Kuwait J. Sci. 42 (2) pp. 1-13, 2015

A population model of two-strains tumors with piecewise
constant arguments

FATMA BOZKURT" AND ILHAN OZTURK™

*Department of Mathematics, Faculty of Education, Erciyes University,
38039 Kayseri, Turkey

**Department of Mathematics, Faculty of Education, Erciyes University,
38039 Kayseri, Turkey

Corresponding author: fbozkurt@erciyes.edu.tr

ABSTRACT

In this study, the population growth of the brain tumor GBM, is constructed such as
(clix_t:px (t)+r1x(t)(R1 —ax(t)- azx([[t]]))— 7x(t) y([[t]])— dlx(t)x([[t]])
((11_);=r2Y(t)(R2 - ﬂ1Y(t) - ﬂz}I([[t]:I)) X ([[t]]) Y(t) —-d,y()y (I:[t]])

(A)
where ¢ = 0, the parameters @, &, B}, 5, 71> P> d;, d,, R, R,, 1 and r, arepositive
real numbers and [[t]] denotes the integer part of t€[0,8). System (A) explains a tumor
growth, that produces after a specific time another tumor population with different growth rate
and different treatment susceptibilities. The local and global stability of this model is analyzed
by using the theory of differential and difference equations. Simulations and data of GBM give
a detailed description of system (A) at the end of the paper.

Keywords: Differential equation; difference equations; local stability; global stability;
boundedness

INTRODUCTION

Glioblastoma multiforme is the most aggressive of the gliomas, a collection of tumors
arising from glia or their precursors within the central nervous system. Most patients
with GBMs die of their disease in less than a year and essentially none has long-
term survival, Holland (2000). In the first stage of GBM, the tumor has a monoclonal
origin, which changes after reaching a specific density. This kind of tumor can develop
multiple sub-population with different growth rates and treatments susceptibilities.
For this, during the treatment process a formidable obstacle can be obtained. Various
papers about the characteristic behavior of GBM or tumor population with multiform
are written, where some of them are Berkmann et al. (1992); Coons & Johnson (1993);
Paulus & Peiffer (1989); Yung et al. (1982). Brain tumors are ideal candidates for
theoretical modeling. Mathematical approaches to tumor treatment offer a perspective
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that current in vivo/in vitro techniques cannot, Coldman & Goldie (1979); Panetta
(1998).

By describing the tumor phenomena the best known modeling is the Gompertz’s

model,

A -(1-exp(—Bt
V =V, exp % , (1.1)
where V describes the volume of the tumor, t denotes the time, Vy is the volume at

time t=0, A and B are parameters that have to be specified, Birkhead (1987).

Coldman & Goldie (1979) proposed a model, which links a Tumor’s drug
sensitivity to its rate of spontaneous resistance mutations such as

du _ p H
E_Ew{l_ﬁj (1.2)

where H is the mean volume of the resistant strain and N the total volume of the
tumor. The parameter & is the mutation rate per cell generation.

Panetta (1998) modeled the size of two sub-populations in time such as

dx
E = (r1 - dl(t))x
(13)

where x represents the sensitive cell population, y the resistant cell population, # and
r, are the growth rates, d, and d, are their drug sensitivities, respectively.

Birkhead et al. (1987), have considered both cycling and resting tumor cells in
their study. The difference between the two models is that sensitive cells could convert
to resistant cells, while cycling and resting cells could inter-convert. Similar works
about modeling tumor behaviors can be found in Schmitz et al. (2002); De Vlader &
Gonzalez (2004); Gevertz & Toquato (2006); Mansury et al. (2006).

