
1

EF

EF−1∑
i=0

αi

) 1

EF

EF−1∑
j=0

βj

 (2)

Where, 0 ≤ i < EF and η̄ is the mean of all the frames.
The variation in the intensity of the pixel compared to other pixels is evaluated based on the co-

variance between frames. The variance and co-variance values for all the pixels are stored in the reference
image Ref(ϕ, ψ). The objects are differentiated based on the reference image.

Further, the background model is updated to incorporate the change in intensity value and background
of the different frames. Exceeding the threshold value of the counter ρ indicates the requirement to update
the background model. The change in the background model is performed with Equation (3).

Refnew(ϕ, ψ) = (1− µ)× frameρ(ϕ, ψ) + µ×Ref(ϕ, ψ) (3)

Where, Refnew(ϕ, ψ) denotes the updated model. The symbol µ describes the updating speed, and
frameρ(ϕ, ψ) depicts the current frame of the video.

3.2 Feature extraction
The features are extracted using the uniform rotation invariant LBP (Local Binary Pattern) technique

from the pre-processed image sequence. The incorporation of the uniform rotation invariant is conducted
to handle the activities that possess multi-view poses. The image sequences are initially converted into
grayscale images to extract the features. In an LBP operator, the features of an image I(x, y) with gc as
the gray level of the central pixel and gp as the gray level of its neighbor pixels can be extracted using
Equation (4) (Pietikäinen et al., 2011).

LBPP,D(xc, yc) =

p−1∑
p=0

s(gp − gc)2
p (4)

Where, P is the set of sample pixels in the circular neighborhood of the central pixel with radius D,
p = 0, 1, . . . , (P − 1), and 2p is adapted to determine the size of histograms for the LBP operator. The
values of s(z) can be determined as described in Equation (5).

s(z) =

{
1, z ≥ 0
0, z < 0

(5)

The local circular neighbor pixels around the central pixel with a radius of D are described in Fig-
ure 2. Here, only the uniform patterns (U ) of the LBP code are incorporated to retain the statistical
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robustness. The uniform patterns hold the transition from 0 to 1, and the mapping of uniform LBP
patterns produces P (P − 1) + 3 labels for the P sampling points.

(a) (b)

Fig. 2. Circular neighbors for central pixels in format (P,D): (a). (4,1), (b). (8,2).

With the rotation of the image I(x, y), the LBP patterns are translated to another location for the
rotation around their origin. The rotation of the patterns can be normalized with the rotation invari-
ant mapping in which the LBP binary code is rotated to the minimum possible value, as depicted in
Equation (6).

LBP ri
P,D = min

i
ROR(LBPP,D, i) (6)

Where, ROR(LBPP,D, i) is the circular bit-wise rotation with i steps.
The features with the uniform rotation invariant LBP operator are extracted using Equations (7)- (8)

that retain the robustness and higher stability (Singh et al., 2019).

LBP riu2
P,D =

{∑p−1
p=0 s (gp − gc) , if U(LBPP,D ≤ 2)

P + 1, otherwise
(7)

where,

U(LBPP,D) = |s(gp−1 − gc)− s(g0 − gc)|+
p−1∑
p=1

|s(gp − gc)− s(gp−1 − gc)| (8)

The value of s(z) is evaluated using Equation (5). The uniform operator U(LBPP,D) is a rotation
invariant operator with varying bits of 0 and 1 in circular symmetry.

4. Feature optimization using proposed INQGSA approach

The optimization of features is essential for the classifier to improve the performance of the system. The
present work proposes the INQGSA approach to optimize the features for human activity recognition.
The GSA is a population-based meta-heuristic algorithm inspired by the physics-based Newton′s laws
of motion and gravity to optimize the solution set for high dimensional problems (Rashedi et al., 2009).
The proposal of the INQGSA approach is presented as the standard GSA (Rashedi et al., 2009) and
QBGSA (Ibrahim et al., 2012) algorithms lack feature optimization. In the meta-heuristic algorithm,
the balance of exploration and exploitation is essential for optimization. The GSA and QBGSA use
the Kbest agents to retain this balance, but the value of Kbest decreases with the increasing iterations
because Kbest is a reducing function. This decreasing value leads to the trapping of agents at later
iterations. The proposed INQGSA approach adapts the advantageous attributes of QC and intelligent
variant of GSA to tackle the trapping of agents. In the proposed INQGSA approach, the position of
agents is updated intelligently by using the worst (gWorst) best (gBest) information values of the
agents (Mittal & Saraswat, 2019). The mass agents get attracted towards the gBest information to attain
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the best position and start getting away from the gWorst. This avoids the trapping of agents in local
optima and optimizes the features effectively.