In some biological situations Mathematical approximation for population growth
involves nonlinear differential equations, May (1975); May & Oester (1976). It is
generally known that for an overlapping generation of a single species, a model with
a differential equation is preferred. If there is a non-overlapping generation of single
species, then it is convenient to construct a model with a difference equation, Allen
(2007); Hoppenstead (2004); Rubinow (2002). For both time situations, continuous
and discrete, there is some population dynamics in ecosystem, which combine the
properties of both differential and difference equations, where the use of piecewise
constant arguments come into question. For such biological events it may be suitable
to construct a model with piecewise constant arguments, see Cooke & Huang (1991);
Gopalsamy & Liu (1998); Gurcan & Bozkurt (2009); Liu & Gopalsamy (1999);
Ozturk & Bozkurt (2011).
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According to Gopalsamy & Liu (1998), the differential equation

dl\;(t) N (t){1=an (1)-bv ([[]])} (1.4)

was considered, where N(t) denotes the biomass (or population density) of a single
species, 1, a, b and t are positive numbers. Using the Lyapunov function, they proved
sufficient condition for all positive solutions of equation (1.4). A general differential
equation of (1.4) can be shown in Liu & Gopalsamy, (1999), were by using the lemma
of Cooke and Huang, see Cooke & Huang (1991) the global attractivity of the positive
equilibrium point are proven.

Gurcan & Bozkurt (2009), considered the logistic equation
dx

S ()(1-ax (0)- Aox([[2]]) - Ax([Te-11) (15)

where ¢ > () and the parameters &, ﬂo , ﬂl and r denote positive numbers. The local
asymptotic stability of the positive equilibrium point of equation (1.5) was proven by
using the Linearized Stability Theorem and the global asymptotic stability by using
a suitable Lyapunov function. A general differential equation (1.5) was shown in
Ozturk & Bozkurt (2011), where additionally a detailed description and condition of
semicycle and damped oscillation of the positive solutions are proved.

In this paper, the growth of GBM has been considered. This tumor has two sub-
populations, the sensitive cells and the resistant cells, where the model is constructed
such as

e O+ix ()[R, =ax(0)=ax ([[1]]))-x (O (1)) -ex (O ([[1]])
Lty (0)(Ra= Ay(0)- Ay ([[4)+ rx ([11)) () - ey (O ¥([[1))

Here, ¢ > () and the parameters «,, @,, B, b5, 71> P> d;,d,, 1, and 1, denote
positive numbers. p is the division rate of the sensitive cells and the parameter
a,,a,, B, and [, are necessary parameters for the logistic differential equations
of the tumor populations. ¥, is the converting rate of sensitive cells to resistant cells.
The parameters d, and d, are their dead rate caused from drugs, respectively. In
section 2, we investigate the local and global behavior of the nonlinear difference
solutions of (1.6) based on specific conditions. Furthermore, the boundedness nature
of the positive solutions of (1.6) was considered. Simulations and the data of GBM
give a detailed description of the behavior of system (1.6) at the end of the paper.

(1.6)
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LOCAL STABILITY AND GLOBAL ASYMPTOTIC STABILITY
On an interval of the form t e [n, n+ 1), one can write (6) as
dx
- {p +rR, - (azrl +d, )X(n)_ 71Y(n)}x(t) =—an (X(t))2
dt 2.1)

% - {r2R2 - (ﬂzrz +d, )Y(n)+ 7’1X(n)}3’(t) =-pn, (Y(t))z ’

where forn=0,1,2, and t—>n+1 the solution is

x(n)-{p+rlR1 ~(ayg, +dl)x(n)—71y(n)}

x(n +1): {errlRl —(a2r1 +d, +alr1)x(n)— ;/ly(n)}exp (—{p +1R, —(ozzr1 + dl)x(n)— 71y(n)})+ a,5x(n)

- S}, (8 +)0) () -
{ER, (B, #,+ ) y(n)+7x () exp (~{eR, ~(B, +4,)y(n) 7x(n)} ) + Ay(o)
In the following, we assume that
p+rR, —(ozzr1 +d1)x(n)—yly(n)¢ 0 (2.3)
and
LR, —(ﬂzr2 +d, )y(n)+ ylx(n)i 0. (2.4)

To investigate more about the behavior of (1.6) we continue the analysis, since (2.2)
is a system of difference equations. First, we need to obtain the positive equilibrium
point of (2.2), which is also the critical points of (1.6). Computations reveal that the
positive equilibrium points of (8) is

U= (; &): [ (p +1R, )(dz +hn+ ﬂzrz)_ LRy rsz(d1 tontan )+ (p +1R, )71
e e+ B )+ (e e, + B+ )+ (2.5)

where

< (p +1R, )(dz +pr, + ﬂzrz)
LR,

(2.6)

1

and

alrl(p + r1R1)(dz +hr, +ﬂ2rz)_a1r1r2R271 >0
(dl ta,n +apn )(dz + 40 + ﬂ1r2)+ 712
_ . 2
B= 1‘2R2 _(1321,2 +d2 )y+7,x — ﬂlerz (dl Ty +a|r|)+(p+r1R1)71ﬂ;rz >0
(d1 +a,n +apn )(dz + 40 + ﬂlr2)+ 7

A:p+r1R1_(a2r1+d1);_7/1§:

Linearizing system (2.2) about the positive equilibrium point, we obtain for
n =0,1, 2,... the associated characteristic equation of (2.2) as
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A? —(ay, +ay ) A+ (ayay, —aa,, )=0, 2.7)
where
(d,+an +ar)e™ —(d, +a,n)
d. =
11 alrl
-A
7 e 1
ap = ( )
_nfi=¢?)
a21 - L5
A,
_ (dz +:B2r2 +ﬁ1r2)e_B _(dz +,B21“2)
” A, '
2
2(7/1)
Theorem 2.1. Let o, > ¢, and 1,1, > ———— . If
a,p
n d, +a,1 +ar, < A<ln d, +a,1 +apr, 2.9)
d, +a,r d, +a,1,—ar
and
B< ln( d, + b1, + A, ]’ (2.10)
d, + /o1,

then the positive equilibrium point of system (8) is locally asymptotically stable.

Proof. By the Linearized Stability Theorem, see Gibbons et al. (2002), the positive
equilibrium point of (8) is locally asymptotically stable if and only if

|a11 +a22| <l+a,a, —a,a, <2 (2.11)

holds. From condition (17), we can write
((dl o tan )e_A - (dl T, )) ((dz + 50 + B, )e_B

- (dz +por, )) <a,fnr, - (71 )2 ) (1 —e’ Xl - eiB) (2.12)

Since A>0and B >0, if

4> 1 St %t tan 2.13)
d, +a,r
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and
B< ln(dz +h0+ AL, } (2.14)
d, +fr,
then we have
(d, + Bty + B Je ™ = (d, + Br;)> 0 (2.15)
and
(d, + a1, + a1 e ™ —(d, + a,1,) < 0. (2.16)
Additionally, we can write
o, —(n ) +(, ) - (e’A +e® ) >(y, e, (2.17)
since
()
et s> (2.18)
and o, pnt, - (71)
2 2
nr, > M > m (2.19)

B, a,p

From (2.13)-(2.19), the conditions to hold the second part of the inequality in
(2.11) are obtained. Furthermore, to consider the inequalities for the left side of (2.11),
the following ones have to be considered;

i) A ((d, + ot + ey Je ™ —(d, + aon )+ a1 ((d, + Bor, + B e

—(d, +p.1,)) <, frr, + ((d1 ot +ar e —(d, +ar, ))

(A + B+ B e = (d + B )+ (1 F (1= =)
(i) — o, Bt — ((d, + @r, + 1 Je ™ = (d, + 1))

(s + B+ B e = (o )= F (1= i)

<prfld, + o+t -(d +an))+ar ((dz + B+ A = (d, + )
By considering these, we obtain

((dl +a,r, )_(dl +a,1 +at, )e_A)~ ((d2 + f.1, + A1, )e_B — (d2 + f,1, )) <
B, ((d1 +ot +ar et —(d, +a,r, )), (2.20)
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since A > 0. Furthermore, from

oL ((dz + 50, + B, )eiB - (d2 + f.1, ))< a,prr,, (2.21)
we have ¢ ® <1, which is always true, since B> 0.
From (ii), if