The proposed INQGSA algorithm begins by considering an n-dimensional system having N mass
agents in which the position of the ith agent can be defined by Equation (9).

Xi = (x1i , x
2
i , . . . , x

d
i , . . . , x

n
i ); i = 1, 2, 3, . . . , N (9)

Where, xdi is the position of the ith mass agent in dth dimension.
The force acting by the considered ith agent on the jth agent is determined by Equation (10).

F d
ij(t) = G(t)

Mpi(t)×Maj(t)

Rij(t) + ε
(xdj (t)− xdi (t)) (10)

Where, ε is a constant and the masses are considered as active mass (Maj) and passive mass (Mpi)
for the jth agent and ith agent, respectively. In Equation (10), the distance R is incorporated instead of
R2 (in law of gravity) due to better performance with only R as per the existing studies (Rashedi et al.,
2009). Here, the Euclidean distance Rij is determined by Equation (11).

Rij(t) = ∥Xi(t), Xj(t)∥2 (11)

Further, the addition of stochastic attributes changes the force evaluation with the total force acting
on the agent i as depicted in Equation (12). By considering the total force, the acceleration evaluation is
depicted in Equation (13).

F d
i (t) =

N∑
j=1,j ̸=i

randjF
d
ij(t) (12)

adi (t) =
F d
i (t)

Mii(t)
(13)

Where, randj is the random number that lies in [0, 1] and Mii indicates the inertial mass.
Further, the movement of the particles is determined by evaluating the change in position, velocity,

and masses by Equation (14)- (16).

vdi (t+ 1) = randi × vdi (t) + adi (t) (14)

xdi (t+ 1) = xdi (t) + vdi (t+ 1) (15)

Mi(t) =
mi(t)∑N
j=1mj(t)

(16)

Where, Mi = Mii = Mpi = Mai as the inertial and gravitational masses are assumed to be equal
and calculated by the fitness function fiti(t). In Equation (16), mi(t) is evaluated using Equation (17).

mi(t) =
fiti(t)− worst(t)

best(t)− worst(t)
(17)

In the current research work, feature optimization is a minimization problem as it needs to minimize
feature dimensionality. For the minimization problem, the values of best(t) and worst(t) are evaluated
by Equations (18) and (19).

best(t) = minjϵ{1,2,...,N}fitj(t) (18)

worst(t) = maxjϵ{1,2,...,N}fitj(t) (19)

In GSA, the mass agents can be trapped in later iterations, which can be avoided by introducing the
intelligent variant of GSA. The INGSA incorporates the worst (gWorst) and best (gBest) information
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values of the agents to update the position of each agent intelligently (Mittal & Saraswat, 2019). For
the current feature optimization problem, which is a minimization problem, the values of gBest and
gWorst are evaluated by Equations (20)- (21).

gBest(t) = xe(t) (20)

gWorst(t) = xs(t) (21)

Where, the notations e and s are concerned with the minimum and maximum fitness functions of the
intelligent mass agents, which are evaluated by Equations (22)- (23).

fite(t) = min {fit1, fit2, fit3, . . . , fitN} (22)

fits(t) = max {fit1, fit2, fit3, . . . , fitN} (23)

The mass agents get attracted towards the gBest information to attain the best position and start
getting away from the gWorst. The update in the position of the mass agents as per INGSA is determined
by Equation (24).

xdi (t+ 1) = xdi (t) + vdi (t+ 1) + b(t)×
(
gBestd(t)− xdi (t)

)∣∣ω × gWorstd(t)− xdi (t)
∣∣ (24)

In Equation (24), the intelligent component is the third term. Here, b(t) is a number that lies in [0,1]
and is determined randomly. ω possesses a constant value of 0.7 and is incorporated to reduce the effect
of gWorst as it tries to mitigate the movement of mass agents towards gBest (Mittal & Saraswat, 2019).
As the mass agents move towards the gBest, the agents′ distance increases from gWorst which helps
to reduce the step size and avoid the trapping of agents in the local optima. Another scenario of greater
distance from gBest allows the agents to explore more.