((d1 +a,r)—(d, + o, +ar )e ™ )((d2 +pr, + B, )e” —(d, +/)’2r2))

N (2.22)
<af ((dz + 4.1, +,Blr2)e _(dz +ﬂ2r2)),
for o, >, , we get
d, +a,1 +ar,
A<lh|————|. (2.23)
dl o —a

Considering both (2.13) and (2.23), the inequality (2.9) is obtained. In addition,
from the inequality

B, ((dl T )_ (d1 oL T ay )eiA ) <o, pn, (2.24)
we get (2.23), which completes our proof.

Theorem 2.2. Suppose that the conditions in Theorem 2.1 hold. Furthermore, assume
that

arx(n) <p+iR, (a5 +d,)x(n)-yy(n)<in [zx_(—xgn)} (2.25)
x(n
and _
B, <R, + 71X(n)—(ﬂ2r2 +d2)y(n)<ln (Zyy_(—zfn)J (2.26)
For p=0,1,2,..., if
x(n)<2x and y(n)<2y (2.27)

then the positive equilibrium point of system (8) is globally asymptotically stable.
Proof. We consider a Lyapunov function V(n) defined by
V(l‘l)=(Vl(n),V2 (n))z{x(n)_ﬂ}z, (228)

where n = 0,1,2, and X(n) = (x(n), y(n)), From the change along the solutions of
(32), we obtain

AV, (n)={x(n+1)—x(n)}{x(n+1)+x (n)—2;} (2.29)
and

AV, (n)={y(n +1)— y(n)}{y(n +1)+y (n) —2;'}. (2.30)
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By using (2.25), one can obtain
x(n+1)-x(n)> 0. (2.31)
Furthermore if (2.27) holds for x(n), then it is easy to obtain the following one;
X(n + 1)+ x(n)— 2x

= Alx(n)+(x(n)-2xf* )+ arx(n)i-e* fx(n)-2x)< 0. @32)
From (2.25) and (2.27), we get in this case AV, (n)<0. In similar way, for the
condition (2.26), we have

y(n+1)=y(n)>0 and y(n+1)+ y(n)-2y <o, (2.33)

where, y(n)< 2y. This implies that AV, (n)<0. which completes the proof of
global asymptotic stability.

Theorem 2.3 Let {(X(n), J’(”))}i:o be a positive solution of (2.2). Assume that for
n=0, 1, the conditions

ayrx(n) <p+1R, —(en +d; x(n)-yy(n) (2.34)
and

Ary(n) <R, + 71X(n)_ (ﬁzrz +d, )Y(n) (2.35)
hold. Then all positive solutions of (2.2) are in the interval

R + +rR
X(n)e(o, LHRIJ and y(n)e(o, aRtn + 7 (P, I)J. (2.36)
ar a,prr,

Proof. Let a1r1x(”) <p+ r1R1 — (a2r1 + d1 )X(l’l)— 713’(“)' Then we can write

p+rR, _(azrl +d1)X(n)_7/1Y(n)< p+rR, (2.37)
and from
- (p +1R, - (a2rl +d, )X(n)_ 71Y(n)) = _(p +1R, )’ (2.38)
we have
e—(p+r1R]—(a2r] +d] )x(n)—yly(n)) > e—(p+rlR ) (239)
By using both (2.37) and (2.39), the first equation of (2.2) satisfy
x(n+1)< x(nkp+ 1R (2.40)

{p+1R, (ot +d, Jx(n)-7,y(n)} RETIN alrlx<n)(1 _ o) »
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Furthermore, since alrlx(n) <p+rR, - (0{2rl +d, )X(n)— 7ly(n), we can write

L <1 (2.41)

p+rR, - (azrl +d, )X(n)_ 713’(11) a,5x(n) .

Using (2.41) in (2.40), we get

X(n)(p +r1R1) _p+rR, -
alrlx(n)e_(leR] ) + alrlx(n)(l - e_[leRl J)) A

In addition, since 1, y(n) <1,R, +,x(n)— (8,1, +d, )y(n), we obtain

x(n+1)< (2.42)

LR, + 71X(n)_ (ﬂzrz +d, )Y(n) <R, + 7/1X(n) (2.43)
and
1 S (2.44)
LR, + 71X(n)_ (ﬂzrz +d, )Y(n) Bir,y(n)
Considering both (2.43) and (2.44), we get
y(n " 1)< LR, + 71X(n) < aR,nr, +7, (p +r1R1)’ (2.45)

s a,fnr,
which completes the proof.

Example: The values of the parameters of (2.2) are choosen as given in Schmitz et al.
(2002) and in view the obtained results. The table is given as follows;

Table 1. Values of the parameter of system (2.1)

P division rate of the sensitive cells 0.192

K, zzflr;};ngge tﬁzfacny of the negrotic and sensitive 0.42%382° = 4 704
K, carriying capacity of the resistant tumor population ~ ().11*38%3 =1.232
I mutation rate of the sensitive cells to resistantcells ) € [1 0° R 107 ]

a. logistic population rate of sensitive cell population a, [ 0.5.0.9 5]

! Hereis ¢, =0.51 and a, = 0.555

logistic population rate of resistant cell population
- €10.05,0.2
Here, /3, =0.05 and 3, =0.2. B <[ ]

S

causes of drug treatment to the sensitive cells 0.001

—_

o o

causes of drug treatment to the resistant cells 0.00001

[
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We want to consider the behaviors for the converting rates y, =0.01 and
7, =0.00001. Both populations have different growth rates. In this example, we
have constructed a relation between both population such as r = r; and (1 .05)* r=r,.
The initial conditions are x(0)=0.82 and y(0)=0.23, where the x-axis of the graph
denotes the growth rate of the population and the y-axis the per capita growth of
both population. The blue and the red graph sembolize the sensitive cells population
( x(n)) and the resistant cells population (y(7)), respectively. Figure 1 show the
behavior of the sensitive cells and resistant cells, where the mutation rate is y; = 0.01
. Here, it is shown that at last the resistant cells will cover the sensitive cells, as also
explained in Schmitz et al. (2002).

x(n+1)/x(n) and y(n+1)/y(n)

Fig. 1 Figure for the coordinates (1‘1 ,x(n + 1)/x(n)) and (rz,y(n + 1)/y(n)), where 7, =0.01

Figure 2, show the behavior of the sensitive cells and resistant cells, where
7, = 0.00001 . It is clear that during the initial phases, the volume of the sensitive
cells are more than the resistant cells. But since the population growth rate of the
resistant cells is greater than the sensitive cells, after a spesific time the resistant cells
will occur on the wall of the sensitive tumor cells, see also Schmitz et al. (2002).
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x(n+1)/x(n) and y(n+1)/y(n)

Fig. 2. Figure for the coordinates (r] , x(n + l)/x(n)) and (rz,y(n + l)/y(n)), where 7, =0.00001.

NUMERICAL RESULTS AND COMMENTS

In section 2, the local and global asymptotic stability of the positive equilibrium point

of system (8) have been analyzed in Theorem 2.1 and Theorem 2.2, respectively.
Theorem 2.3 was an important proof to show the bound of both tumor structures. The
parameters are used from the data of Schmitz, et al. (2002), where it has been shown
that a sensitive tumor population with the mutation rate y, = 0.00001, occur on
the wall of the sensitive cells after a specific density and specific time. Furthermore,
if the mutation rate is ¥, = 0.01, then the resistant tumor population will cover the
sensitive tumor cells, which makes the treatment process more difficult than the
phenomena shown in Figure 1.
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