Further, the concept of quantum computing is introduced with the INGSA. In quantum comput-
ing, the position and velocity of mass agent changes to quantum states with a probabilistic illustra-
tion (Ibrahim et al., 2012). The Q-bit (quantum bit) is considered as the smallest unit and its state can
be either 0 or 1 or their superposition, which can be analyzed for any complex numbers (C1 and C2) by
Equation (25).

|ψ⟩ = C1 |0⟩+ C2 |1⟩ (25)

The complex numbers C1 and C2 are the probability amplitudes for binary numbers 0 and 1, respec-
tively, and they assures the normalization of states to unity by following Equation (26).

|C1|2 + |C2|2 = 1 (26)

The states of the Q-bits are updated by using the quantum gates. Among the eminent quantum gates
of the rotation gate, NOT gate, Hadamard gate, etc., this work incorporates the rotation gate due to its
effective performance in the existing studies (Ibrahim et al., 2012). The solution for the INQGSA-agents
through the rotation gate is presented by Equation (27).

U(∆θ) =

[
cos (∆θ) − sin (∆θ)
sin (∆θ) cos (∆θ)

]
(27)

Where, ∆θ is the rotation angle for i = 1, 2, . . . , n that determines the position of the agents in terms
of quantum state.

In the INQGSA approach, the movement of the quantum mass agents is determined by updating
Equation (24) with the quantum movements, which is illustrated by Equation (28).

θdij(t+ 1) = θdij(t) + ∆θdij(t+ 1) + b(t)×

(
gBestd(t)− θdij(t)

)
∣∣∣ω × gWorstd(t)− θdij(t)

∣∣∣ (28)
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Algorithm 1: Pseudo Code of the INQGSA approach for Feature Optimization
Initialize the parameters of the QC concept and GSA algorithm such as as tmax, ϑ0, ω, etc.
Determine the initial fitness value for the population of intelligent mass agents.
t=1; while t < tmax do

for i = 1 to N do
Evaluate the ϑ and a values for the agents.
Evaluated the θdij(t) and ∆θdij(t) values for the agents
Determine the information for the agents concerning the best and worst fitness
information.

Evaluate the fitness value.
Update the position (θdij(t+ 1)) and velocity (∆θdij(t+ 1)) values for the agents using
Equations (28) and (29).

end
end
Store the optimal features determined by the best agents at optimal positions and best fitness
value.

Where,
∆θdij(t+ 1) = randi ×∆θdij(t) + adij(t) (29)

In Equation (29), adij(t) is evaluated by putting the values of Equations (10)- (12) into Equation (13),
which is further derived as per the INQGSA approach. In Equation (10), the value of ε is neglected as it is
constant. The derived formulation for adij(t) as per the INQGSA approach is presented by Equation (30).

adij(t) =
∑

j=1,j ̸=i

[
randj × ϑ× γki ×

(
θdkj(t)− θdik(t)

)]
(30)

Where, the symbol ϑ is G(t) which decreases from ϑmax to ϑmin depending on the rotation angle.
The ratio of the mass (Maj) and distance (Rij) are presented by a decision parameter (γki ) which is
evaluated by Equations (31)- (32) (Ibrahim et al., 2012).

γki =

{
λki + 1, if fit(θdk(t)) = fit(θdi (t))

λki , otherwise
(31)

λki =

{
1, Mk > Mi and Rik ≤ τ

0, otherwise
(32)

Where, τ represents the maximum number of different bits out of total bits in between the ith and
kth agents that can put the active force on the ith agent.

The optimized features are selected by the intelligent quantum mass agents upon the completion of
their maximum iterations. At maximum iterations, the features selected by the best agents that possess
optimized position, are retained. The pseudo-code of the feature optimization process using the INQGSA
approach is illustrated in Algorithm 1.

5. Classification and recognition of activities

The classification of the activities is conducted with the deep residual networks (ResNet), which possess
the deep neural network (DNN) architecture. DNN models are capable of mapping the features of layer
data within deep networks. The network architecture of ResNet is a series of blocks connected to each
other with parallel shortcut links for the output. The basic structure of the residual network block and its
internal learning process are illustrated in Figure 3.

In Figure 3(a), incorporating the parameterized layer after the Addition module can reduce the
ResNet’s advantages, but incorporating the non-parameterized layer (ReLU) after the Addition has little
impact on the ResNet (Kiliç et al., 2020).The conventional CNN is not significant for in-depth learning
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as the error increases (due to over-fitting) with the increase in the depth of layers. In ResNet, the residual
values are formed after adding the blocks, which are fed to the succeeding layers in the model.

In Figure 3(b), x is incorporated as an input, and the output is obtained after the ReLU operation in
the form of H(x) = F (x) + x. Here, the input (x) is passed from the weight layer (w), and the results
are acquired in the form of F (x). The final output is determined by adding the x input to F (x).

Input

Convolution

Convolution

ReLU

Batch Normalization


Batch Normalization


Addition

ReLU

Output




ReLU

Weight Layer 

F(x)

ReLU

x

F(x)+x

(a) (b)

Fig. 3. (a) Basic ResNet Block (b) Internal Learning Process of Residual Block.

In this research work, the ResNet with 50 and 101 layers is adapted for the classification of activities.
These networks are constructed using the architecture of 3-layer bottleneck blocks. There are 3.8× 109

and 7.6 × 109 FLOPs in ResNet-50 and ResNet-101 respectively. The complexity of these networks
is lower than VGG16/19, even after increasing the deep layers. The architectures of ResNet-50 and
ResNet-101 are described in Table 1.

Here, version 2 (V2) of the ResNet is incorporated to direct the identity connections from input to
output by removing the last non-linearity, which enhances the learning process and hence the classifi-
cation of activities. In ResNet V2, the weight layers are pre-activated instead of post-activation. The
present research work has incorporated the ResNet-50V2 and ResNet-101V2 for the human activities
classification.

6. Experimental results and discussion

The results for the proposed HAR system are determined using evaluation measures of precision, recall,
and f-measure for the experiments on the UCF101 and HMDB51 datasets. Furthermore, the recognition
accuracy is also evaluated for the quantitative analysis of the proposed HAR system. The recognition
accuracy is described in Equation (33).

Recognition Accuracy =
Correctly Classified Instances

Total Number of Instances
× 100 (33)
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Table 1. Layer Architecture of the Residual Networks.

Layer ResNet-50 ResNet-101 Output Size
Convolutional 1 7× 7, 64, stride 2 112× 112

Convolutional 2
3× 3 max pooling, stride 2

56× 56 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

Convolutional 3

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4 28× 28

Convolutional 4

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23 14× 14

Convolutional 5

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3 7× 7

Average Pooling, 1000 Fully Connected Softmax 1× 1

Table 2. Statistics of Datasets.

Parameter UCF101 HMDB51
Actions 101 51

Resolution 320 × 240 320 × 240
Video Clips 13,320 6,766
Frame Rate 25 fps 30 fps

Min. Video Clip Length 1.06 sec 1 sec
Min. Video Clips Per Action 100 101

6.1 Datasets
The present work has utilized the UCF101 (Soomro et al., 2012) and HMDB51 (Kuehne et al., 2011)

datasets, which are video-based datasets. The UCF101 dataset is composed of 101 realistic action videos
gathered from YouTube. There are 13,320 videos of different actions available in this dataset, and the
different activities are divided into five categories: sports, playing musical instruments, human-human in-
teraction, body-motion, and human-object interaction. Whereas, the HMDB51 dataset is collected from
the Prelinger archive, Google, and YouTube videos. The HMDB51 dataset embodies 6,766 video clips
related to 51 action categories, which are majorly divided into five categories: general body movements,
body movement for human interaction, body movement for object interaction, general facial actions, and
facial actions with object manipulation. The statistics of both the datasets are illustrated in Table 2, and
some sample frames indicating different activities are depicted in Figure 4.

6.2 Result evaluation
To perform the experiments for the proposed HAR system, both the datasets (UCF101 and HMDB51)

are divided separately into the training and testing proportions of approximately 90:10. For both the
datasets, 1,650 frames per activity are extracted. A total of 166,650 frames from the UCF101 dataset
and 84,150 frames from the HMDB51 dataset are extracted. Among the total 1,650 frames per activity,
1,500 frames are utilized for training the residual networks and 150 frames are utilized for testing. The
description of the training and testing settings is depicted in Table 3.

Before evaluating the testing results for the proposed HAR system, the data is validated by splitting
the training data frames (151,500 frames of the UCF101 dataset and 76,500 frames of the HMDB51
dataset) into the ratio of 80:20. The 80% of the data (121,200 frames of UCF101 dataset and 61,200
frames of HMDB51 dataset) is utilized for the training and 20% of the data (30,300 frames of UCF101
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Apply Lipstick
 Cricket Shot
 Horse Riding
 PunchShaving Beard


(a) UCF101


Shoot Gun
 Climb
 Flic Flac
 HugClap


(b) HMDB51


Fig. 4. Sample Frames illustrating different Activities (a) UCF101 dataset (b) HMDB51 dataset.

Table 3. Training and Testing Setting.

Parameter Value
Input of spatial stream Size of single frame = 3×224×224
Total number of frames 1,650 frames per activity

Number of frames (Training) 1,500 frames per activity
Batch Size 32

Number of Epochs 20
Initial learning rate 5e4

Number of frames (Testing) 150 frames per activity

dataset and 15,300 frames of HMDB51 dataset) is used for the validation. Figures 5- 8 illustrate the
accuracy and loss curves over the 20 epochs during the training and validation for both the UCF101
and HMDB51 datasets. In Figures 5- 8, the results are determined by incorporating the different feature
optimization techniques (GSA, QBGSA, and proposed INQGSA) along with the DNN classifiers of
ResNet-50V2 and ResNet-101V2.

The graphs depicted in Figures 5- 8 indicate the higher oscillation of validation results in the case
of GSA and QBGSA, which is due to the trapping of agents with the increase of epochs. On the other
hand, the proposed INQGSA can be seen with the minor oscillations of result values. The training of
the techniques can be found to be smooth compared to the validation results. The validation results
for the UCF101 and HMDB51 datasets are illustrated in Tables 4 and 5, respectively. These results
clearly indicate the higher accuracy and lower loss values of the proposed models. For the UCF101
dataset, the maximum validation accuracy values of 97.95% and 98.98% are attained by the proposed
INQGSA+ResNet50V2 technique and the proposed INQGSA+ResNet101V2 technique, respectively.
Furthermore, these values are 96.92% and 98.25% in the case of the HMDB51 dataset for the aforemen-
tioned techniques. These validation results are higher than other feature optimization techniques, which
indicate the superiority of the proposed approach. It also indicates that the ResNet-101V2 attained supe-
rior performance to the ResNet-50V2.

Further, the testing results of the proposed INQGSA approach and other optimization techniques
with ResNet-50V2 and ResNet-101V2 classifiers are determined in terms of precision, recall, f-measure
score, and recognition accuracy. The classification results for the UCF101 and HMDB51 datasets are
described in Tables 6 and 7.

From the classification results depicted in Tables 6 and 7, it can be seen that the results values
of INQGSA with both the DNN models (ResNet-50V2 and ResNet-101V2) are higher than the results
evaluated with QBGSA and GSA. It indicates that the INQGSA can optimize the features more efficiently
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(a) Training Accuracy (b) Training Loss

(c) Validation Accuracy (d) Validation Loss

Fig. 5. Performance of ResNet-50V2 Classifier with different Feature Optimization Techniques for the
UCF101 Dataset.

(a) Training Accuracy (b) Training Loss

(c) Validation Accuracy (d) Validation Loss

Fig. 6. Performance of ResNet-101V2 Classifier with different Feature Optimization Techniques for the
UCF101 Dataset.
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(a) Training Accuracy (b) Training Loss

(c) Validation Accuracy (d) Validation Loss

Fig. 7. Performance of ResNet-50V2 Classifier with different Feature Optimization Techniques for the
HMDB51 Dataset.

(a) Training Accuracy (b) Training Loss

(c) Validation Accuracy (d) Validation Loss

Fig. 8. Performance of ResNet-101V2 Classifier with different Feature Optimization Techniques for the
HMDB51 Dataset.
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Table 4. Validation Results for the UCF101 Dataset.

Technique Max. Validation Accuracy Min. Validation Loss
GSA+ResNet50V2 84.59% 0.579
GSA+ResNet101V2 88.06% 0.581

QBGSA+ResNet50V2 91.48% 0.1431
QBGSA+ResNet101V2 93.48% 0.318

Proposed INQGSA+ResNet50V2 97.95% 0.0327
Proposed INQGSA+ResNet101V2 98.98% 0.0243

Table 5. Validation Results for the HMDB51 Dataset.

Technique Max. Validation Accuracy Min. Validation Loss
GSA+ResNet50V2 86.85% 0.837
GSA+ResNet101V2 89.91% 0.631

QBGSA+ResNet50V2 93.85% 0.2247
QBGSA+ResNet101V2 94.82% 0.061

Proposed INQGSA+ResNet50V2 96.92% 0.0415
Proposed INQGSA+ResNet101V2 98.25% 0.0173

compared to the GSA and QBGSA. The maximum recognition accuracy values of 96.16% and 97.11%
are attained by the proposed INQGSA+ResNet101V2 technique for the UCF101 and HMDB51 datasets,
respectively. As the proposed techniques are superior to other optimization techniques, therefore only
the proposed techniques are incorporated for further comparison with state-of-the-art techniques.

6.3 Comparative analysis
The proposed HAR system has incorporated the RGB frames for activity recognition from video

datasets. Therefore, the comparative analysis of the proposed system is conducted with most of the RGB-
based techniques for the experiments on the UCF101 and HMDB51 datasets. The comparative analysis
of the proposed system with state-of-the-art techniques in terms of recognition accuracy is summarized
in Table 8.

The proposed INQGSA approach outperformed with both the classifiers (ResNet-50V2 and ResNet-
101V2) compared to the state-of-the-art techniques. For the UCF101 and HMDB51 datasets, the pro-
posed INQGSA+ResNet101V2 technique has attained 0.78% and 1.27% higher accuracy values than the
INQGSA+ResNet50V2 technique, respectively.

For the UCF101 dataset, the recognition accuracy of the proposed INQGSA+ResNet101V2 tech-
nique is 7.06% higher than MIFS (Multi-skIp Feature Stacking) (Lan et al., 2015), 4.26% than Motion
Map+MIFS (Sun et al., 2018), 7.26% than MiCT-Net (Mixed Convolutional Tube Network) (Zhou et
al., 2018), 4.66% than CNN-OFF (Xu et al., 2021), 3.27% than CNN (weighted product fusion) (Singh
et al., 2021), 4.12% than CNN (weighted average fusion) (Singh et al., 2021), 4.6% than CNN (max fu-
sion) (Singh et al., 2021), 7.49% than CNN (sum fusion) (Singh et al., 2021), 7.93% than CNN (spatio-

Table 6. Classification Results for the UCF101 Dataset.

Technique Precision Recall F-Measure Recognition Accuracy
GSA+ResNet50V2 86.08% 83.14% 84.58% 83.14%
GSA+ResNet101V2 87.89% 86.23% 87.05% 86.23%

QBGSA+ResNet50V2 90.44% 89.53% 89.98% 89.53%
QBGSA+ResNet101V2 94.15% 92.77% 93.45% 92.77%

Proposed INQGSA+ResNet50V2 96.17% 95.38% 95.77% 95.38%
Proposed INQGSA+ResNet101V2 96.91% 96.16% 96.53% 96.16%
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Table 7. Classification Results for the HMDB51 Dataset.

Technique Precision Recall F-Measure Recognition Accuracy
GSA+ResNet50V2 88.12% 85.76% 86.92% 85.76%
GSA+ResNet101V2 90.47% 88.35% 89.40% 88.35%

QBGSA+ResNet50V2 93.48% 92.07% 92.77% 92.07%
QBGSA+ResNet101V2 94.13% 92.97% 93.55% 92.97%

Proposed INQGSA+ResNet50V2 97.09% 95.84% 96.46% 95.84%
Proposed INQGSA+ResNet101V2 98.37% 97.11% 97.74% 97.11%

Table 8. Comparison of the Proposed HAR System with State-of-the-art Techniques.

Technique UCF101 HMDB51
MIFS (Lan et al., 2015) 89.1% 65.1%

Motion Map+MIFS (Sun et al., 2018) 91.9% 73.7%
MiCT-Net (Zhou et al., 2018) 88.9% 63.8%
M-SVM (Sharif et al., 2019) - 92.6%
CNN-OFF (Xu et al., 2021) 91.5% 67.9%

CNN (weighted product fusion) (Singh et al., 2021) 92.89% 64.13%
CNN (weighted average fusion) (Singh et al., 2021) 92.04% 63.87%

CNN (max fusion) (Singh et al., 2021) 91.56% 62.79%
CNN (sum fusion) (Singh et al., 2021) 88.67% 62.32%
CNN (spatio-temp) (Singh et al., 2021) 88.23% 61.89%

CNN (spatial) (Singh et al., 2021) 82.23% 57.20%
MSM-ResNets (Zong et al., 2021) 93.5% 66.7%

PDaUM+DCNN (Khan et al., 2021) - 81.4%
Proposed INQGSA+ResNet50V2 95.38% 95.84%
Proposed INQGSA+ResNet101V2 96.16% 97.11%

temp) (Singh et al., 2021), 13.93% than CNN (spatial) (Singh et al., 2021), 2.66% than MSM-ResNets
(Motion Saliency based multi-stream Multiplier ResNets) (Zong et al., 2021).

For the HMDB51 dataset, the recognition accuracy of the proposed INQGSA+ResNet101V2 tech-
nique is 32.01% higher than MIFS (Lan et al., 2015), 23.41% than Motion Map+MIFS (Sun et al., 2018),
33.31% than MiCT-Net (Zhou et al., 2018), 4.51% than M-SVM (Multi-class Support Vector Machine)
(Sharif et al., 2019), 29.21% than CNN-OFF (Xu et al., 2021), 32.98% than CNN (weighted product fu-
sion) (Singh et al., 2021), 33.24% than CNN (weighted average fusion) (Singh et al., 2021), 34.32% than
CNN (max fusion) (Singh et al., 2021), 34.79% than CNN (sum fusion) (Singh et al., 2021), 35.22% than
CNN (spatio-temp) (Singh et al., 2021), 39.91% than CNN (spatial) (Singh et al., 2021), 30.41% than
MSM-ResNets (Zong et al., 2021), and 15.71% than PDaUM (Poisson distribution along with Univariate
Measures) + DCNN (Deep Convolutional Neural Network) (Khan et al., 2021).

These comparisons indicate the superiority of the results for the proposed techniques over other
techniques. Although the accuracy differences between the proposed techniques and other techniques
are readily visible for both the datasets, a significant improvement in the results can be observed for
the HMDB51 dataset. These results demonstrate that the proposed INQGSA technique considerably
enhances the features that aid in the more accurate recognition of activities.

7. Conclusion

This paper proposed the INQGSA approach to optimize the features for human activity recognition. The
proposed INQGSA approach intelligently updates the position of mass agents to avoid the trapping of
agents in later iterations, which occurred in GSA and QBGSA. In this work, these intelligent attributes
helps to improve the feature optimization for activity recognition. In the overall human activity recog-
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nition system, a sequence of the latest techniques is incorporated for the different modules of activity
recognition. The system incorporated the key techniques of uniform rotation invariant LBP for feature
extraction, the proposed INQGSA approach for feature optimization, and deep neural network mod-
els (ResNet-50V2 and ResNet-101V2) for classification. The feature optimization technique reduces
the complexity of the classifiers by feeding the selected features. The results of the proposed HAR
system are evaluated for the UCF101 and HMDB51 datasets. For the UCF101 dataset, the proposed
INQGSA+ResNet50V2 technique and the proposed INQGSA+ResNet101V2 techniques attained recog-
nition accuracy of 95.38% and 96.16%, respectively. These values for the HMDB51 dataset are 95.84%
and 97.11%, respectively. The comparative analysis of the proposed techniques with GSA and QBGSA
based optimization techniques and state-of-the-art techniques indicates the outperformed performance of
the proposed techniques.

In the future, the proposed INQGSA approach can be utilized for other applications such as net-
work optimization, scheduling, robotic programs, etc. Moreover, the proposed HAR system can also be
implemented in real time to determine abnormal activities in public places.
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